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Microscopic predictions of the nuclear matter liquid-gas phase transition
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We present first-principles predictions for the liquid-gas phase transition in symmetric nuclear matter employing
both two- and three-nucleon chiral interactions. Our discussion focuses on the sources of systematic errors in
microscopic quantum many-body predictions. On the one hand, we test uncertainties of our results arising from
changes in the construction of chiral Hamiltonians. We use five different chiral forces with consistently derived
three-nucleon interactions. On the other hand, we compare the ladder resummation in the self-consistent Green’s
functions approach to finite-temperature Brueckner-Hartree-Fock calculations. We find that systematics due to
Hamiltonians dominate over many-body uncertainties. Based on this wide pool of calculations, we estimate that
the critical temperature is Tc = 16 ± 2 MeV, in reasonable agreement with experimental results. We also find that
there is a strong correlation between the critical temperature and the saturation energy in microscopic many-body
simulations.
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I. INTRODUCTION

The quest for understanding the phase diagram of strongly-
interacting hadronic matter is a contemporary physics chal-
lenge, both from an experimental and a theoretical perspective
[1–3]. Recent advances have focused on the deconfinement
phase transition, but a complete picture is hard to obtain
due to, among other things, the complexity of the strong
interaction as given by quantum chromodynamics (QCD). At
comparatively lower temperatures and densities, the liquid-gas
phase transition of nuclear matter is an equally challenging
phenomenon [4]. This phase transition is expected to exist
on the grounds that the nucleon-nucleon and the interatomic
van der Waals interactions are qualitatively similar [5]. The
first-order liquid-gas phase transition has been investigated
experimentally in the past, via multifragmentation reactions
and through the analysis of fission fragments emitted by excited
compound nuclei [6–9]. A key indication of an actual phase
transition is the power law of the fragment distributions in
both types of reactions. When extrapolated to infinite matter,
the critical temperature Tc estimated with these finite-nucleus
experiments lies in a range Tc ≈ 15–20 MeV.

In spite of the experimental signatures of its existence, a
microscopic modeling of this phase transition faces stringent
difficulties. On the one hand, the nucleon-nucleon force is not
entirely well understood, and cannot be univocally derived
from QCD itself [10,11]. On the other, the phase transition
requires solving the problem of strongly interacting many-
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body fermions at finite temperature [12]. A first-principles
understanding of the liquid-gas transition in nuclear matter
is necessary to connect unambiguously these experimental
results to the strong interaction.

Moreover, the tools that are necessary to model microscop-
ically this phenomenon directly relate to several aspects of
astrophysical interest. Finite-temperature effects are relevant
for the evolution of protoneutron stars [13]. In a binary
merger, the gravitational wave spectrum, neutrino emission,
and ejecta distribution are sensitive to the equation of state,
which, in turn, is temperature dependent [14,15]. The cooling
process of neutron stars via neutrino emission is influenced
by temperature-sensitive in-medium effects [16]. A consistent
picture describing all these aspects from a microscopic many-
body perspective is still missing.

A wide range of theoretical tools have been used to model
the liquid-gas phase transition in the last four decades. There
is no clear separation of scales in terms of densities or
temperatures and one therefore needs to solve the problem head
on using numerical techniques. In doing so, there are a number
of approximations that bring in systematic uncertainties in the
predictions of the phase transition. It is these systematics that
we want to analyze in this paper. Early phenomenological
models exploited the idea of nuclear condensation to under-
stand the appearance of critical fragment distributions [17,18].
Self-consistent Hartree-Fock or density-functional ideas have
also been used to describe this transition with different effective
interactions [19–24]. Beyond-mean-field calculations have
relied on phase-shift-equivalent two-nucleon (2N) interactions
as a starting point [25–28]. We will focus on the latter kind
of microscopic many-body models that treat infinite nuclear
matter, without explicitly considering fragment production or
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clustering. We will solve the phase transition using a Maxwell
construction of two infinite, coexisting phases, using two dif-
ferent many-body approaches. By looking at the problem with
two different many-body techniques, we expect to highlight
systematic errors associated to the many-body approximation.

Another source of uncertainty in theoretical calculations
stems from the nuclear Hamiltonian itself. In contrast to
traditional microscopic phase-shift equivalent 2N forces, chiral
effective field theory (EFT) provides a systematic grouping
of nuclear forces in terms of a power counting expansion.
An important advantage is that the expansion also provides
a clear organization in terms of two- and many-nucleon con-
tributions [10,11] and allows for statistical error quantification
[29]. We will therefore use chiral EFT 2N and three-nucleon
(3N) forces to describe the phase transition. Recently, the
liquid-gas transition in nuclear matter has been studied within
many-body perturbation theory based on such chiral interac-
tions [30,31]. We go beyond these past studies in two different
ways. First, we estimate errors in the many-body calculation
by using two different first-principles schemes to solve the
(finite-temperature) many-body problem. Second, past quan-
tum many-body calculations have not necessarily explored the
systematics associated with the use of different 2N and 3N
forces. Here, we aim at improving over these limitations by
making use of recent nuclear forces derived consistently within
chiral EFT. We estimate uncertainties coming from the chiral
Hamiltonian by employing different 2N forces, including the
recently developed N2LOsat (2N+3N) potential [32].

The paper is organized as follows. Section II is divided
into three parts. In the first two parts, Secs. II A and II B,
we describe respectively the self-consistent Green’s function
(SCGF) and the Brueckner-Hartree-Fock (BHF) formalisms
that we employ to study the liquid-gas phase transition. In the
third part, Sec. II C, we provide details of the Hamiltonians used
in our calculations. We then follow with a section of results,
Sec. III, which is itself divided into four parts. Section III A
reports on the free energy, chemical potential, and pressure
at different densities and temperatures, using different chiral
Hamiltonians and analyzing the errors related to the many-
body approximation. Section III B analyzes the characteristics
of the liquid-gas phase transition for a single Hamiltonian:
the N2LOsat potential. In Sec. III C we extend this analysis
employing five different chiral forces and estimating the
uncertainty on the critical temperature. The last part, Sec. III D,
is dedicated to the prediction of the critical temperature in
relation to other properties of nuclear matter. We derive some
conclusions on this study in the final section.

II. FORMALISM

A. Finite-temperature Green’s functions

The SCGF is particularly suited for the study of finite-
temperature many-body dynamics because it provides, in
principle, a thermodynamically consistent description [33,34].
In other words, the many-body description is conserving so that
microscopic and macroscopic estimates of physical properties
provide the same results. This is possible thanks to the
Luttinger-Ward expression for the partition function in terms
of the dressed one-body propagator, i.e., the Green’s func-
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FIG. 1. Diagrammatic representation of the irreducible self-
energy. The first term represents the energy-independent one-body
effective interaction depicted in Fig. 2(a). The second term is a
dispersive contribution arising from the two-body effective interaction
in Fig. 2(b). The box in this term represents the in-medium interaction
or T matrix.

tion [35,36]. Combining the Luttinger-Ward formalism with an
extended SCGF method to include three-body forces [37], we
predict the critical behavior of the first-order phase transition in
symmetric nuclear matter considering both 2N and 3N forces.
We note that, within the ab initio SCGF method, results of
the liquid-gas transition have already been presented in the
past using both 2N interactions [27] and also Urbana-type 3N
forces with a crude averaging procedure [28].

In the SCGF method, one looks for a self-consistent fully
correlated solution of the dressed single-particle Green’s func-
tion at finite temperature. This method is based on the general-
ization to finite temperatures of the perturbation expansion of
the one-body propagator G, using the Matsubara technique for
the evaluation of imaginary frequency sums [12]. Knowledge
of G gives access to many properties of the system, such as the
single-particle momentum distribution or the total energy per
nucleon. We work with a Hamiltonian that is the sum of a free,
unperturbed part, plus an interacting part, i.e., Ĥ = Ĥ0 + Ĥ1.
Self-consistency in the Green’s functions method is encoded in
the Dyson equation, relating the unperturbed propagator, G0,
to the dressed single-particle propagator, G,

G(p, ω) = G0(p, ω) + G0(p, ω)��(p, ω)G(p, ω). (1)

p and ω are the energy and momentum of single-particle states,
which are good quantum numbers in infinite matter. �� is the
self-energy, which accounts for the interaction of a particle
with the rest of the system. The self-energy can be expressed
in terms of diagrams, as shown in Fig. 1.

In self-consistent calculations, only irreducible and skeleton
diagrams are included. Diagrams are called irreducible if
no diagram can be disconnected into two independent ones
cutting a fermion line, and are said to be skeleton diagrams
if no self-energy insertions are present [38,39]. All reducible
diagrams are obtained via the Dyson equation, Eq. (1), while
self-energy insertions are taken into account by replacing all
self-energy fermion lines with fully dressed propagators, G.
It is this self-consistent procedure that makes the approach
thermodynamically consistent [33,34].

We implement an in-medium ladder resummation scheme
within the SCGF approach [40]. This nonperturbative ap-
proximation provides a realistic description of short-range
correlations. Intermediate states in the in-medium T -matrix
interaction are fully fragmented and include particle-particle
and hole-hole states [41,42]. The diagrams in Fig. 1 illustrate
the self-energy used in this work. The first term is a Hartree-
Fock-like contribution, whereas the second term is a dispersive
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FIG. 2. Diagrams that define the (a) one-body and (b) two-body
effective interactions in our approach. (a) Diagrammatic represen-
tation of the one-body effective interaction. This is the sum of a 2N
force contracted with a one-body propagator, plus a 3N force averaged
with the lowest order two-body propagator. The factor 1/2 defines the
multiplicity of the contribution. (b) Diagrammatic representation of
the two-body effective interaction. This is the sum of a bare 2N force
plus a 3N force averaged with a one-body propagator.

term associated to the in-medium T matrix. This interaction
is obtained from the solution of a Lippman-Schwinger-type
equation [43].

When the interacting Hamiltonian Ĥ1 = V̂ + Ŵ includes
2N forces, V̂ , and 3N forces, Ŵ , one needs to pay particular
attention to the correct definition of the self-energy �� [44].
The SCGF method has been generalized to include many-body
interactions in Ref. [38]. To account for 3N forces when
studying infinite nuclear matter within the SCGF method, we
define effective one- and two-body interactions, which are
obtained calculating averages of the 3N force over dressed
correlated single-particle propagators [37]. These go beyond
standard normal-ordering approaches by considering corre-
lations and single-particle fragmentation on the averaging
procedure. The diagrams associated to effective interactions
are depicted in Figs. 2(a) and 2(b). The one-body effective
interaction of Fig. 2(a) is a sum of a 2N force averaged over
a one-body propagator plus a 3N force averaged over two
one-body propagators. We note that, in the most general case,
this average should be performed with a two-body propaga-
tor [38]. This one-body effective interaction is basically the
energy-independent Hartree-Fock term of the self-energy. The
second term, Fig. 2(b), is a sum of the bare 2N interaction
plus a one-body averaged 3N force. This enters explicitly
the definition of the in-medium T matrix. For full formal
expressions and discussions on the numerics, we refer the
reader to Refs. [37,45].

For a given temperature and density, we solve iteratively a
self-consistent set of equations for the in-medium interaction
and the self-energy. The key intermediate step is the calculation
of the dressed single-particle propagator by means of the
so-called spectral function. We can in fact recast the Dyson
equation, Eq. (1), as an expression for the spectral function,

A(p, ω) = �(p, ω)[
ω − p2

2m
− Re��(p, ω)

]2 + [
�(p,ω)

2

]2 , (2)

where �(p, ω) is the imaginary part of the self-energy,
�(p, ω) = −2Im��(p, ω). For an energy-independent self-
energy, the spectral function is a Lorentzian distribution of
width �. In fact, the spectral function describes the probability
of adding or removing a particle with momentum p and energy
ω to or from the many-body system with a change in energy

dω [43]. Consequently, for each momentum, � is a proxy
for the spread in energy of the single-particle strength. A
vanishing � results in a deltalike spectral function that provides
a one-to-one quasiparticle relation between momentum and
energy. The BHF approach is based on such a quasiparticle
description [46].

Our self-consistent procedure provides fully fragmented
spectral functions, A(p, ω), for any given temperature and
density. This function is then used to compute correlated
temperature-dependent momentum distributions, which are in
turn used to evaluate the effective interactions given in Fig. 2.
We note that the averaging procedure to evaluate the effective
interactions of Figs. 2(a) and 2(b) must be performed at each
iterative step in the solution of the Dyson equation. In other
words, we use propagators in the averaging, which are the
self-consistent solutions at that stage of the calculation.

When the Hamiltonian is formed of 2N forces only,
the Galitskii-Migdal-Koltun sum rule provides access to
the total energy of the system from the spectral function
alone [43,47,48]. When 3N forces are considered, the original
sum rule does not yield the total energy of the system and
additional information from two-body or three-body operators
is needed [38]. Here, we calculate the total energy per nucleon
using the original sum rule plus an estimate of the energy
associated to the 3N force,

E

A
= 4

ρ

∫
dp

(2π )3

∫
dω

2π

1

2

{
p2

2m
+ ω

}
A(p, ω)f (ω) − 1

2
〈Ŵ 〉,

(3)

where f (ω) is the Fermi-Dirac function and the factor of 4
accounts for spin-isospin degeneracy. 〈Ŵ 〉 is the expectation
value of the total energy associated to the 3N force. We
calculate this at first order, i.e., by contracting Ŵ with three
independent, but fully dressed momentum distributions. This
is equivalent to a Hartree-Fock 3N force energy, where bare
propagators are replaced by fully dressed ones [38].

While the formalism is defined in the grand-canonical
ensemble, in practice we work at constant temperature and
density in a canonical setting [12,41]. The thermodynamical
properties are encoded in the free energy,

F

A
= E

A
− T

S

A
. (4)

The energy is provided by the modified sum rule of Eq. (3).
To evaluate the entropy, S

A
, we follow Luttinger and Ward,

who demonstrated that it is possible to define the grand-
canonical partition function � in terms of the dressed one-body
propagator [35,36]. From this, given also the stationarity of �

with respect to variations of single-particle propagators, G,
one obtains the entropy via the derivative S = − ∂�

∂T |μ. The
pioneering work by Carneiro and Pethick showed that this
entropy can be split into two terms, S = SDQ + S ′ [49]. The
first term defines a dynamical quasiparticle entropy, which
takes into account the effects of correlations in the many-body
system, and is given by the convolution:

SDQ

A
= 4

ρ

∫
dp

(2π )3

∫
dω

2π

∂f (ω)

∂T
�(p, ω). (5)
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The quantity � is given by three terms:

�(p, ω) = 2πθ [ReG−1(p, ω)]

− 2 arctan

[
�(p, ω)

2ReG−1(p, ω)

]
+�(p, ω)ReG(p, ω). (6)

The first term provides a quasiparticle approximation to the
entropy. The other two terms are zero whenever � is zero
[42,50]. They are therefore sensitive to fragmentation effects
associated to correlations in the system. We work under the
assumption that the term S ′ can be disregarded due to phase-
space restrictions as suggested in Ref. [49].

Thermodynamical consistency is formally guaranteed in the
ladder SCGF approach. Our numerical implementation can
be tested by performing a comparison between two different
determinations of the same physical quantity. For instance,
the chemical potential can be obtained microscopically by
inverting the density sum rule,

ρ = 4

ρ

∫
dp

(2π )3

∫
dω

2π
A(p, ω)f (ω). (7)

μ̃ is the chemical potential in the Fermi-Dirac distribution
function f (ω) = [1 + e(ω−μ̃)/T ]−1. Alternatively, the chemi-
cal potential can also be determined macroscopically via the
thermodynamical relation

μ = ∂

∂ρ
ρ

F

A
, (8)

where F/A is given in Eq. (4). In a thermodynamically con-
sistent theory, the equality μ̃ = μ holds [42]. In inconsistent
approaches, such as BHF [26] or some implementations of
many-body perturbation theory [30], the two determinations
do not need to agree with each other.

The pressure of nuclear matter can also be determined from
microscopic and macroscopic observables. The macroscopic
pressure relies on the thermodynamical relation

P = ρ2 ∂F/A

∂ρ
. (9)

In contrast, a microscopic calculation relies on the microscopic
chemical potential,

P̃ = ρ

(
μ̃ − F

A

)
. (10)

The equalities μ̃ = μ and P̃ = P should hold in theory, but
in practice numerical calculations always bring in errors. We
have checked that our results are for the most part thermody-
namically consistent. We have found discrepancies above satu-
ration density, which depend on the strength of the three-body
force. These discrepancies are below ∼2% in relative terms at
saturation density and T = 15 MeV, and affect mostly results
above saturation density. Improvements over the evaluation of
〈Ŵ 〉, i.e., including terms beyond Hartree-Fock, could help
reduce these errors but are beyond the scope of this work.

In the following, unless otherwise stated, we rely on chem-
ical potentials and pressures obtained from the derivatives of

the free energy as given in Eqs. (8) and (9). With this procedure,
these quantities automatically fulfill the Hugenholtz-Van Hove
theorem [51], as given in Eq. (10) and the microscopic chemical
potential, μ̃, becomes an auxiliary quantity that is not needed
for the solution of the liquid-gas transition. We provide details
on how the derivatives are computed in Sec. III A. We also note
that the virial expansion at high temperatures and low densities
is an approximation of the SCGF ladder approach [52,53].
Our results therefore reproduce the virial expansion in this
regime [54].

B. Finite-temperature Brueckner-Hartree-Fock

We will compare the full ladder calculations of SCGFs to
the G-matrix calculation within the BHF approach [55]. We
expect that this will allow us to estimate uncertainties related
to the many-body approximation. The Bloch-de Dominicis
formalism is the generalization of the BHF approach to
finite temperature [56]. We work within the low-temperature
approximation of the Bloch-de Dominicis formalism, which
is a direct extension of the zero-temperature BHF approach
where all momentum step functions are replaced by finite-
temperature Fermi-Dirac occupation numbers. We refer the
reader to Ref. [26] for further details. This approach has
been employed in most traditional finite-temperature BHF
calculations [46,57,58].

The method can also be obtained as a simplification of the
SCGF approach in the quasiparticle limit, when only particle-
particle intermediate states are considered [55]. In other words,
the BHF approximation does not include hole-hole rescattering
in the in-medium interaction and considers only a deltalike
spectral function. We note that these two approaches are
nonperturbative, include diagram resummation to all orders,
and have well-defined zero-temperature counterparts [59]. In
order to establish as close a comparison as possible, we use
partial-waves matrix elements of the 2N and 3N up to J = 8
both in the Hartree-Fock and in the energy-dependent part of
the self-energies for both approaches.

The BHF method is not thermodynamically consistent [27],
so to solve the liquid-gas phase transition one necessarily needs
to derive the macroscopic thermodynamic quantities. Previous
comparisons between BHF and SCGF indicate that the role of
many-body correlations is important for the phase transition.
Generally speaking, for a given density and temperature, BHF
calculations are more attractive than SCGF results. In turn, this
means that a higher temperature is necessary to achieve the
critical point [27]. Here, we reassess these results with a larger
set of Hamiltonians that, importantly, include 3N forces. We
note that 3N forces are included in the BHF approach following
the same scheme as in the SCGF method, discussed in Sec. II A.
Previous nonperturbative BHF and SCGF calculations of the
phase transition have implemented other averaging procedures
for the 3N force [28,58]. In these past studies, a substan-
tial influence of 3N forces on the critical properties of the
liquid-gas phase transition has been found. In particular, the
repulsive effect of 3N in the equation of state brings in a
substantial reduction of the critical temperature.
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C. Chiral Hamiltonians

In the chiral EFT realization of low-energy QCD, the
effective degrees of freedom that come into play are nucleons
and pions. One could additionally consider the �-isobar degree
of freedom [62], but in the present formulation we do not
include it. The high-energy physics, which is integrated out of
the theory, is encoded in contact terms. The strength of these
terms is given by specific low-energy constants (LECs), which
are traditionally fit to scattering phase shifts or few-body prop-
erties. In the present calculations, we make use of five different
parametrizations of chiral Hamiltonians, which cover a range
of LECs values and orders in the chiral expansion for the 2N
force. All our 3N forces are constructed at N2LO. Overall, our
analysis should provide estimates of the systematic theoretical
uncertainty associated with different constructions of the 2N
force and of the fitting of the LECs for both the 2N and the 3N
contributions.

Table I gives all the details of the five Hamiltonians we are
using for the present calculations. For the 2N part, three Hamil-
tonians are obtained from different similarity renormalization
group (SRG) transformations of the Entem-Machleidt 2N
Hamiltonian (EM500) up to next-to-next-to-next-to-leading
order (N3LO) [63]. The three different cases are obtained
with different cutoffs of the SRG evolution, λSRG. We note
that, in keeping with previous studies, we ignore the effect
of SRG-induced 3N forces [60]. We also consider the case
of two unevolved 2N forces: a consistent (2N+3N) force up
to N2LO constructed using the practical optimization using
no derivatives (for squares) algorithm (the so-called N2LOsat

potential [32]) and the N3LO EM500, which we dub N3LOfull.
We complement each of these 2N interactions with a 3N

force at N2LO [37,64,65]. The 3N force is included in the
many-body calculation via the correlated average discussed
in detail in Sec. II A and Ref. [37].1 This 3N force is
regularized with a nonlocal regulator f (p, q) = exp[−(p2 +
3q2/4)/�2

3N ]n, where p and q are the corresponding Jacobi
momenta. The LECs cD and cE of the 3N force are associated to
the one-pion exchange and contact 3N terms, respectively, and
need to be fit to few-body properties. These constants are ob-
tained using different strategies for each 2N force. For the SRG
evolved Hamiltonians, fits are performed to reproduce the 3H
binding energy and the 4He matter radius [60]. For N3LOfull,
the coupling constants are fit to reproduce the triton β decay
and the 3H binding energy [61]. For the N2LOsat case, the 2N
and 3N Hamiltonians are simultaneously optimized, including
binding energies and radii of 3H and 3,4He, as well as properties
of carbon and oxygen isotopes [32]. These determinations span
a large space of possibilities in the fitting criteria and therefore
provide a good starting point for uncertainty quantification. We
give in Table I the values of pion-nucleon ci’s; the values of
the cD and cE LECs, and also details of cutoffs and exponents
in the regularization of each chiral interaction.

1Because of the finite-temperature correlated average, we have
corrected the scalar term multiplied by c3 in Eq. (A11) of Ref. [37],
e.g., 8k3

F → 8ρ6π 2/ν.

III. RESULTS

A. Thermodynamical properties of nuclear matter

We start our discussion by providing a set of results for
the free energy, chemical potential, and pressure of symmetric
nuclear matter as a function of density and temperature in the
regime of interest for the liquid-gas phase transition. We use the
five different Hamiltonians described in Sec. II C. To perform
the derivatives of Eqs. (8) and (9), we fit our calculated data for
the free energy at a given temperature with a function similar
to that proposed in Ref. [66]. We also include a constant term,
which depends on temperature,

F

A
(ρ, T ) = a(T ) +

∑
ν=2,3,4,5,6

aν (T )

(
ρ

ρsat

)ν/3

, (11)

and we use ρsat = 0.16 fm−3. We have tested that different fits
of the free energy lead to numerical errors, which are small and
well within the final many-body calculation uncertainty band.

We calculate the free energy per nucleon and pressure as
functions of baryonic density employing the five Hamiltonians
presented in Table I, for several temperatures. We show in
the panels of Fig. 3 the results obtained within the SCGF
method for four specific temperatures, T = 8, 12, 16, and
20 MeV (from top to bottom, respectively). For the free energy
(left panels), we provide two different sets of results. Points
represent the SCGF calculations of the free energy per particle.
The corresponding solid lines represent the fits of Eq. (11) to
the same set of data. We find a very good agreement between
the two.

For the lowest temperatures (Fig. 3, top two left panels),
the free energy presents a nonconvex curvature region, which
corresponds to a mechanically unstable phase for matter, which
signals the appearance of a first-order phase transition. This
transition is reflected also in the pressure as a function of
density (right panels). At low temperatures, there are regions
where two different values of density provide the same value
for the pressure. This defines the coexistence in equilibrium
of two different phases of nuclear matter, a gas (at low
densities) and a liquid (at high densities). As the temperature
increases, one finds that coexistence gradually disappears. In
fact, at T = 20 MeV (bottom panels), all predictions provide a
one-to-one pressure-density relation. This shows that T = 20
MeV is above the critical temperature, Tc.

The results associated to the five different Hamiltonians
give an estimate of the theoretical uncertainty related to the
construction of the chiral nuclear forces. We first note that
the predictions from different Hamiltonians are ordered in
well-defined trends that fall within relatively narrow bands.
For instance, all chiral forces predict free energies, which are
within about 5 MeV of each other across the whole density
range, except for N3LOfull. The latter is substantially more
repulsive at all densities and temperatures. We also find that,
as the temperature increases, the relative differences remain
constant. Generally speaking, more evolved forces provide
more attractive results. N3LOSRG18 and N3LOSRG20 are the
most attractive ones, with a relative deviation in free energies
of ∼1 MeV at ρsat. N3LOSRG28 free-energy results are a bit
more repulsive, ∼1 MeV at ρsat, than N2LOsat predictions.
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TABLE I. Summary of the parameters in the different chiral 2N and 3N forces used in this work. These include: the cutoff of the SRG
evolution on the 2N force, λSRG (column 2, where applicable); the cutoff �3N (column 3) and exponent n (column 4) in the regulator function
of the 3N force (see text); and the associated low-energy constants, ci (from column 5–9). Parameters are taken from Refs. [32,60,61].

λSRG (fm−1) �3N n c1 (GeV−1) c3 (GeV−1) c4 (GeV−1) cD cE

N3LOSRG18 [60] 1.8 2.0 fm−1 4 −0.81 −3.2 5.4 1.264 −0.120
N3LOSRG20 [60] 2.0 2.0 fm−1 4 −0.81 −3.2 5.4 1.271 −0.131
N3LOSRG28 [60] 2.8 2.0 fm−1 4 −0.81 −3.2 5.4 1.278 −0.078
N2LOsat [32] / 450 MeV 3 −1.12152120 −3.92500586 3.76568716 0.81680589 −0.03957471
N3LOfull [61] / 500 MeV 3 −0.81 −3.2 5.4 0.339 −0.610

The latter is also about an MeV more repulsive than the
N3LOSRG20 results. There is, however, a relatively large gap
between N3LOSRG28 and the N3LOfull results, of the order of
∼3 MeV. To some extent this is unexpected, since the SRG
cutoff is relatively large, λSRG = 2.8 fm−1, and one would
have expected small differences between the two. We note,
however, that high-momentum correlations are well described
in our approach and our results should quantitatively account
for their presence. We note that the relative differences in free
energies can increase with density, due to the different strength
of 3N forces for each chiral Hamiltonian. However, the relative
differences remain constant with increasing temperature. This
indicates that the trends imposed by the Hamiltonian are rather
independent of temperature.

The behavior that we have just described for the free
energy has clear parallels in the pressure, shown in the right
panels of Fig. 3. We find that the more evolved Hamiltonians

predict generally lower pressures across the whole density
and temperature regime. There is a clear separation between
N3LOSRG18 and N3LOSRG20 as in the free-energy case, whereas
N3LOSRG28 and N2LOsat are close to each other. In fact,
the density dependence is such that the predictions for these
two forces cross at a given point at all temperatures. The
repulsion of N3LOfull translates into a distinctly larger pressure
compared to all other forces.

We note that qualitatively similar results would be obtained
in the BHF approximation. To discuss the dependence of
these results on the many-body method, we focus on a single
temperature and provide results as a function of density. The
left column of Fig. 4 shows results for chemical potential and
free energy at T = 8 MeV. The pressure is displayed in the
right panels. Each panel within the left and right columns
corresponds to one of the five Hamiltonians described in
Table I.
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FIG. 3. Left: Free energy as a function of density for temperatures T = 8, 12, 16, and 20 MeV (from top to bottom) employing the five
Hamiltonians of Table I within the SCGF method. Symbols represent SCGF calculated data, while lines are the fits using Eq. (11). Right:
Pressure in the same conditions. The pressure is obtained as a derivative of the free energy based on Eq. (9).
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FIG. 4. Left: Free energy (solid lines) and chemical potential (dashed lines) as a function of density at T = 8 MeV. Thick lines correspond
to SCGF results, while thinner lines show BHF data (see text for details). The panels from top to bottom display results for the five different
Hamiltonians of Table I. Right: Pressure in the same conditions.

The uncertainty associated to the many-body approximation
can be estimated by comparing the SCGF results (thick lines)
to the BHF calculations (thin lines). We identify three clear
trends. First, the many-body method dependence of the results
is stronger as the density increases. This is expected, because
the effect of hole-hole scattering states, considered in SCGF but
not in BHF, is stronger as the available phase space becomes
larger with density [42]. Second, the inclusion of hole-hole
scattering induces mainly a repulsive effect. Where the effect
is significant at large densities, SCGF predictions for the
free energy and the chemical potential are significantly less
attractive than their BHF counterparts. In turn, this results in an
overall larger pressure for SCGF predictions. Third, the size of
the many-body uncertainty depends on the chiral force under
consideration. For the two most evolved forces N3LOSRG18

and N3LOSRG20, the differences between the approximations
are within half an MeV for both F/A and μ across the whole
density range. For the evolved N3LOSRG18, the differences
are similarly small but rise as density increases, reaching a
maximum of ∼2.5 MeV for the chemical potential at the
highest density shown, ρ = 0.20 fm−3. In contrast, even at
lower densities, there is a significant difference between the
SCGF and BHF results for both N2LOsat and, especially,
N3LOfull. Evolved potentials are soft, and one expects them
to be perturbative and converge at a relatively low order in
the many-body expansion [66]. In that case, the differences
between two nonperturbative approaches that treat low orders

similarly should be small, just as we find here. Having said that,
we note that the many-body results are not entirely independent
of the SRG scale, which is an indication that higher-order
induced many-body forces may play a role in infinite mat-
ter. By providing predictions for several Hamiltonians, we
expect to account for the missing physics of these induced
forces.

The uncertainty associated to the many-body truncation in
Fig. 4 is smaller than the one arising from the use of different
chiral Hamiltonians. For instance, at saturation density ρsat =
0.16 fm−3, the maximum difference between SCGF and BHF
free energies at T = 8 MeV is encountered for the N3LOfull

interaction and amounts to ∼1.8 MeV. In contrast, at this same
temperature and density, the different Hamiltonians provide
results within a window of ∼6.5 MeV. The phase transition
explores the subsaturation region so uncertainties there are
expected to be smaller in absolute scale. However, the Hamil-
tonian uncertainties are likely to dominate in relative terms
the error budget too. This is a consequence of the uncertainty
in constraining reliably the LECs, which characterize the
three-body chiral contributions [61].

B. Liquid-gas phase transition for N2LOsat

We now analyze the liquid-gas phase transition for the
specific case of the N2LOsat potential. A qualitatively similar
discussion would apply to the other Hamiltonians of Table I.
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In Figs. 5(a) and 5(b) we show the chemical potential and
pressure as functions of density for a selection of temperatures
in the range T = 8 to 20 MeV for both SCGF (solid lines) and
BHF (dashed lines). In Fig. 5(a) we see that, at low densities,
the chemical potential becomes more and more attractive as
the temperature increases and the density decreases. This is
in agreement with the logarithmic density dependence of this
quantity in the classical limit. As the density increases, how-
ever, the system becomes more degenerate and temperature
effects become less relevant. As a consequence, the chemical
potentials at different temperatures tend to have closer values.
In addition, the chemical potential presents a local minimum at
low temperatures. This minimum disappears above the critical
temperature, Tc, which this data suggest is around 16 MeV.

In a similar fashion, Fig. 5(b) illustrates that at low temper-
atures the pressure has regions of negative slopes, associated
to a mechanical instability, up to a given local minimum.
This instability region shrinks as temperature increases and
eventually disappears when Tc is reached. The presence of
these minima in both the chemical potential and the pressure is
the reason why one can find two points with different density
but the same value of μ and P . The critical temperature Tc

signals the point in temperature where the coexistence of
the liquid and gas phases is no longer possible. Above this
temperature, the chemical potential and the pressure are always
a monotonically increasing function of density.

The uncertainty in the many-body truncation follows the
trends discussed in Sec. III A. BHF results are more attrac-
tive than their SCGF counterparts. The differences between
the two approaches depend on density (as already men-
tioned) and temperature. For instance, at ρ = 0.16 fm−3, the
SCGF pressure at T = 8 MeV differs from the BHF one by
0.3 MeV fm−3. At T = 20 MeV, this difference becomes
0.6 MeV fm−3, e.g., the discrepancy has doubled. The dif-
ferences rise with density, and we find at ρ = 0.20 fm−3 a
discrepancy of 0.7 MeV fm−3 for T = 8 MeV, which becomes
1.2 MeV fm−3 at T = 20 MeV. We note that these trends are
different from those associated to the different Hamiltonians,
which, in relative terms, stay qualitatively constant as a
function of temperature.

The phase diagram of the liquid-gas phase transition is
described in Fig. 5(c). Results are provided for both SCGF
and BHF predictions. The coexistence line (diamonds) defines
at each temperature the two points in density, which fulfill the
condition μ(ρg ) = μ(ρl ) and P (ρg ) = P (ρl ). Here, ρg is the
density of the gas phase and ρl is the density of the liquid phase.
In between these points, the system coexists in a liquid and gas
phase. To solve the coexistence equations, we calculate the
chemical potential and pressure as derivatives of the free energy
at a fixed set of densities and temperatures spaced by 0.01 fm−3

and 1 MeV, respectively. We then perform two-dimensional
density and temperature fits using polynomial interpolations
to access a denser grid in both quantities. The polynomials can
also be used to solve the conditions for the phases coexistence,
i.e., μ(ρg ) = μ(ρl ) and P (ρg ) = P (ρl ). Numerical errors
associated with these interpolations are negligible.

The spinodal line corresponds to an area of mechanical
or chemical instability. This is in fact the region in the
phase diagram where the derivatives of both the chemical
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FIG. 5. (a) Chemical potential and (b) pressure as a function
of density for the N2LOsat potential (2N+3N) at four different
temperatures (see legend). Solid lines correspond to SCGF results and
dashed lines refer to BHF calculations. (c) Coexistence (diamonds)
and spinodal (circles and squares) lines as a function of density for
the same force. Spinodal lines for both chemical potential (circles)
and pressure (squares) are plotted.
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TABLE II. Critical density, ρc, and temperature, Tc; saturation
density, ρ0, and energy, E0/A; and effective mass at saturation density,
m∗

0/m, for each of the five Hamiltonians considered in Table I. We
provide results for both the SCGF and BHF methods.

SCGF ρc (fm−3) Tc (MeV) ρ0 (fm−3) E0
A

(MeV)
m∗

0
m

N3LOSRG18 0.048 18.6 0.19 −17.6 0.83
N3LOSRG20 0.047 17.4 0.19 −16.2 0.84
N3LOSRG28 0.043 15.3 0.16 −13.7 0.88
N2LOsat 0.043 16.3 0.15 −14.6 0.90
N3LOfull 0.038 11.5 0.14 −11.0 0.84

BHF ρc (fm−3) Tc (MeV) ρ0 (fm−3) E0
A

(MeV)
m∗

0
m

N3LOSRG18 0.058 18.9 0.19 −17.3 0.70
N3LOSRG20 0.056 17.9 0.18 −16.0 0.73
N3LOSRG28 0.051 16.5 0.16 −14.2 0.79
N2LOsat 0.051 17.7 0.16 −15.2 0.82
N3LOfull 0.048 13.7 0.16 −12.6 0.76

potential and the pressure become negative, thus violating
the thermodynamical stability criteria. To define the spinodal
lines, one then searches for the maxima and minima of both
μ and P , ∂μ

∂ρg
= ∂μ

∂ρl
= 0 and ∂P

∂ρg
= ∂P

∂ρl
= 0. We can thus

obtain two spinodal lines: one representing chemical and the
other one mechanical instabilities. These two lines are shown
in Fig. 5(c) with circles (chemical potential) and squares
(pressure), respectively. These two lines should coincide with
one another, and in fact they do as seen in Fig. 5(c). We take this
agreement as a further confirmation of the numerical procedure
that we have set up to study the phase transition.

The critical temperature Tc can be estimated in three differ-
ent ways: as the maximum of the chemical potential spinodal
line, of the pressure spinodal line, or of the corresponding
coexistence line. The small dotted lines that join the points in
Fig. 5(c) represent polynomial interpolations of all these data.
We use the maxima of these polynomials to provide an estimate
of the critical point (Tc , ρc), which should be the same when
extracted from either of the three estimates. We find that indeed
these three predictions agree well with each other. As seen in
Fig. 5(c), the three approaches yield almost undistinguishable
maxima for both the BHF and the SCGF results. A similar
discussion applies for the other four Hamiltonians. The critical
point thus obtained is reported in Table II.

Furthermore, Fig. 5(c) illustrates the general behavior of
the many-body truncation dependence of our results. The phase
diagrams for both the BHF and SCGF are qualitatively similar,
but present also some quantitative differences. The critical
point occurs at a slightly higher temperature for BHF compared
to SCGF, as expected from the overall repulsive nature of
hole-hole correlations. Well below the critical temperature, the
coexistence and spinodal lines on the low-density gas side are
very similar for both SCGF and BHF. These only deviate from
each other about 2 MeV below Tc. This low-density region is
relatively insensitive to many-body differences as expected on
the grounds of the virial expansion [53], which both BHF and
SCGF calculations incorporate by construction.

The liquid boundary of the phase diagram occurs at higher
densities and therefore we expect it to be more sensitive to

many-body correlations. We do find that the liquid coexistence
line occurs at larger densities for BHF compared to SCGF. The
same holds for the spinodal lines at high densities. Compared to
previous results obtained with 2N forces only [27], the critical
temperature is relatively lower for both BHF and SCGF. How-
ever, the differences between the two many-body approaches
are relatively similar here and in Ref. [27], indicating that 3N
forces do not qualitatively change the picture when it comes
to many-body uncertainties.

C. Coexistence line and critical temperature

We now extend the analysis of the many-body truncation
dependence of our results to the five chiral forces of Table I.
Figure 6 shows the coexistence lines obtained for all potentials:
for Fig. 6(a), the SCGF approximation, and Fig. 6(b), the
BHF approximation. We have applied the same procedure
discussed in the previous section to solve for the phase
coexistence. The Hamiltonians, which give a more attractive
free energy and a lower pressure, such as N3LOSRG18 (solid
lines), lead to coexistence lines, which cover a wider area in
the phase diagram. In contrast, the more repulsive forces, such
as N3LOfull (double-dash-dotted line), cover a substantially
smaller region of the density-temperature plane. There is a
clear separation in the phase diagram of all forces, which give
a coexistence line (and thus a phase diagram), which lies in
between the limits established by N3LOSRG18 at the top and
N3LOfull at the bottom.

The critical density and temperature for each Hamiltonian
in the two many-body approximations are reported in columns
2 and 3 of Table II. The Hamiltonian dependence of the critical
point is a direct reflection of the overall attractive or repulsive
nature of the free energy. We note that the ordering in terms of
free energy described in the left panels of Fig. 3 is in one-to-one
correspondence to the phase diagrams presented in Fig. 6 and
the critical properties of Table II.

There is a substantial dependence of the critical temperature
on Hamiltonians, spanning over 7 (5) MeV in the SCGF
(BHF) case. A previous study using 2N phase-shift equivalent
forces Av18 and CD-Bonn found a similar difference in
critical temperatures between the two potentials and for the
two many-body methods [27]. If N3LOfull predictions are
removed, however, our critical temperature results reduce to
a more conservative span of Tc = 16.3 − 18.9 MeV. In fact,
computing a mean and a standard deviation from all the
results of Table II, including N3LOfull, we estimate the critical
temperature to be in the range Tc = 16.4 ± 2.3 MeV.

The trends and figures indicate that N3LOfull is a relative
outlier with a very low critical temperature. Similar low critical
temperatures of order Tc = 11–12 MeV have been reported
in the past in relativistic many-body calculations [67,68] as
well as the 2N+3N force SCGF calculations of Ref. [28].
In the latter case, 3N forces were included without explicitly
differentiating one- and two-body effective interactions, which
provided an overall very large pressure, leading in turn to a low
critical temperature. If N3LOfull is considered an outlier and
removed from the average, we find that the mean is slightly
higher and the standard deviation narrower, Tc = 17.3 ± 1.2.
The perturbative calculations of Ref. [30] using similar chiral
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FIG. 6. Coexistence lines using the five Hamiltonians given in Table I within (a) the SCGF and (b) the BHF methods.

2N and 3N forces provide critical temperatures in the region
Tc = 17.4–19.1 MeV, in agreement with these results. We note
that the N3LO results in these perturbative calculation does
not include effective masses and is computed with different
cD and cE constants so, unsurprisingly, a much larger critical
temperature is obtained.

The uncertainty associated to the many-body truncation
can also be extracted from the results presented in Fig. 6
and Table II. As discussed already in Sec. III B, all BHF
predictions yield higher critical temperatures than their SCGF
counterparts. This is because, as observed in Fig. 4, the
chemical potentials are more attractive and the pressures
are lower for the BHF calculation. In turn, these require
larger temperatures to reach the critical point. As expected,
the differences between many-body methods are smaller for
softer, more perturbative forces. For N3LOSRG18, for instance,
Tc = 18.9 MeV for the BHF calculation whereas the SCGF
results indicate Tc = 18.6 MeV. In turn, less perturbative
forces provide larger differences, and for N3LOfull the critical
temperature goes from Tc = 13.7 MeV in the BHF approach
to 11.5MeV in SCGF. These findings validate the results of
Ref. [27], where the decrease of Tc due to hole-hole scattering
was already discussed.

We note that, if these results are representative of the
many-body truncation uncertainty in the critical temperature,
this uncertainty is, at most, ≈2 MeV. In contrast, there is a
spread of 5–7 MeV in critical temperatures due to the Hamil-
tonians dependence, which clearly dominates the uncertainty
budget. We note that this range in critical temperatures is
similar to that obtained in theoretical analysis of relativistic
and nonrelativistic density functionals [22,24]. Unlike those
phenomenological approaches, however, our calculations are
fully predictive and not based on fitting of the zero-temperature
nuclear matter equation of state around saturation.

While a detailed analysis of the effect of 3N forces on
critical properties goes beyond the scope of our work, we note
that 3N interactions are important in determining the critical
properties. A BHF calculation of N3LO without 3N forces
yields a critical temperature of the order Tc ≈ 27 MeV, which

is to be compared to the 13.7 MeV obtained here. Previous
calculations using phenomenological phase-shift equivalent
potentials with 2N and with 2N+3N forces have also validated
the importance of 3N forces. Reference [58] reports a 3 MeV
decrease in Tc when 3N forces are incorporated in a BHF
calculation. The SCGF calculations of Ref. [28] show larger
changes, of the order of 6–9 MeV.

D. Connecting the critical and saturation points

We have found a very clear trend connecting more attractive
finite-temperature predictions of the free energy to larger
critical temperatures. In a sense, this is natural: a larger thermal
energy is needed to counteract the effect of a more attractive
nuclear force before the system can dissolve at the critical
point. In the zero-temperature limit, the free energy reduces to
the energy per particle, which, for nuclear matter, has a mini-
mum around the saturation point. In fact, the zero-temperature
liquid-gas latent heat is equal to the saturation energy [23].
According to the arguments above, one might expect that
more attractive saturation points correlate with larger critical
temperatures. Having access to five Hamiltonians and two
different many-body methods, we now have enough data to
test whether such correlation exists.

Figure 7 shows the zero-temperature saturation energies
as a function of critical temperature for each different chiral
Hamiltonian of Table I. Details on the calculation of the
saturation point will be provided elsewhere [69]. We present
both the SCGF and the BHF results, and provide numerical
data of the saturation properties in columns 4–6 of Table II. We
note, in passing, that the phenomenological saturation point is
not reproduced by any of our calculations, which form Coester
lines above the expected values, in a similar way as presented
in Ref. [70].

Our results indicate that there is a clear linear correlation be-
tween saturation energy and critical temperature. We note that,
while this is in agreement with the just-discussed naive idea, the
correlation is not easy to establish theoretically. Phenomeno-
logical models of the liquid-gas phase transition rely often
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(solid) and the BHF (dashed) cases. The steeper brown lines describe
the relation arising from the Kapusta model, Eq. (12), as explained in
the text.

on approximate expressions of the pressure, rather than the
energy or the free energy. As a consequence, the subsaturation
behavior of the pressure generally dictates the predictions of Tc

in these phenomenological descriptions [18,22,71]. Moreover,
because the pressure is a density derivative of the energy, it
does not contain any information on the actual value of the
saturation energy, so it is not clear why the correlation should
arise.

Let us provide a numerical example of why this correlation
is unexpected. To this end, we exploit a model by Kapusta,
which describes the finite-temperature behavior of a degener-
ate system relying on the Sommerfeld expansion [18]. The
latter is valid at low temperatures, T/εF 	 1, with εF the
Fermi energy. The pressure around saturation is parametrized
in terms of the compressibility, K0, and the effect of in-medium
correlations is summarized in an effective mass. The model
predicts the following expression of the critical temperature as
a function of the saturation parameters:

Tc = 55/6

213/631/3b

√
K0

m∗
0

ρ
1/3
0 , (12)

where b = ( 25/2π

3h̄3 )1/3. We stress that there is no explicit depen-
dence on the saturation energy in this formula.

One may try to introduce a saturation energy dependence in
these results by exploiting the Coester curve, relating saturation
energy to saturation density in microscopic calculations [72].
We therefore perform a linear fit to the values (ρ0, E0) for
each Hamiltonian in Table II, separately for the SCGF and
the BHF results. We then insert this linear dependence, ρ(E0),
into Eq. (12). We set K0 = 230 MeV, and m∗

0 = 0.85m for
SCGF data and m∗

0 = 0.76m for BHF data as an average of the
values obtained for each Hamiltonian for the effective mass
at saturation density, see Table II. This allows us to find a

direct analytical relation between Tc and E0, which we show in
Fig. 7, employing both the SCGF (solid) and the BHF (dashed)
results. We find that the dependence of E0 on Tc predicted
by this variation of the Kapusta model is much steeper than
what is suggested by the data. Variations on the value for the
compressibility K0, which for these potentials ranges between
K0 ∼ [120–290] MeV, only shift the intercept of Tc with the
abscissa, but do not change the slope. Similarly, changes in
values of m∗

0, will only change the abscissa origin but do not
affect the slope.

Before concluding this section, we stress the fact that
most of the chiral forces predict a saturation point, which
is far from empirical expectations, see values in Table II. If
we were to consider only forces that provide a reasonable
saturation point both in terms of density and energy, we would
substantially reduce the uncertainty on the prediction of the
critical temperature.

In conclusion, we find a strong correlation between the
saturation energy and the critical temperature. The correlation
is rather linear, with a slope that is tantalizingly close to −1.
Such a correlation is absent in density-functional calculations
of the liquid-gas transition, partly because there the saturation
energy is an input parameter and has little room for change
[22,24]. Even when some room is allowed, the correlation
analysis of Ref. [71] indicates that Tc and the saturation energy
are not strongly correlated. It appears that this correlation is
intrinsic to the ab initio description of the saturation and the
critical points and needs further investigation in the future.

IV. CONCLUSIONS

We have presented a detailed study of the liquid-gas phase
transition in symmetric nuclear matter, employing two differ-
ent many-body schemes and five different combinations of
chiral 2N and 3N forces. These five forces span a wide range of
interactions, which have been renormalized in different ways
and include two different orders of the chiral expansion. All
our 3N forces are computed at N2LO and are included into our
calculation by means of a correlated average at the one- and
the two-body effective interaction levels.

This wide set of calculations allows us to estimate two
different sets of uncertainties. First, for a fixed many-body
scheme, we can look at the predictions of different Hamilto-
nians in order to ascertain the dependence of our results on
the underlying interaction. In general, we find that there is a
substantial Hamiltonian dependence that, in fact, dominates
across a wide range of densities and temperatures. Regarding
critical properties, this Hamiltonian dependence accounts for
differences in critical temperatures of the order of 5–7 MeV.
The origin of this uncertainty arises mostly from the different
constraints for the LECs in the three-body part of the Hamil-
tonian.

Second, for a fixed Hamiltonian, we can estimate the error
provided by the many-body approximation by comparing the
SCGF results to those obtained within the BHF approach. We
find that evolved 2N Hamiltonians generally provide SCGF
and BHF results that are very close to each other (as expected).
In fact, at the level of the phase transition, the differences in
the many-body treatment are at most of 2 MeV in the critical

025804-11



ARIANNA CARBONE, ARTUR POLLS, AND ARNAU RIOS PHYSICAL REVIEW C 98, 025804 (2018)

temperature. All in all, our results indicate that comprehensive
calculations with a wide set of Hamiltonians and of many-
body theories are necessary to provide realistic uncertainty
quantification in the critical properties of nuclear matter.

By averaging all of our results, we can estimate the critical
temperature to be Tc = 16.4 ± 2.3 MeV. This average value
takes into account the theoretical uncertainty coming both from
the chiral Hamiltonian and from the many-body approach. Our
prediction falls well within the error band provided by nonrel-
ativistic density functional calculations [22]. Furthermore, it
is in good agreement with respect to recent experimentally ex-
tracted values for the nuclear matter critical temperature [8,9].
Calculations could be improved in a number of ways. The
inclusion of particle-hole diagrams in the calculation of the
self-energy, the treatment of induced three-nucleon forces and
the averaging of the 3N force are all aspects that could affect
some of our conclusions at a quantitative level. We do not
expect that our conclusions are changed qualitatively.

Finally, we find an interesting and unexpected linear correla-
tion between the saturation energy and the critical temperature
provided by the different interactions. The Kapusta model,
which has been used extensively in the literature to connect
critical and saturation properties, cannot explain this ten-
dency. This model relies on the Sommerfeld expansion, which

is doubtfully correct across the whole density-temperature
regime of the liquid-gas phase transition.

Our results represent the first nonperturbative calculation of
the liquid-gas phase transition based on a wide set of modern
two- and three-body chiral forces. We expect these results to be
relevant for two reasons. On the one hand, they provide unique
input towards the improvement of the construction of the chiral
nuclear Hamiltonian, to predict correctly the finite-temperature
properties of nuclear matter. On the other hand, our calculations
pave the way towards reliable microscopic constraints to the
finite-temperature equation of state of relevance in astrophys-
ical phenomena.

ACKNOWLEDGMENTS

This work is supported by the STFC, through Grants
No. ST/L005743/1 and No. ST/P005314/1, the MICINN
(Spain) through Grant No. FIS2014-54672-P from MICINN
(Spain), and the Generalitat de Catalunya (Spain) through
Grant No. 2014SGR-401. Partial support comes from the
Deutsche Forschungsgemeinschaft through Grant SFB 1245
and “PHAROS” COST Action CA16214. Calculations for this
research were conducted on the Lichtenberg high-performance
computer of the TU Darmstadt.

[1] P. Braun-Munzinger and J. Wambach, Rev. Mod. Phys. 81, 1031
(2009).

[2] K. Fukushima and T. Hatsuda, Rep. Prog. Phys. 74, 014001
(2011).

[3] M. A. Halasz, A. D. Jackson, R. E. Shrock, M. A. Stephanov,
and J. J. M. Verbaarschot, Phys. Rev. D 58, 096007 (1998).

[4] P. J. Siemens, Nature (London) 305, 410 (1983).
[5] M. E. Fisher, Physics 3, 255 (1967).
[6] J. E. Finn, S. Agarwal, A. Bujak, J. Chuang, L. J. Gutay, A.

S. Hirsch, R. W. Minich, N. T. Porile, R. P. Scharenberg, B. C.
Stringfellow, and F. Turkot, Phys. Rev. Lett. 49, 1321 (1982).

[7] J. Pochodzalla, Prog. Part. Nucl. Phys. 39, 443 (1997).
[8] V. A. Karnaukhov, H. Oeschler, A. Budzanowski, S. P. Avdeyev,

A. S. Botvina, E. A. Cherepanov, W. Karcz, V. V. Kirakosyan,
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[28] V. Somà and P. Bożek, Phys. Rev. C 80, 025803 (2009).
[29] B. D. Carlsson, A. Ekström, C. Forssén, D. F. Strömberg, G. R.

Jansen, O. Lilja, M. Lindby, B. A. Mattsson, and K. A. Wendt,
Phys. Rev. X 6, 011019 (2016).

[30] C. Wellenhofer, J. W. Holt, N. Kaiser, and W. Weise, Phys. Rev.
C 89, 064009 (2014).

[31] C. Wellenhofer, J. W. Holt, and N. Kaiser, Phys. Rev. C 92,
015801 (2015).

[32] A. Ekström, G. R. Jansen, K. A. Wendt, G. Hagen, T.
Papenbrock, B. D. Carlsson, C. Forssén, M. Hjorth-Jensen, P.
Navrátil, and W. Nazarewicz, Phys. Rev. C 91, 051301 (2015).

[33] G. Baym and L. P. Kadanoff, Phys. Rev. 124, 287 (1961).
[34] G. Baym, Phys. Rev. 127, 1391 (1962).
[35] W. Kohn and J. M. Luttinger, Phys. Rev. 118, 41 (1960).
[36] J. M. Luttinger and J. C. Ward, Phys. Rev. 118, 1417

(1960).

025804-12

https://doi.org/10.1103/RevModPhys.81.1031
https://doi.org/10.1103/RevModPhys.81.1031
https://doi.org/10.1103/RevModPhys.81.1031
https://doi.org/10.1103/RevModPhys.81.1031
https://doi.org/10.1088/0034-4885/74/1/014001
https://doi.org/10.1088/0034-4885/74/1/014001
https://doi.org/10.1088/0034-4885/74/1/014001
https://doi.org/10.1088/0034-4885/74/1/014001
https://doi.org/10.1103/PhysRevD.58.096007
https://doi.org/10.1103/PhysRevD.58.096007
https://doi.org/10.1103/PhysRevD.58.096007
https://doi.org/10.1103/PhysRevD.58.096007
https://doi.org/10.1038/305410a0
https://doi.org/10.1038/305410a0
https://doi.org/10.1038/305410a0
https://doi.org/10.1038/305410a0
https://doi.org/10.1103/PhysicsPhysiqueFizika.3.255
https://doi.org/10.1103/PhysicsPhysiqueFizika.3.255
https://doi.org/10.1103/PhysicsPhysiqueFizika.3.255
https://doi.org/10.1103/PhysicsPhysiqueFizika.3.255
https://doi.org/10.1103/PhysRevLett.49.1321
https://doi.org/10.1103/PhysRevLett.49.1321
https://doi.org/10.1103/PhysRevLett.49.1321
https://doi.org/10.1103/PhysRevLett.49.1321
https://doi.org/10.1016/S0146-6410(97)00048-3
https://doi.org/10.1016/S0146-6410(97)00048-3
https://doi.org/10.1016/S0146-6410(97)00048-3
https://doi.org/10.1016/S0146-6410(97)00048-3
https://doi.org/10.1134/S1063778808120077
https://doi.org/10.1134/S1063778808120077
https://doi.org/10.1134/S1063778808120077
https://doi.org/10.1134/S1063778808120077
https://doi.org/10.1103/PhysRevC.87.054622
https://doi.org/10.1103/PhysRevC.87.054622
https://doi.org/10.1103/PhysRevC.87.054622
https://doi.org/10.1103/PhysRevC.87.054622
https://doi.org/10.1103/RevModPhys.81.1773
https://doi.org/10.1103/RevModPhys.81.1773
https://doi.org/10.1103/RevModPhys.81.1773
https://doi.org/10.1103/RevModPhys.81.1773
https://doi.org/10.1016/j.physrep.2011.02.001
https://doi.org/10.1016/j.physrep.2011.02.001
https://doi.org/10.1016/j.physrep.2011.02.001
https://doi.org/10.1016/j.physrep.2011.02.001
https://doi.org/10.1016/S0370-1573(96)00023-3
https://doi.org/10.1016/S0370-1573(96)00023-3
https://doi.org/10.1016/S0370-1573(96)00023-3
https://doi.org/10.1016/S0370-1573(96)00023-3
https://doi.org/10.1103/PhysRevLett.107.051102
https://doi.org/10.1103/PhysRevLett.107.051102
https://doi.org/10.1103/PhysRevLett.107.051102
https://doi.org/10.1103/PhysRevLett.107.051102
https://doi.org/10.1093/mnras/stw1227
https://doi.org/10.1093/mnras/stw1227
https://doi.org/10.1093/mnras/stw1227
https://doi.org/10.1093/mnras/stw1227
https://doi.org/10.1103/PhysRevC.91.035806
https://doi.org/10.1103/PhysRevC.91.035806
https://doi.org/10.1103/PhysRevC.91.035806
https://doi.org/10.1103/PhysRevC.91.035806
https://doi.org/10.1103/PhysRevC.27.2782
https://doi.org/10.1103/PhysRevC.27.2782
https://doi.org/10.1103/PhysRevC.27.2782
https://doi.org/10.1103/PhysRevC.27.2782
https://doi.org/10.1103/PhysRevC.29.1735
https://doi.org/10.1103/PhysRevC.29.1735
https://doi.org/10.1103/PhysRevC.29.1735
https://doi.org/10.1103/PhysRevC.29.1735
https://doi.org/10.1016/0375-9474(76)90429-2
https://doi.org/10.1016/0375-9474(76)90429-2
https://doi.org/10.1016/0375-9474(76)90429-2
https://doi.org/10.1016/0375-9474(76)90429-2
https://doi.org/10.1016/0375-9474(81)90157-3
https://doi.org/10.1016/0375-9474(81)90157-3
https://doi.org/10.1016/0375-9474(81)90157-3
https://doi.org/10.1016/0375-9474(81)90157-3
https://doi.org/10.1016/j.physrep.2008.04.005
https://doi.org/10.1016/j.physrep.2008.04.005
https://doi.org/10.1016/j.physrep.2008.04.005
https://doi.org/10.1016/j.physrep.2008.04.005
https://doi.org/10.1016/j.nuclphysa.2010.05.057
https://doi.org/10.1016/j.nuclphysa.2010.05.057
https://doi.org/10.1016/j.nuclphysa.2010.05.057
https://doi.org/10.1016/j.nuclphysa.2010.05.057
https://doi.org/10.1103/PhysRevC.83.024308
https://doi.org/10.1103/PhysRevC.83.024308
https://doi.org/10.1103/PhysRevC.83.024308
https://doi.org/10.1103/PhysRevC.83.024308
https://doi.org/10.1103/PhysRevC.94.045207
https://doi.org/10.1103/PhysRevC.94.045207
https://doi.org/10.1103/PhysRevC.94.045207
https://doi.org/10.1103/PhysRevC.94.045207
https://doi.org/10.1016/0375-9474(81)90649-7
https://doi.org/10.1016/0375-9474(81)90649-7
https://doi.org/10.1016/0375-9474(81)90649-7
https://doi.org/10.1016/0375-9474(81)90649-7
https://doi.org/10.1103/PhysRevC.59.682
https://doi.org/10.1103/PhysRevC.59.682
https://doi.org/10.1103/PhysRevC.59.682
https://doi.org/10.1103/PhysRevC.59.682
https://doi.org/10.1103/PhysRevC.78.044314
https://doi.org/10.1103/PhysRevC.78.044314
https://doi.org/10.1103/PhysRevC.78.044314
https://doi.org/10.1103/PhysRevC.78.044314
https://doi.org/10.1103/PhysRevC.80.025803
https://doi.org/10.1103/PhysRevC.80.025803
https://doi.org/10.1103/PhysRevC.80.025803
https://doi.org/10.1103/PhysRevC.80.025803
https://doi.org/10.1103/PhysRevX.6.011019
https://doi.org/10.1103/PhysRevX.6.011019
https://doi.org/10.1103/PhysRevX.6.011019
https://doi.org/10.1103/PhysRevX.6.011019
https://doi.org/10.1103/PhysRevC.89.064009
https://doi.org/10.1103/PhysRevC.89.064009
https://doi.org/10.1103/PhysRevC.89.064009
https://doi.org/10.1103/PhysRevC.89.064009
https://doi.org/10.1103/PhysRevC.92.015801
https://doi.org/10.1103/PhysRevC.92.015801
https://doi.org/10.1103/PhysRevC.92.015801
https://doi.org/10.1103/PhysRevC.92.015801
https://doi.org/10.1103/PhysRevC.91.051301
https://doi.org/10.1103/PhysRevC.91.051301
https://doi.org/10.1103/PhysRevC.91.051301
https://doi.org/10.1103/PhysRevC.91.051301
https://doi.org/10.1103/PhysRev.124.287
https://doi.org/10.1103/PhysRev.124.287
https://doi.org/10.1103/PhysRev.124.287
https://doi.org/10.1103/PhysRev.124.287
https://doi.org/10.1103/PhysRev.127.1391
https://doi.org/10.1103/PhysRev.127.1391
https://doi.org/10.1103/PhysRev.127.1391
https://doi.org/10.1103/PhysRev.127.1391
https://doi.org/10.1103/PhysRev.118.41
https://doi.org/10.1103/PhysRev.118.41
https://doi.org/10.1103/PhysRev.118.41
https://doi.org/10.1103/PhysRev.118.41
https://doi.org/10.1103/PhysRev.118.1417
https://doi.org/10.1103/PhysRev.118.1417
https://doi.org/10.1103/PhysRev.118.1417
https://doi.org/10.1103/PhysRev.118.1417


MICROSCOPIC PREDICTIONS OF THE NUCLEAR MATTER … PHYSICAL REVIEW C 98, 025804 (2018)

[37] A. Carbone, A. Rios, and A. Polls, Phys. Rev. C 90, 054322
(2014).

[38] A. Carbone, A. Cipollone, C. Barbieri, A. Rios, and A. Polls,
Phys. Rev. C 88, 054326 (2013).

[39] R. D. Mattuck, A Guide to Feynman Diagrams in the Many-Body
Problem (Dover, New York, 1992).

[40] W. H. Dickhoff and C. Barbieri, Prog. Part. Nucl. Phys. 52, 377
(2004).

[41] T. Frick and H. Müther, Phys. Rev. C 68, 034310 (2003).
[42] A. Rios, Ph.D. thesis, University of Barcelona, 2007,

http://hdl.handle.net/2445/35494.
[43] W. H. Dickhoff and D. Van Neck, Many-Body Theory Exposed!,

2nd ed. (World Scientific, New Jersey, 2008).
[44] A. Carbone, A. Polls, and A. Rios, Phys. Rev. C 88, 044302

(2013).
[45] C. Barbieri and A. Carbone, Self-consistent Green’s function

approaches, in An Advanced Course in Computational Nuclear
Physics: Bridging the Scales from Quarks to Neutron Stars,
edited by M. Hjorth-Jensen, M. P. Lombardo, and U. van Kolck
(Springer International Publishing, Cham, 2017), pp. 571–644.

[46] W. Zuo, Z. H. Li, U. Lombardo, G. C. Lu, and H.-J. Schulze,
Phys. Rev. C 73, 035208 (2006).

[47] V. M. Galitskii and A. B. Migdal, JETP 7, 96 (1958).
[48] D. S. Koltun, Phys. Rev. C 9, 484 (1974).
[49] G. M. Carneiro and C. J. Pethick, Phys. Rev. B 11, 1106

(1975).
[50] A. Rios, A. Polls, A. Ramos, and H. Müther, Phys. Rev. C 74,

054317 (2006).
[51] N. Hugenholtz and L. van Hove, Physica 24, 363 (1958).
[52] M. Schmidt, G. Röpke, and H. Schulz, Ann. Phys. (NY). 202,

57 (1990).
[53] C. Horowitz and A. Schwenk, Nucl. Phys. A 776, 55 (2006).

[54] A. Rios, A. Polls, and I. Vidaña, Phys. Rev. C 79, 025802 (2009).
[55] A. Rios, A. Polls, A. Ramos, and I. Vidaña, Phys. Rev. C 72,

024316 (2005).
[56] C. Bloch, Nucl. Phys. 7, 451 (1958); C. Bloch and C. D.

Dominicis, ibid. 7, 459 (1958); 10, 181 (1959); 10, 509 (1959).
[57] I. Bombaci, T. T. Kuo, and U. Lombardo, Phys. Rep. 242, 165

(1994).
[58] W. Zuo, Z. H. Li, A. Li, and G. C. Lu, Phys. Rev. C 69, 064001

(2004).
[59] C. Wellenhofer, arXiv:1804.03040.
[60] K. Hebeler, S. K. Bogner, R. J. Furnstahl, A. Nogga, and A.

Schwenk, Phys. Rev. C 83, 031301(R) (2011).
[61] P. Klos, A. Carbone, K. Hebeler, J. Menéndez, and A. Schwenk,

Europhys, J. A 54, 76 (2018).
[62] D. Logoteta, I. Bombaci, and A. Kievsky, Phys. Rev. C 94,

064001 (2016).
[63] D. R. Entem and R. Machleidt, Phys. Rev. C 68, 041001(R)

(2003).
[64] U. van Kolck, Phys. Rev. C 49, 2932 (1994).
[65] E. Epelbaum, A. Nogga, W. Glöckle, H. Kamada, Ulf-G.

Meißner, and H. Witała, Phys. Rev. C 66, 064001 (2002).
[66] C. Drischler, K. Hebeler, and A. Schwenk, Phys. Rev. C 93,

054314 (2016).
[67] B. ter Haar and R. Malfliet, Phys. Rev. Lett. 56, 1237 (1986).
[68] H. Huber, F. Weber, and M. K. Weigel, Phys. Rev. C 57, 3484

(1998).
[69] A. Carbone (unpublished).
[70] C. Drischler, K. Hebeler, and A. Schwenk, arXiv:1710.08220

[nucl-th] .
[71] A. Rios and X. Roca-Maza, J. Phys. G 42, 034005 (2015).
[72] Y. Dewulf, W. H. Dickhoff, D. Van Neck, E. R. Stoddard, and

M. Waroquier, Phys. Rev. Lett. 90, 152501 (2003).

025804-13

https://doi.org/10.1103/PhysRevC.90.054322
https://doi.org/10.1103/PhysRevC.90.054322
https://doi.org/10.1103/PhysRevC.90.054322
https://doi.org/10.1103/PhysRevC.90.054322
https://doi.org/10.1103/PhysRevC.88.054326
https://doi.org/10.1103/PhysRevC.88.054326
https://doi.org/10.1103/PhysRevC.88.054326
https://doi.org/10.1103/PhysRevC.88.054326
https://doi.org/10.1016/j.ppnp.2004.02.038
https://doi.org/10.1016/j.ppnp.2004.02.038
https://doi.org/10.1016/j.ppnp.2004.02.038
https://doi.org/10.1016/j.ppnp.2004.02.038
https://doi.org/10.1103/PhysRevC.68.034310
https://doi.org/10.1103/PhysRevC.68.034310
https://doi.org/10.1103/PhysRevC.68.034310
https://doi.org/10.1103/PhysRevC.68.034310
http://hdl.handle.net/2445/35494
https://doi.org/10.1103/PhysRevC.88.044302
https://doi.org/10.1103/PhysRevC.88.044302
https://doi.org/10.1103/PhysRevC.88.044302
https://doi.org/10.1103/PhysRevC.88.044302
https://doi.org/10.1103/PhysRevC.73.035208
https://doi.org/10.1103/PhysRevC.73.035208
https://doi.org/10.1103/PhysRevC.73.035208
https://doi.org/10.1103/PhysRevC.73.035208
https://doi.org/10.1103/PhysRevC.9.484
https://doi.org/10.1103/PhysRevC.9.484
https://doi.org/10.1103/PhysRevC.9.484
https://doi.org/10.1103/PhysRevC.9.484
https://doi.org/10.1103/PhysRevB.11.1106
https://doi.org/10.1103/PhysRevB.11.1106
https://doi.org/10.1103/PhysRevB.11.1106
https://doi.org/10.1103/PhysRevB.11.1106
https://doi.org/10.1103/PhysRevC.74.054317
https://doi.org/10.1103/PhysRevC.74.054317
https://doi.org/10.1103/PhysRevC.74.054317
https://doi.org/10.1103/PhysRevC.74.054317
https://doi.org/10.1016/S0031-8914(58)95281-9
https://doi.org/10.1016/S0031-8914(58)95281-9
https://doi.org/10.1016/S0031-8914(58)95281-9
https://doi.org/10.1016/S0031-8914(58)95281-9
https://doi.org/10.1016/0003-4916(90)90340-T
https://doi.org/10.1016/0003-4916(90)90340-T
https://doi.org/10.1016/0003-4916(90)90340-T
https://doi.org/10.1016/0003-4916(90)90340-T
https://doi.org/10.1016/j.nuclphysa.2006.05.009
https://doi.org/10.1016/j.nuclphysa.2006.05.009
https://doi.org/10.1016/j.nuclphysa.2006.05.009
https://doi.org/10.1016/j.nuclphysa.2006.05.009
https://doi.org/10.1103/PhysRevC.79.025802
https://doi.org/10.1103/PhysRevC.79.025802
https://doi.org/10.1103/PhysRevC.79.025802
https://doi.org/10.1103/PhysRevC.79.025802
https://doi.org/10.1103/PhysRevC.72.024316
https://doi.org/10.1103/PhysRevC.72.024316
https://doi.org/10.1103/PhysRevC.72.024316
https://doi.org/10.1103/PhysRevC.72.024316
https://doi.org/10.1016/0029-5582(58)90284-0
https://doi.org/10.1016/0029-5582(58)90284-0
https://doi.org/10.1016/0029-5582(58)90284-0
https://doi.org/10.1016/0029-5582(58)90284-0
https://doi.org/10.1016/0029-5582(58)90285-2
https://doi.org/10.1016/0029-5582(58)90285-2
https://doi.org/10.1016/0029-5582(58)90285-2
https://doi.org/10.1016/0029-5582(58)90285-2
https://doi.org/10.1016/0029-5582(59)90203-2
https://doi.org/10.1016/0029-5582(59)90203-2
https://doi.org/10.1016/0029-5582(59)90203-2
https://doi.org/10.1016/0029-5582(59)90241-X
https://doi.org/10.1016/0029-5582(59)90241-X
https://doi.org/10.1016/0029-5582(59)90241-X
https://doi.org/10.1016/0370-1573(94)90149-X
https://doi.org/10.1016/0370-1573(94)90149-X
https://doi.org/10.1016/0370-1573(94)90149-X
https://doi.org/10.1016/0370-1573(94)90149-X
https://doi.org/10.1103/PhysRevC.69.064001
https://doi.org/10.1103/PhysRevC.69.064001
https://doi.org/10.1103/PhysRevC.69.064001
https://doi.org/10.1103/PhysRevC.69.064001
http://arxiv.org/abs/arXiv:1804.03040
https://doi.org/10.1103/PhysRevC.83.031301
https://doi.org/10.1103/PhysRevC.83.031301
https://doi.org/10.1103/PhysRevC.83.031301
https://doi.org/10.1103/PhysRevC.83.031301
https://doi.org/10.1140/epja/i2018-12530-6
https://doi.org/10.1140/epja/i2018-12530-6
https://doi.org/10.1140/epja/i2018-12530-6
https://doi.org/10.1140/epja/i2018-12530-6
https://doi.org/10.1103/PhysRevC.94.064001
https://doi.org/10.1103/PhysRevC.94.064001
https://doi.org/10.1103/PhysRevC.94.064001
https://doi.org/10.1103/PhysRevC.94.064001
https://doi.org/10.1103/PhysRevC.68.041001
https://doi.org/10.1103/PhysRevC.68.041001
https://doi.org/10.1103/PhysRevC.68.041001
https://doi.org/10.1103/PhysRevC.68.041001
https://doi.org/10.1103/PhysRevC.49.2932
https://doi.org/10.1103/PhysRevC.49.2932
https://doi.org/10.1103/PhysRevC.49.2932
https://doi.org/10.1103/PhysRevC.49.2932
https://doi.org/10.1103/PhysRevC.66.064001
https://doi.org/10.1103/PhysRevC.66.064001
https://doi.org/10.1103/PhysRevC.66.064001
https://doi.org/10.1103/PhysRevC.66.064001
https://doi.org/10.1103/PhysRevC.93.054314
https://doi.org/10.1103/PhysRevC.93.054314
https://doi.org/10.1103/PhysRevC.93.054314
https://doi.org/10.1103/PhysRevC.93.054314
https://doi.org/10.1103/PhysRevLett.56.1237
https://doi.org/10.1103/PhysRevLett.56.1237
https://doi.org/10.1103/PhysRevLett.56.1237
https://doi.org/10.1103/PhysRevLett.56.1237
https://doi.org/10.1103/PhysRevC.57.3484
https://doi.org/10.1103/PhysRevC.57.3484
https://doi.org/10.1103/PhysRevC.57.3484
https://doi.org/10.1103/PhysRevC.57.3484
http://arxiv.org/abs/arXiv:1710.08220
https://doi.org/10.1088/0954-3899/42/3/034005
https://doi.org/10.1088/0954-3899/42/3/034005
https://doi.org/10.1088/0954-3899/42/3/034005
https://doi.org/10.1088/0954-3899/42/3/034005
https://doi.org/10.1103/PhysRevLett.90.152501
https://doi.org/10.1103/PhysRevLett.90.152501
https://doi.org/10.1103/PhysRevLett.90.152501
https://doi.org/10.1103/PhysRevLett.90.152501



