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A key question concerning the spherical-vibrator attributes of states in cadmium isotopes is addressed by
means of a boson Hamiltonian encompassing U(5) partial dynamical symmetry. The U(5) symmetry is preserved
in a segment of the spectrum and is broken in particular nonyrast states, and the resulting mixing with the
intruder states is small. The vibrational character is thus maintained in the majority of low-lying normal states
as observed in 110Cd.
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The concept of a phonon is indispensable to understand
collective behavior in quantum-mechanical many-body sys-
tems. In particular, in condensed matter, the description of
lattice excitations requires the introduction of elementary
modes of vibration that are identified with phonons. Phonons
also play a central role in nuclear physics, notably in the
interpretation of the collective motion of nucleons in an
atomic nucleus. A standard model of the nucleus is in terms
of a quantum liquid drop that exhibits vibrations around an
equilibrium shape, which, if deformed, can also rotate. In
their seminal studies Bohr and Mottelson [1–3] argued that
the collective low-energy properties of nuclei are dominated
by quadrupole vibrations, whose nature depends on the equi-
librium shape. Small oscillations about spherical equilibrium
can be described in terms of a single type of quadrupole
phonon whereas the oscillations about a quadrupole-deformed
equilibrium require the introduction of two different phonons
that generate so-called β and γ vibrations.

This Rapid Communication deals with vibrations of spher-
ical nuclei. The first observation to be made is that, despite
more than half a century of research, the phonon interpretation
of the low-energy nuclear structure remains controversial as
exemplified by the cadmium isotopes. The latter since long
have been considered as archetypal examples of nuclei that
exhibit small-amplitude vibrations around a spherical shape to
the extent that they have become textbook material to illustrate
nuclear phonon behavior [3–7]. Evidence for near-harmonic
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vibrational properties of Cd isotopes was reported for up to
three [8] and even up to six [9] quadrupole phonons. Neverthe-
less, it was also realized early on [10] that not all low-energy
levels of these isotopes can be considered as vibrational and
that additional levels exist at low excitation energies. The
latter, named coexisting or intruder states [11], were claimed
to arise because of proton excitations across the Z=50 shell
closure, a character that was later confirmed in two-proton
transfer reactions [12]. Over the years intruder bands were
identified in many even-mass Cd isotopes [13] and, in paral-
lel, models were extended to include such states. Extensive
E2 decay patterns were established in several Cd isotopes
and reproduced theoretically, albeit laboriously, by allowing
mixing between vibrational and intruder states, see, e.g.,
Refs. [14,15]. However, as more data on the Cd isotopes were
collected, the interpretation in terms of vibration-intruder
mixing became increasingly untenable: Decay properties of
112Cd could not be explained [16], those of 114Cd were found
to be “enigmatic” [17], and those of 116Cd were found to
be “puzzling” [18]. The crisis culminated in papers claim-
ing the “breakdown of vibrational motion” not only in the
Cd [19], but also in the neighboring Pd and Sn isotopes [20].
This paradoxical behavior, characterized in Ref. [11] as
an unsolved problem, continues to attract considerable
attention [21–27].

In this Rapid Communication, we suggest that the vibra-
tional interpretation of the Cd isotopes can be resurrected not
as attempted previously by mixing vibrational and intruder
states but by mixing particular phonon states. From a formal
point of view, the latter mechanism represents a departure
from U(5), which is the dynamical symmetry (DS) of spher-
ical nuclei in the collective model [3] and the interacting
boson model (IBM) [4], and generalizes it to a U(5) partial
dynamical symmetry (PDS) [28].
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FIG. 1. (a) Experimental spectrum and representative E2 rates [21,36] [in Weisskopf units (W.u.)] of normal and intruder levels
(0+

2 , 2+
3 , 4+

3 , 2+
4 ) in 110Cd. (b) Calculated U(5)-DS spectrum obtained from ĤDS (2) with parameters t1 = 715.75, t2 = −t3 = 42.10, t4 =

11.38 keV, and N =7. (c) Calculated U(5)-PDS-CM spectrum, obtained from Ĥ (11) with parameters t1 = 767.83, t2 = −t3 = 73.62, t4 =
18.47, r0 = 2.15, e0 = −6.92, κ = −72.73, � = 9978.86, α = −42.78 keV, and N = 7 (9) in the normal (intruder) sector. For a complete
listing of B(E2) values and choice of E2 parameters, see Tables I and II.

A Hamiltonian with DS is written as a linear combination
of Casimir operators of nested algebras, leading to complete
solvability of its spectrum with exact quantum numbers for
all eigenstates [4,29]. This property, although very appealing,
is rarely, if ever, satisfied in an existing quantum-mechanical
system. However, more realistic Hamiltonians can be con-
structed, which satisfy the stringent DS conditions only par-
tially. This leads to three different types of PDSs: (i) Some
eigenstates retain all quantum numbers [30,31], (ii) all eigen-
states retain some quantum numbers [32,33], and (iii) some
eigenstates retain some quantum numbers [34].

In the following we apply a PDS of type (i) to explain the
spectroscopic properties of 110Cd. The starting point is the
U(5) limit of the IBM, corresponding to the following chain
of nested algebras [4,35]:

U(6) ⊃ U(5) ⊃ SO(5) ⊃ SO(3) . (1)

The basis states |[N ], nd, τ, n�, L〉 have quantum numbers
which are the labels of irreducible representations of the alge-
bras in the chain. Here N is the total number of monopole (s)
and quadrupole (d) bosons, nd and τ are the d-boson number
and seniority, respectively, and L is the angular momentum.
The multiplicity label n� counts the maximum number of
d-boson triplets coupled to L = 0. The U(5)-DS Hamiltonian
has the form

ĤDS = t1n̂d + t2n̂
2
d + t3ĈSO(5) + t4ĈSO(3) , (2)

where ĈG denotes a Casimir operator of G and n̂d =∑
m d

†
mdm = ĈU(5). ĤDS is completely solvable for any choice

of parameters ti with eigenstates |[N ], nd, τ, n�, L〉 and
eigenenergies,

EDS = t1nd + t2n
2
d + t3τ (τ + 3) + t4L(L + 1) . (3)

A typical U(5)-DS spectrum exhibits nd multiplets of a
spherical vibrator with a two-phonon (nd = 2) triplet of
states (L = 4, 2, 0) at an energy of E(nd = 2) ≈ 2E(nd = 1)
above the ground state (nd = L = 0) and first excited state
(nd = 1, L = 2), and a three-phonon (nd = 3) quintuplet
of states (L = 6, 4, 3, 0, 2) at E(nd = 3) ≈ 3E(nd = 1). A
quadrupole operator proportional to

Q̂ = d†s + s†d̃ , (4)

enforces strong (nd + 1 → nd ) E2 transitions with particular
ratios, e.g., B(E2; nd=2,L=0,2,4→nd=1,L=2)

B(E2; nd=1,L=2→nd=0,L=0) = 2 (N−1)
N

.

The empirical spectrum of 110Cd, shown in Fig. 1(a),
consists of both normal and intruder levels, the lat-
ter based on 2p-4h proton excitations across the Z=50
closed shell. Experimentally known E2 rates are listed in
Tables I and II. A comparison of the calculated spec-
trum [Fig. 1(b)] and B(E2) values [Table I], obtained
from ĤDS (2), demonstrates that most normal states have
good spherical-vibrator properties and conform well with
the properties of U(5)-DS. However, the measured rates
for E2 decays from the nonyrast states 0+

3 (nd = 2) and
[0+

4 , 2+
5 (nd = 3)] reveal marked deviations from this be-

havior. In particular, B(E2; 0+
3 → 2+

1 ) < 7.9, B(E2; 2+
5 →

4+
1 ) < 5, B(E2; 2+

5 → 2+
2 ) = 0.7+0.5

−0.6 W.u. are extremely
small compared to the U(5)-DS values: 46.29, 19.84,
11.02 W.u., respectively. Absolute B(E2) values for transi-
tions from the 0+

4 state are not known, but its branching ratio
to 2+

2 is small.
Attempts to explain the above deviations in terms of

mixing between the normal spherical [U(5)-like] states and
intruder deformed [SO(6)-like] states have been shown to
be unsatisfactory [19,21]. The reasons are twofold. (i) An
adequate description of the two-phonon 0+

3 state requires
strong (maximal ∼50%) normal-intruder mixing which, in
turn, results in serious disagreements with the observed decay
pattern of three-phonon yrast states. (ii) The discrepancy
in the decays of the nonyrast two- and three-phonon states
persists throughout the range of A = 110–126, including the
heavier ACd isotopes [22,23], even though the energy of
intruder states rises away from the neutron midshell, and the
mixing is reduced. These observations have led to the conclu-
sion that the normal-intruder strong-mixing scenario needs to
be rejected and have raised serious questions on the validity of
the multiphonon interpretation [19,21]. In what follows, we
consider a possible explanation for the “Cd problem,” based
on U(5)-PDS. The latter corresponds to a situation in which
the U(5)-DS is obeyed by only a subset of states and is broken
in other states. Similar PDS-based approaches have been
implemented in nuclear spectroscopy, in conjunction with
the SU(3)-DS [31,37–39] and SO(6)-DS [33,34,40] chains of
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TABLE I. Absolute (relative in square brackets) B(E2) values
in W.u. for E2 transitions from normal levels in 110Cd. The ex-
perimental (Expt.) values are taken from Refs. [21,36]. The U(5)-
DS values are obtained for an E2 operator eBQ̂, Eq. (4), with
eB = 1.964 (W.u.)1/2. The U(5)-PDS-CM values are obtained using
T̂ (E2), Eq. (13), with e

(N )
B = 1.956 and e

(N+2)
B = 1.195 (W.u.)1/2. In

both calculations the boson effective charges were fixed by the em-
pirical 2+

1 → 0+
1 rate. Intruder states 0+

2;i , 2+
3;i , 4+

3;i , 2+
4;i are marked

by a subscript i.

Li Lf Expt. U(5)-DS U(5)-PDS-CM

2+
1 0+

1 27.0 (8) 27.00 27.00

4+
1 2+

1 42 (9) 46.29 45.93

2+
2 2+

1 30 (5); 19 (4)a 46.29 46.32

0+
1 1.35 (20); 0.68 (14)a 0.00 0.00

0+
3 2+

2 <1680a 0.00 55.95

2+
1 <7.9a 46.29 0.25

6+
1 4+

1 40 (30); 62 (18)a 57.86 55.30

4+
2 <5a 0.00 0.00

4+
3;i 14 (10); 36 (11)a 2.39

4+
2 4+

1 12+4
−6; a10.7+4.9

−4.8 27.55 27.45

2+
2 32+10

−14; 22 (10)a 30.31 30.03

2+
1 0.20+0.06

−0.09; 0.14 (6)a 0.00 0.00

2+
3;i <0.5a 0.005

3+
1 4+

1 5.9+1.8
−4.6; a2.4+0.9

−0.8 16.53 16.48

2+
2 32+8

−24; 22.7 (69)a 41.33 41.12

2+
1 1.1+0.3

−0.8; 0.85 (25)a 0.00 0.00

2+
3;i <5a 0.012

0+
4 2+

2 [<0.65a] 57.86 1.24

2+
1 [0.010a] 0.00 31.76

2+
3;i [100a] 16.32

2+
5 0+

3 24.2 (22)a 27.00 22.28

4+
1 <5a 19.84 0.19

2+
2

a0.7+0.5
−0.6 11.02 0.12

2+
1 2.8+0.6

−1.0 0.00 0.00

2+
3;i <5a 0.002

0+
2;i <1.9a 0.20

aFrom Ref. [21].

the IBM. Here we focus on U(5)-PDS associated with the
chain (1).

The lowest spherical-vibrator levels comprise three classes
of states,

Class A: nd = τ = 0, 1, 2, 3 (n� = 0), (5a)

Class B: nd = τ + 2 = 2, 3 (n� = 0), (5b)

Class C: nd = τ = 3 (n� = 1). (5c)

In the U(5)-DS calculation of Fig. 1(b), applicable to
normal states only, the “problematic” states [0+

3 (nd = 2)
and 2+

5 (nd = 3)] belong to class B, and 0+
4 (nd = 3) be-

longs to class C. The remaining good spherical-vibrator
states [0+

1 (nd =0); 2+
1 (nd =1); 4+

1 , 2+
2 (nd =2); 6+

1 , 4+
2 , 3+

1
(nd = 3)] belong to class A. As mentioned, the spherical-

TABLE II. B(E2) values (in W.u.) for E2 transitions from
intruder levels in 110Cd. Notation and relevant information on the
observables shown are as in Table I.

Li Lf Expt. U(5)-PDS-CM

0+
2;i 2+

1 <40a 14.18

2+
3;i 0+

2;i 29 (5)a 29.00

0+
1 0.31+0.08

−0.12; 0.28 (4)a 0.08

2+
1 0.7+0.3

−0.4; a0.32+0.10
−0.14 0.00

2+
2 <8a 0.96

2+
4;i 2+

1 0.019+0.020
−0.019 0.10

4+
3;i 2+

1 0.22+0.09
−0.19; 0.14 (4)a 0.49

2+
2 2.2+1.4

−2.2; 1.2 (4)a 0.00

2+
3;i 120+50

−110; 115 (35)a 42.62

4+
1 2.6+1.6

−2.6; a1.8+1.0
−1.5 0.00

aFrom Ref. [21].

vibrator interpretation is valid for most normal states in
Fig. 1(a) but not all. We are thus confronted with a situation in
which some states in the spectrum (assigned to class A) obey
the predictions of U(5)-DS, whereas other states (assigned to
classes B and C) do not. These empirical findings signal the
presence of a partial dynamical symmetry U(5)-PDS.

The construction of Hamiltonians with U(5)-PDS follows
the general algorithm [30,40] by identifying operators which
annihilate particular sets of U(5) basis states. In the present
case, this leads to the following interaction:

V̂0 = r0G
†
0G0 + e0(G†

0K0 + K
†
0G0), (6)

where G
†
0 = [(d†d†)(2)d†](0), K

†
0 = s†(d†d†)(0) and standard

notation of angular momentum coupling is used. V̂0 of Eq. (6)
is in normal-ordered form and satisfies

V̂0|[N ], nd = τ, τ, n� = 0, L〉 = 0, (7)

with L = τ, τ + 1, . . . , 2τ − 2, 2τ for any choice of param-
eters r0 and e0. Equation (7) follows from the fact that the
indicated states have nd =τ and n� = 0, hence do not contain
a pair or a triplet of d bosons coupled to L = 0 and, as such,
are annihilated by K0 [4] and G0 [41].

The states of Eq. (7), which include those of class A, form a
subset of U(5) basis states, hence, remain solvable eigenstates
of the Hamiltonian,

ĤPDS = ĤDS + V̂0, (8)

with good U(5) symmetry and energies given in Eq. (3) with
nd = τ . It should be noted that whereas ĤDS (2) is diagonal
in the U(5)-DS chain (1), the r0 term (e0 term) in V̂0 con-
nects states with �nd = 0 and �τ = 0,±2,±4,±6 (�nd =
±1 and �τ = ±1,±3). Accordingly, the remaining eigen-
states of ĤPDS (8), in particular, those of classes B and C,
are mixed with respect to U(5) and SO(5). The U(5)-DS
is therefore preserved in a subset of eigenstates for any
choice of parameters in ĤPDS but is broken in others. By
definition, ĤPDS exhibits U(5)-PDS. Cubic terms of the type
present in V̂0, Eq. (6), were previously encountered in IBM
studies of triaxiality [42,43], signature splitting [39,44], band
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anharmonicity [40,45], and shape coexistence [46,47] in de-
formed nuclei. Such higher-order terms show up naturally in
microscopic-inspired IBM Hamiltonians derived by a map-
ping from self-consistent mean-field calculations [48,49].

The effect of intruder levels can be studied in the frame-
work of the interacting boson model with configuration mix-
ing (IBM-CM) [50,51]. The latter involves the space of
normal states described by a system of N bosons repre-
senting valence nucleon pairs and the space of intruder
states described by a system of N + 2 bosons, accounting
for particle-hole shell-model excitations. This procedure has
been used extensively in describing coexistence phenomena in
nuclei [52–55]. In the present study of 110Cd, the Hamiltonian
in the normal sector is taken to be ĤPDS of Eq. (8), acting
in a space of N = 7 bosons. The Hamiltonian in the intruder
sector is taken to be of SO(6) type [52],

Ĥintrud = κQ̂ · Q̂ + �, (9)

acting in a space of N = 9 bosons with Q̂ given in Eq. (4).
A mixing term between the [N ] and the [N + 2] boson spaces
is defined as [52–55]

V̂mix = α
[
(s†)2 + (d†d†)(0)

] + H.c., (10)

where H.c. means Hermitian conjugate. The combined Hamil-
tonian for the two configurations has the form

Ĥ = Ĥ
(N )
PDS + Ĥ

(N+2)
intrud + V̂

(N,N+2)
mix . (11)

Here Ô (N ) = P̂
†
NÔP̂N and Ô (N,N ′ ) = P̂

†
NÔP̂N ′ for an opera-

tor Ô with P̂N as a projection operator onto the [N ] boson
space. In general, an eigenstate of Ĥ ,

|�〉 = a
∣∣� (N )

n

〉 + b
∣∣� (N+2)

i

〉
(12)

involves a mixture of normal (n) and intruder (i) components
with N and N + 2 bosons, respectively. Similarly, the E2
operator is defined as

T̂ (E2) = e
(N )
B Q̂(N ) + e

(N+2)
B Q̂(N+2), (13)

with boson effective charges e
(N )
B and e

(N+2)
B .

The Hamiltonian of Eq. (11) has nine parameters. How-
ever, most of them only improve the fit to energies but do not
affect the structure of the states nor the calculated E2 rates,
which are the challenge in the Cd problem. The six parameters
(t1, t2, t3, t4, r0, e0) of ĤPDS (8) do not affect the U(5) purity
of class-A states and, for small α, the deviations from U(5)-DS
in a few nonyrast states, is governed solely by the r0 and
e0 terms. The comparison with the empirical data, discussed
below, constitutes a stringent test for these PDS-based terms.

The spectrum and B(E2) values obtained with Ĥ (11)
and T̂ (E2) (13) are shown in Fig. 1(c) and Tables I and
II. As seen, the IBM-PDS-CM calculation provides a good
description of the empirical data in 110Cd. The normal states
of class A retain good U(5) symmetry and quantum numbers
to a good approximation. Their |� (N )

n 〉 part involves a single
component with the nd value as in Eq. (5a). The mixing with
the intruder states is weak [small b2 in Eq. (12)] and increases
with L. Specifically, b2 = 0.9, 2.2, 3.6, 5.9, 4.6, 6.1% for the
0+

1 , 2+
1 , 2+

2 , 4+
1 , 3+

1 , 4+
2 states, respectively. The 6+

1 state ex-
periences a somewhat larger mixing (b2 = 17.3%), consistent
with its enhanced decay to the intruder 4+

3;i state. The high
degree of purity is reflected in the calculated B(E2) values for

transitions between class-A states which, as seen in Table I,
are very similar to those of U(5)-DS. In contrast, the structure
of the nonyrast states assigned originally to classes B and
C, whose decay properties show marked deviations from the
U(5)-DS limit, changes dramatically. Specifically, the 0+

3 and
0+

4 states, which in the U(5)-DS classification are members
of the two-phonon triplet and three-phonon quintuplet, inter-
change their character, and the U(5) decomposition of their
|� (N )

n 〉 parts peaks at nd = 3 and nd = 2, respectively. Simi-
larly, the 2+

5 and 2+
6 states, which in the U(5)-DS classification

are members of the three-phonon quintuplet and four-phonon
octet, interchange their character, and the U(5) decomposition
of their |� (N )

n 〉 parts peaks at nd = 4 and nd = 3, respectively.
The mixing with the intruder states is weak (b2 =
5.1%, 2.9%, 4.4%) for the (0+

3 , 2+
5 , 2+

6 ) states and somewhat
larger (b2 = 18%) for the 0+

4 state. The resulting calculated
values: B(E2; 0+

3 → 2+
1 ) = 0.25, B(E2; 2+

5 → 4+
1 ) =

0.19, and B(E2; 2+
5 → 2+

2 ) = 0.12 W.u. are consistent with
the measured upper limits: 7.9, 5, and 0.7+0.5

−0.6 W.u., respec-
tively. The calculated decay 0+

4 → 2+
2 is weaker than 0+

4 →
2+

1 , however, the observed dominant branching to the intruder
2+

3;i state is not reproduced. This may indicate a different struc-
ture for the 0+

4 state (e.g., a 4p-6h proton excitation as spec-
ulated in Ref. [21]). The dominant E2 decays of the 2+

6 state
(not shown in Fig. 1) are predicted to be B(E2; 2+

6 →0+
4 ) =

24.28, B(E2; 2+
6 →4+

1 ) = 15.73, B(E2; 2+
6 →2+

2 ) = 9.27,
and B(E2; 2+

6 → 4+
3;i ) = 3.56 W.u.

A few monopole transition rates are experimentally
known in 110Cd [56], expressed in terms of the quantity
ρ(E0) = 〈f |T̂ (E0)|i〉

eR2 with R = 1.2A1/3 fm. The corresponding
E0 operator in the IBM-CM can be transcribed [57] in
the form of T̂ (E0) = (enN

′ + epZ)η(n̂(N )
d + n̂

(N+2)
d ),

where N ′ (Z) are neutron (proton) numbers and
ep = 2en = e. The measured [56] and calculated (in curly
brackets) strengths are given by ρ2(E0; 0+

2;i → 0+
1 )×

103 <31 {0.75}, ρ2(E0; 2+
3;i→2+

1 )×103 = 9(8) {10}, ρ2(E0;
4+

3;i → 4+
1 ) × 103 = 106+98

−91 {36}. The calculated strengths,
obtained with η = 0.063, reproduce the measured values
within the quoted error bars. The calculation predicts
ρ2(E0) × 103 ∼ 10 for 0+

4 → 0+
2;i and 2+

4;i → 2+
2 E0

transitions, which have not been measured so far.
To summarize, we have addressed a key question con-

cerning the phonon structure of states in Cd isotopes. Our
results suggest that the vibrational interpretation of 110Cd can
be salvaged by introducing a boson Hamiltonian that mixes
particular phonon states while keeping the mixing with co-
existing intruder levels weak. The proposed scheme relies on
a partial dynamical U(5) symmetry in which most low-lying
normal states in 110Cd maintain their spherical-vibrational
character and only a few specific nonyrast states exhibit a
departure from U(5), in line with the empirical data. Work
currently in progress appears to indicate that the same PDS-
based approach can be implemented also in other neutron-rich
Cd isotopes, at least, as an appropriate starting point for
further refinements.
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