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Reaction rates for the 39K( p, γ )40Ca reaction
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The magnesium-potassium anticorrelation observed in globular cluster NGC2419 can be explained by nuclear
burning of hydrogen in hot environments. The exact site of this nuclear burning is, as yet, unknown. In order to
constrain the sites responsible for this anticorrelation, the nuclear reactions involved must be well understood. The
39K + p reactions are one such pair of reactions. Here, we report a new evaluation of the 39K(p, γ )40Ca reaction
rate by taking into account ambiguities and measurement uncertainties in the nuclear data. The uncertainty in
the 39K(p, γ )40Ca reaction rate is larger than previously assumed, and its influence on nucleosynthesis models is
demonstrated. We find the 39K(p, γ )40Ca reaction cross section should be the focus of future experimental study
to help constrain models aimed at explaining the magnesium-potassium anticorrelation in globular clusters.

DOI: 10.1103/PhysRevC.98.025802

I. INTRODUCTION

The alkali element potassium is synthesized in several
stellar environments. It is predominately produced in a com-
bination of hydrostatic and explosive oxygen burning [1],
conditions found only in highly evolved massive stars during
the presupernova phase and the ensuing explosion. However,
models of galactic chemical evolution, which are based on
the nucleosynthetic yields of supernovae, so far severely
underpredict the observed potassium abundance in our galaxy
[2–5]. Potassium is also synthesized in smaller quantities in
high-temperature hydrogen burning environments, which are
believed to be important in explaining elemental abundance
signatures in globular clusters. Of particular interest is NGC
2419 [6], where it was found that a significant fraction of its
member stars (≈40%) are highly enriched in elemental potas-
sium. Additionally, there is a strong anticorrelation observed
between potassium and magnesium abundances, reminiscent
of the ubiquitous Na-O and Mg-Al anticorrelations found
much more commonly in clusters (see Ref. [7] and references
therein). Though the main reason for these discrepancies has
not been established, a more accurate description of potassium
synthesis will be helpful in this area. To achieve this, the
potassium destruction reactions 39K + p are crucial.

Iliadis et al. [8] explored the astrophysical conditions that
could be responsible for isotopic correlations in NGC 2419.
Their method featured a Monte Carlo nucleosynthesis network
that included all known uncertainties in the thermonuclear
reaction rates. They obtained a range of stellar temperatures
and densities that quantitatively reproduced all of the elemen-
tal abundances measured in the potassium-rich stars. Later,
Ref. [9] extended that method by including a sensitivity study
of the nuclear reaction rates. They found several reactions
whose rates need to be better constrained in order to more
accurately identify an astrophysical site responsible for the
anomalies. The majority of these pertain to the synthesis
and destruction of 39K. The rate of one of these reactions,

39K(p, γ )40Ca, was based on preliminary calculations, so it
is important to reinvestigate the 39K + p reactions based on a
full evaluation of the nuclear physics input.

In this paper, we calculate the rate of the 39K(p, γ )40Ca
reaction using all available experimental information. The
39K(p, α)36Ar rate was found to not significantly influence
final abundances in the stellar environments of interest here,
so we leave its evaluation to future work. In Sec. II, a brief
overview of the reaction rate formalism is presented along with
the Monte Carlo method used to calculate uncertainties on the
rate, given experimental uncertainties on the cross sections. In
Sec. III, details of the experimental information are presented.
The Monte Carlo rates using that information are computed in
Sec. IV and compared to previous reaction rate calculations.
Astrophysical implications of these rates as they pertain to
nucleosynthesis in globular clusters are presented in Sec. V,
and all findings are summarized in Sec. VI.

II. REACTION RATE FORMALISM

A. Thermonuclear reaction rates

In a stellar plasma, the rate of a nuclear reaction per particle
pair is given by

〈σv〉 =
√

8

πμ

1

(kT )3/2

∫ ∞

0
Eσ (E)e−E/kT dE. (1)

Here μ is the reduced mass of the reacting particles, k is the
Boltzmann constant, T is the temperature of the plasma, and
σ (E) is the energy-dependent cross section of the reaction. For
a slowly varying cross section or one consisting of multiple
broad, overlapping, or interfering resonances, the integral in
Eq. (1) must be solved numerically. However, for isolated,
narrow resonances, it can be replaced by an incoherent sum

2469-9985/2018/98(2)/025802(13) 025802-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.98.025802&domain=pdf&date_stamp=2018-08-23
https://doi.org/10.1103/PhysRevC.98.025802


R. LONGLAND, J. DERMIGNY, AND C. MARSHALL PHYSICAL REVIEW C 98, 025802 (2018)

over their individual contributions:

〈σv〉 =
(

2π

μkT

)3/2

h̄2
∑

i

ωγie
−Er,i /kT , (2)

where the resonance strength ωγi for resonance i at energy Er,i

is defined by

ωγ = ω
�a�b

�
. (3)

�a and �b are the entrance and exit particle partial widths,
and � is the total width given by the sum of widths over all
open reaction channels. ω is the spin factor. The particle partial
width for channel c, �c, can be written as

�c = 2 Pc(Er ) γ 2
c , (4)

where Pc(Er ) is the penetration factor at the resonance energy
and γ 2

c is the energy-independent reduced width. The reduced
width can be calculated by

γ 2
c = h̄2

2μR
C2S φ2

R. (5)

R is the channel radius given by R = R0(A1/3
a + A

1/3
b ). φ2

R is
the single-particle radial wave function at the channel radius,
which can be calculated theoretically [10,11].

The 39K(p, γ )40Ca reaction proceeds through the com-
pound nucleus 40Ca at a high excitation energy (Sp =
8328.437(21) keV [12]). The average level density of 40Ca
at these excitation energies is about 60 MeV−1, corresponding
to an average level spacing of about 20 keV. Of these levels,
fewer will exhibit an appreciable proton width and contribute
significantly to the reaction rate, as will become apparent in
Sec. IV. At the low proton energies relevant for astrophysics,
the high Coulomb barrier renders the proton width in Eq. (4)
to be small. Thus, the cross section can be considered to
be dominated by narrow resonances and the reaction rate is
calculated using Eq. (2). Interference effects are expected to
average to a negligible contribution, and the nonresonant part
of the cross section can be neglected.

B. Monte Carlo reaction rates

The resonance strengths, partial widths, and resonance
energies used to calculate reaction rates in Eqs. (2) and (3)
are obtained from experimental information or theoretical
estimates, or they are are unknown. They must, therefore,
carry some associated uncertainty whose probability density
distribution varies depending on the source of that uncertainty.
The uncertainty in these parameters results in an uncertainty
in the reaction rate. Traditionally, crude estimates of “upper”
and “lower” limits of the reaction rate have been computed
by considering which parameter possibilities can be combined
to maximize or minimize the reaction rate. This was the case,
for example, in the NACRE evaluation of reaction rates [13].
However, these methods define unphysical bounds on a reac-
tion rate, whose uncertainty distribution should be continuous.
Other, more sophisticated methods have also been employed
by attempting full uncertainty propagation techniques [14,15].
However, those techniques could not account for parameters

with large uncertainties, numerically integrated cross sections,
or partial widths for which only upper limits are known.

Here, we utilize a Monte Carlo uncertainty propagation
method. Using this method, probability density distributions
can be fully defined for all uncertain input parameters in
a reaction rate calculation. These methods are described in
detail in Refs. [16,17]. In summary, the central limit theorem
suggests that measured partial widths, resonance strengths,
or cross sections should have uncertainties dictated by log-
normal probability density distributions whose location and
shape parameters are calculated from the expectation value
and variance of the experimental data. Unmeasured, or so-
called “upper limit” partial widths have uncertainties dictated
by the Porter-Thomas probability density distribution [18].
Resonance energies, on the other hand, are dictated by normal,
or Gaussian, probability density distributions. The strategy
of Monte Carlo uncertainty propagation is straight forward:
(i) a random sample of each uncertain parameter is obtained
using its probability density distribution; (ii) a reaction rate
sample is calculated using these sample parameters in Eqs. (1)
or (2); (iii) a new set of parameter samples is generated as
in step (i). These steps are repeated, taking care to correctly
account for energy effects in partial width calculations, many
times (typically 3000–10000 times depending on available
computing power and the complexity of the cross section).
Following this procedure, an ensemble of reaction rate samples
is obtained for each temperature, which can be summarized
in meaningful statistics. In Ref. [16], we found that the log-
normal shape parameters, μ and σ , can well summarize the
probability density distribution of Monte Carlo reaction rates.
The code RATESMC [16] was used to perform the Monte Carlo
sampling and to analyze the probability densities of the total
reaction rates.

The log-normal probability density distribution used for
resonance strengths and partial widths is defined by

f (x) = 1

σ
√

2π

1

x
e−(ln x−μ)2/(2σ 2 ), (6)

where x represents the resonance strength (or partial width)
defined in units of eV here. The log-normal parameters, μ and
σ do not represent the mean and standard deviation as with a
normal distribution, but rather the mean and standard deviation
of ln x. Note that a lognormal distribution is only defined for
positive values of x. The parameters μ and σ are related to the
expectation value E[x] and variance V [x] by

E[x] = e(2μ+σ 2 )/2, V [x] = e(2μ+σ 2 )[eσ 2 − 1], (7)

where E[x] and V [x] are defined here in units of eV and
eV2, respectively. The values ln(E[x]) and

√
V [x] can be

associated with the central value and uncertainty in resonance
strengths or partial widths that are commonly reported in
the literature. Often, rather than a variance, reaction cross
sections can be reported with a factor uncertainty (f.u.). For a
log-normal probability density distribution, the recommended
value (rec.) then refers to the geometric mean of the reaction
rate, i.e., the median reaction rate. The factor uncertainties
(f.u.) refer to multiplicative factors describing an uncertainty.
The log-normal parameters are calculated using μ = ln(rec.)
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and σ = ln(f.u.). The expectation value and variance can then
be calculated using Eqs. (7). For example, consider a fictional
resonance with an estimated strength of ωγ = 3 eV with a
factor uncertainty of 2. We must interpret this reported value
as the geometric mean of the resonance strength with high and
low values at 3 × 2 = 6 eV and 3/2 = 1.5 eV, respectively
(recall that high and low here do not refer to hard limits).
The log-normal parameters are μ = ln(3) = 1.10 and σ =
ln(2) = 0.69. Using the identities in Eq. (7), the expectation
value and variance of the resonance strength are found to
be E[ωγ ] = 3.8 eV and V [ωγ ] = 3.0 eV, respectively. These
values are used as input to our RATESMC input to ensure correct
log-normal conversion.

For many reactions, the reaction rate at low temperatures is
expected to be dominated by resonances whose partial widths
are unknown. They are governed only by an upper limit, either
experimental or theoretical. A thorough discussion of this issue
is available elsewhere (see, for example, Refs. [16,19,20]), and
will be summarized here. Particle partial widths depend on
overlaps between the entrance channel (39K + p) and the final
state in the compound nucleus. Compound nuclear states can
be defined by way of nuclear matrix elements, which often con-
tain contributions from many different parts of configuration
space whose signs are randomly distributed. The central limit
theorem predicts that the probability density function of the
transition amplitude will tend toward a Gaussian distribution
centered on zero. The reduced width, defined as the square of
this transition amplitude, will thus be distributed according to
a chi-squared distribution with one degree of freedom. For a
particle channel, this probability density function for the single
particle reduced width is given by

f (θ ) = c√
θ2

e−θ2/(2θ̂2 ), (8)

where c is a normalization constant, θ2 is the dimensionless
reduced width, and θ̂2 is the local mean value of the di-
mensionless reduced width, which has been investigated in
Ref. [20]. This distribution, also known as the Porter-Thomas
distribution [18], is well established theoretically [21]. It also
gives us a physically motivated probability density distribution
from which to sample unknown or upper-limit particle partial
widths. The mean dimensionless reduced width used here is
obtained from Table II in Ref. [20]. For the case of measured
upper limits, the distribution in Eq. (8) is truncated at the upper-
limit value. Note that this is an approximation: upper-limit
measurements themselves contain a probability distribution,
not a sharp cutoff as this strategy currently assumes. More
sophisticated strategies such as matching the 95th percentile,
for example, should be investigated.

Often, resonance strength or partial width measurements
are normalized to reference resonances. If this is the case,
their properties are correlated. Longland [22] investigated the
effect of these correlations on Monte Carlo reaction rates and
recommended techniques for accounting for them. In short, it
was found that defining a single correlation parameter ρi for
each resonance i was sufficient for accounting for correlation
between resonance strengths and partial widths. By assuming
that any normalized resonance strength must necessarily have
larger uncertainties than the reference resonance, correlation

parameters can be defined by

ρi = σr

ωγr

ωγi

σi

= f.u.r
f.u.i

, (9)

where ωγ and σ are the resonance strengths and their as-
sociated uncertainties, respectively. The subscript r refers to
the reference resonance. Note that, given this definition, the
correlation parameter cannot be larger than 1. A correlated
Monte Carlo resonance strength sample, ωγi,j can then be
calculated using

ωγi,j = ωγi,rec. (f.u.)y
′
i,j , (10)

where the recommended value is denoted by ωγi,rec., its
factor uncertainty is (f.u.), and y ′

i,j is a correlated, normally
distributed random sample calculated by

y ′
i,j = ρixj +

√
1 − ρ2

i yi,j . (11)

Here, xj and yi,j are uncorrelated, normally distributed random
variables with a mean of 0 and standard deviation of 1. The
correlated resonance strengths calculated using Eq. (10) can
then be used in the standard Monte Carlo procedure.

Following this procedure of constructing probability den-
sity distributions for uncertain input parameters and calculating
the reaction rates using the Monte Carlo technique described
above, an ensemble of reaction rates is obtained. These are also
expected, in most cases, to follow a log-normal distribution
whose location and shape parameters can be calculated using
Eqs. (7). However, this is an approximation. In some cases, par-
ticularly those for which the resonance strength is dominated
by upper limits of resonances, the log-normal assumption is
not valid.

A useful measure of the applicability of a log-normal
approximation to the actual sampled distribution is provided
by the Anderson-Darling (A-D) statistic, which is calculated
from

tAD = −n −
n∑

i=1

2i − 1

n
{ln F (yi ) + ln[1 − F (yn+1−i )]},

(12)
where n is the number of samples, yi are the sampled reaction
rates at a given temperature (arranged in ascending order), and
F is the cumulative distribution of a standard normal function
(i.e., a Gaussian centered at zero). An A-D value greater than
unity indicates a deviation from a log-normal distribution.
However, it was found by Longland et al. [16] that the rate
distribution does not visibly deviate from log-normal until A-D
exceeds tAD ≈ 30. The A-D statistic is presented in Table III
along with the reaction rates at each temperature in order to
provide a reference to the reader.

III. THE 39K + p REACTIONS

A. General aspects

The 39K + p reactions proceed through excited states in
40Ca with Q values of Q(p,γ ) = 8.328437(21) MeV for the
39K(p, γ )40Ca reaction and Q(p,α) = 1.288675(27) MeV for
the 39K(p, α)36Ar reaction [12]. The ground-state spins of
39K, 40Ca, and 36Ar are Jπ = 3/2+, Jπ = 0+, and Jπ = 0+,
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TABLE I. Summary of direct resonance strength measurements in the energy region of interest.

Reference Reaction studied Comments

Leenhouts and Endt [30] 39K(p, γ )40Ca Relative ωγ between Ec.m.
r = 763 keV and Ec.m.

r = 2747 keV
Cheng et al. [31] 39K(p, γ )40Ca Absolute ωγ for Ec.m.

r = 1102 keV, Ec.m.
r = 1310 keV, and Ec.m.

r = 1992 keV.
Relative ωγ between Ec.m.

r = 763 keV and Ec.m.
r = 2747 keV

Kikstra et al. [32] 39K(p, γ )40Ca Relative ωγ between Ec.m.
r = 606 keV and Ec.m.

r = 2838 keV

respectively. Note that since the first excited state in 36Ar is
at Ex = 1970 keV with Jπ = 2+, the 39K(p, α)36Ar reaction
can only proceed through natural parity states in 40Ca at
energies below about Ec.m.

r = 1000 keV. This is true for the
relevant proton energies corresponding to the temperature
range T = 200–300 MK as identified by Ref. [9]. Those
energies are between Ec.m.

r = 200 keV and Ec.m.
r = 600 keV,

corresponding to an excitation energy region in 40Ca of Ex =
8500–9000 keV.

Several studies have investigated the cross section of
the 39K(p, γ )40Ca reaction by way of resonance strength
determination. These are listed in Table I. Note that, for
the 39K(p, α)36Ar reaction, only one investigation has been
performed for incident proton energies below about Elab

r =
3000 keV [23]. Indirect measurements have also been per-
formed, which provide useful supplementary information.
Proton widths in the excitation energy region of interest
have been inferred by proton transfer reactions: through
(3He, d ) [24–27] and (d, n) [28]. Additionally, α-particle
widths in this excitation energy range have been inferred
through the 36Ar(6Li, d)40Ca reaction [29].

B. Resonance strengths

Resonance strengths for the 39K(p, γ )40Ca reaction have
been measured directly (see also Table I) by Leenhouts
et al. [30], Cheng et al. [31], and Kikstra et al. [32]. The latter of
these normalized their results to the Ec.m.

r = 1990 keV (Elab
r =

2043 keV) resonance measured absolutely by Ref. [31]. The
evaluation in Ref. [33] adopted resonance strengths from the
most recent measurement (Ref. [32]). Earlier measurements
should still be valid, though, and close inspection reveals
a systematic shift of resonance strengths in Ref. [32]. This
is shown in Fig. 1, where resonance strengths measured by
Ref. [32] and Refs. [30,31] are compared as a function of
resonance energy after normalization to the common Ec.m.

r =
1990 keV resonance strength reported by Ref. [31]. The
strengths are shown relative to those of Ref. [32], which lies
along the line at zero. Uncertainties in the points include
the uncertainties reported in Ref. [32]. The normalization
point at Ec.m.

r = 1990 keV is denoted by a vertical dotted
line. Clearly, large differences exist between the measured
resonance strengths that are outside their uncertainties.1 In
order to fully describe, in probabilistic terms, our confidence in

1Kikstra et al. [32] also comment on this disagreement and postulate
that the thick-target method used by Ref. [31] could be the culprit.
However, upon inspection we do not find this argument convincing.

resonance strength determinations for astrophysical purposes,
a more careful evaluation of these measurements is necessary.

Our procedure is to first correct the data from Ref. [32]
for target stopping powers, which are an energy-dependent
quantity not accounted for in their analysis. Second, we recog-
nize that the reference resonance used for normalization comes
from Ref. [31], where, in fact, three absolute measurements
were performed at Ec.m.

r = 1104 keV, Ec.m.
r = 1312 keV, and

Ec.m.
r = 1990 keV. If all three of those absolute resonance

strengths (taking their uncertainties into account) are used
to normalize the strengths in Ref. [32], better agreement is
obtained. This results in a reduction in the Ref. [32] resonance
strengths by a factor of 1.28. The result of these two corrections
is shown in Fig. 2. Poor agreement between measurements is
still present.

To account for this remaining disagreement between mea-
sured resonance strengths in our calculations, we consider
the probability density distributions corresponding to the
reported uncertainties in the measurements. After investigating
a number of descriptive statistics, we found that calculating

FIG. 1. Comparison to experimental resonance strengths com-
pared to the data of Ref. [32]. Uncertainties in the points include the
uncertainties reported in Ref. [32]. Clearly, although there is agree-
ment between resonance strengths at the normalization resonance at
Ec.m.

r = 1992 keV (shown as a vertical dashed line), the agreement is
poor at most other energies. There appears to be an overall systematic
shift to higher resonance strengths in Ref. [32].
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FIG. 2. Comparison to experimental resonance strengths com-
pared to the data of Ref. [32]. Uncertainties in the points include
the uncertainties reported in Ref. [32] and additional uncertainty
introduced by our renormalization process. In this case, the Kikstra
resonance strengths have been reduced by a factor of 1.28 as described
in the text. The new normalization points are shown by three vertical
dashed lines. Although there is still a systematic disagreement
between data sets, it is now within the 2σ uncertainties.

the highest density posterior interval (HDPI) [34] for these
distributions provides a good representation of the data. An
example of this procedure can be seen in Fig. 3. First,
probability density distributions for each reported resonance
strength are constructed. These probabilities are expected to
follow a log-normal distribution as discussed in Sec. II B. The
individual probability density distributions are shown in the top
panels of Fig. 3 for two resonance strengths at Ec.m.

r = 763 keV
and Ec.m.

r = 1537 keV. The reported strengths for the Ec.m.
r =

763 keV resonance contain some disagreement in Ref. [32],
while for the Ec.m.

r = 1537 keV resonance there is good
agreement between the reported values. Once constructed, the
probability distributions are summed incoherently, as shown
by the solid line in the lower panels. A bimodal distribution
is clearly evident for the Ec.m.

r = 763 keV resonance. Finally,
the HDPI is computed, which consists of finding the smallest
range of values that contain a given integrated probability. This
procedure naturally includes the mode (highest point) of the
distribution. Figure 3 shows two such regions in dark and light
blue (grey in the print version) for a 68% and 95% coverage,
respectively.

Once a 68% uncertainty range has been computed, it must
be converted into a representation that is used as input in
the RATESMC Monte Carlo reaction rate code. Input to the
code is assumed to be expectation values and variances. To
compute those values, we first assume that the HDPI describes
the 1σ uncertainties of a log-normal distribution. Given that
assumption, the log-normal location and shape parameters, μ
and σ can be calculated from the low (xlow) and high (xhigh)
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FIG. 3. Example probability density functions for two exper-
imentally measured resonances (at Ec.m.

r = 763 keV and Ec.m.
r =

1537 keV) as and reported in Ref. [30] (“LEE66”), Ref. [31]
(“CHE80”), and Ref. [32] (“KIK90”), respectively. By summing
the probability density functions incoherently, the HDPI Bayesian
method can be utilized to summarize our confidence in the experimen-
tal results. The dark and light shaded regions correspond to the 68%
and 95% confidence intervals. The resulting log-normal probability
density approximation is shown in the lower panels as a black, dashed
line. See text for more detail.

interval values using

μ = ln
√

xlowxhigh, σ = ln

√
xhigh

xlow
. (13)

The expectation value and variance can be calculated using
Eq. (7).

It should be stressed that this methodology is equivalent
to calculating a weighted mean when measurements are in
agreement, but also accounts for unknown systematic effects.
These expectation and variance values are calculated for
every resonance measured by Refs. [30,31], and [32], and are
summarized in Table IV.

C. Indirectly measured information

Although direct measurements of resonance strengths have
been performed, the resonances have all been above the
effective stellar burning range of Ec.m.

r = 200–600 keV. To
supplement the direct data, partial width and spin-parity
assignments from other, indirect, measurements can be used.
Proton widths in the astrophysically important range have been
determined though the (d, n) reaction by Fuchs et al. [28], and
the (3He, d ) reaction by Erskine et al. [24], Seth et al. [25], and
Cage et al. [27]. Of these, Ref. [27] employed a more advanced
finite range modified distorted wave Born approximation, so
we consider it to supersede the other studies here. However, it
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TABLE II. Properties of unobserved resonances in 39K(p, γ )40Ca and 39K(p, α)36Ar. For these resonances, only upper limits of the
resonance strength can be derived.

Ex (keV) Ec.m.
r (keV) J π �p,UL �α

8338.0 (3) 9.6 (3) (2+, 3, 4) 2.47×10−72

8358.9 (3) 30.5 (6) (0, 1, 2)− 5.88×10−36

8364(5) 36 (5) (3− to 7−) 4.29×10−33

8373.94 (15) 45.50 (15) 4+ 3.05×10−29 4.5(25)×10−9

8424.81 (11) 96.37 (11) 2− 2.94×10−16

8439.0 (5) 110.6 (5) 0+ 1.23×10−15

8484.02 (13) 155.58 (13) (1−, 2−, 3−) 3.88×10−10

8540(4) 212 (4) 1, 2+ 3.16×10−7

8551.1(7) 222.7 (7) 5− 6.00×10−10

8578.80 (9) 250.36 (9) 2+ 8.16×10−6

8587 (2) 259 (2) (2+, 3) 1.47×10−5

8633 (6) 305 (6) 2+ 2.57×10−4 6.3(31)×10−6

8665.3(8) 336.9 (8) 1− 3.66×10−4

8678.29 (10) 349.85 (10) 4+ 5.86×10−5

8701 (1) 372.6 (10) (6−) 5.11×10−12

8717 (8) 389 (8) 0 1.18×10−2

8748.22 (9) 419.78 (9) 2+ 3.62×10−2

8764.18 (6) 435.74 (6) 3− 1.72×10−2

8810 (7) 482 (7) 2+ 2.37×10−1 8.6(43)×10−5

8850.6(9) 522.2 (9) 6−, 7−, 8− 1.43×10−5

8909.0 (9) 580.6 (9) 0 2.48×100

8934.81 (7) 606.37 (7) 2+ 4.14×100 5.5(23)×10−4

8935.8(9) 607.4 (9) (7+) 1.09×10−4

8938.4(9) 610.0 (9) 0+ 1.28×10−1

8978 (6) 650 (6) 5+, 6+, 7+ 1.17×10−2

9162.1(11) 833.7(11) 2+ 1.25×102 2.5(13)×10−2

9246.0(12) 917.6(12) (7)− 2.61×10−4 2.6(13)×10−5

9362.54(6) 1034.10(6) 3− 2.94×102 2.2(11)×10−2

9499.9(15) 1171.5(15) 2+ 2.54×103 1.07(53)×10−1

9668.71(8) 1340.27(8) 3− 2.47×103 5.1(25)×10−1

9869.3(4) 1540.9(4) 1+, 2+ 1.86×104 2.1(11)×100

9954.00(9) 1625.56(9) 4+ 1.52×103 7.5(38)×10−1

10058.0(3) 1729.6(3) (1−, 2+) 3.84×104 9.3(46)×100

10130.70 (19) 1802.26(19) 5− 2.58×102 4.0(20)×10−1

10318.8(4) 1990.36(40) 8+ 1.96×10−2 2.3(12)×10−2

should be noted that their results are in good agreement with
the (d, n) measurement of Ref. [28].

Alpha-particle widths are obtained from 36Ar(6Li, d)40Ca
[29]. However, the energy levels and spin-parities extracted
in that work do not clearly align with the levels observed
in proton transfer. Thus they cannot be applied reliably to
calculating reaction rates for the 39K(p, γ )40Ca reaction and
are ignored for that reaction rate calculation [they are expected
to have a negligible effect on the 39K(p, γ )40Ca rate at lower
temperatures].

For resonances with no known proton partial width, upper
limits are used as discussed in Sec. II B. They are listed in
Table II. We assume upper limits on spectroscopic factors
of S = 1, so the quantity C2S in Eq. (5) is assumed not to
exceed C2S = 0.5. For the calculations presented here, we
only consider upper limit resonances below the lowest directly

measured resonance at Ec.m.
r = 606 keV. Above this value, we

assume that the rate is dominated by resonances that have been
measured.

In order to calculate proton reduced widths given the ex-
pected Porter-Thomas probability density function described
in Sec. II B, the spin-parity of the state should be constrained.
In the excitation energy region between the proton threshold at
Ex = 8328 keV and the lowest directly measured resonance at
Ex = 8935 keV, 21 states have unknown proton widths. Their
spins have been determined through decay scheme analysis
and (6Li, d ) α-particle transfer measurements. We adopt the
values evaluated in Ref. [33].

D. Information on specific 40Ca levels

Three states below the lowest measured resonance at
Ec.m.

r = 606 keV in 39K(p, γ )40Ca have inferred proton partial

025802-6



REACTION RATES FOR THE 39K(p, γ ) … PHYSICAL REVIEW C 98, 025802 (2018)

TABLE III. Monte Carlo reaction rates for the 39K(p, γ )40Ca reaction. Shown are the low, median, and high rates, corresponding to the
16th, 50th, and 84th percentiles of the Monte Carlo probability density distributions. Also shown are the parameters (μ and σ ) of the log-normal
approximation to the actual Monte Carlo probability density, as well as the Anderson-Darling statistic (A-D). See Ref. [16] for details.

T (GK) Low rate Median rate High rate log-normal μ log-normal σ A-D

0.010 5.19×10−48 4.23×10−46 7.93×10−45 −1.052×102 3.97×100 1.25×102

0.011 2.44×10−46 1.79×10−44 3.51×10−43 −1.014×102 3.99×100 1.26×102

0.012 5.73×10−45 4.47×10−43 9.51×10−42 −9.819×101 4.02×100 1.14×102

0.013 7.85×10−44 6.72×10−42 1.72×10−40 −9.540×101 4.03×100 9.22×101

0.014 7.52×10−43 7.24×10−41 2.20×10−39 −9.293×101 3.94×100 6.31×101

0.015 6.35×10−42 5.72×10−40 2.09×10−38 −9.065×101 3.69×100 3.99×101

0.016 1.07×10−40 3.67×10−39 1.54×10−37 −8.841×101 3.25×100 6.49×101

0.018 6.77×10−38 2.72×10−37 4.37×10−36 −8.369×101 2.07×100 1.95×102

0.020 1.95×10−35 5.30×10−35 1.74×10−34 −7.881×101 1.19×100 4.59×101

0.025 7.76×10−31 1.92×10−30 4.84×10−30 −6.842×101 9.21×10−1 1.68×10−1

0.030 1.02×10−27 2.52×10−27 6.36×10−27 −6.124×101 9.22×10−1 1.57×10−1

0.040 8.00×10−24 1.95×10−23 4.79×10−23 −5.229×101 9.04×10−1 1.33×10−1

0.050 1.80×10−21 4.79×10−21 1.42×10−20 −4.671×101 1.10×100 3.12×101

0.060 7.52×10−20 2.32×10−19 1.32×10−18 −4.262×101 1.59×100 1.73×102

0.070 1.57×10−18 6.02×10−18 8.79×10−17 −3.914×101 1.99×100 1.87×102

0.080 3.30×10−17 2.03×10−16 2.76×10−15 −3.581×101 2.08×100 1.29×102

0.090 7.13×10−16 4.78×10−15 5.02×10−14 −3.277×101 1.96×100 9.26×101

0.100 1.11×10−14 6.72×10−14 5.97×10−13 −3.016×101 1.83×100 8.36×101

0.110 1.23×10−13 6.34×10−13 5.14×10−12 −2.790×101 1.71×100 9.29×101

0.120 1.11×10−12 4.43×10−12 3.28×10−11 −2.590×101 1.58×100 1.16×102

0.130 8.25×10−12 2.52×10−11 1.69×10−10 −2.410×101 1.44×100 1.46×102

0.140 5.05×10−11 1.26×10−10 7.20×10−10 −2.248×101 1.31×100 1.73×102

0.150 2.51×10−10 5.59×10−10 2.65×10−9 −2.101×101 1.19×100 1.89×102

0.160 1.05×10−9 2.18×10−9 8.61×10−9 −1.969×101 1.08×100 1.90×102

0.180 1.21×10−8 2.31×10−8 6.84×10−8 −1.740×101 9.19×10−1 1.61×102

0.200 8.72×10−8 1.59×10−7 4.00×10−7 −1.551×101 8.19×10−1 1.25×102

0.250 3.09×10−6 5.56×10−6 1.24×10−5 −1.199×101 7.43×10−1 8.15×101

0.300 3.49×10−5 6.29×10−5 1.50×10−4 −9.542×100 7.75×10−1 1.03×102

0.350 2.23×10−4 4.00×10−4 1.03×10−3 −7.664×100 8.05×10−1 1.49×102

0.400 1.09×10−3 1.85×10−3 4.90×10−3 −6.100×100 7.88×10−1 2.19×102

0.450 4.56×10−3 7.04×10−3 1.81×10−2 −4.744×100 7.32×10−1 3.00×102

0.500 1.61×10−2 2.28×10−2 5.45×10−2 −3.564×100 6.64×10−1 3.59×102

0.600 1.20×10−1 1.59×10−1 3.17×10−1 −1.665×100 5.46×10−1 3.92×102

0.700 5.32×10−1 6.85×10−1 1.20×100 −2.407×10−1 4.65×10−1 3.64×102

0.800 1.65×100 2.10×100 3.42×100 8.539×10−1 4.14×10−1 3.21×102

0.900 4.03×100 5.07×100 7.86×100 1.720×100 3.79×10−1 2.85×102

1.000 8.29×100 1.03×101 1.55×101 2.423×100 3.54×10−1 2.60×102

1.250 3.18×101 3.86×101 5.51×101 3.728×100 3.08×10−1 2.30×102

1.500 8.22×101 9.82×101 1.34×102 4.648×100 2.72×10−1 2.18×102

1.750 1.70×102 1.99×102 2.60×102 5.345×100 2.40×10−1 2.05×102

2.000 3.03×102 3.50×102 4.40×102 5.899×100 2.13×10−1 1.87×102

2.500 7.18×102 8.13×102 9.66×102 6.728×100 1.71×10−1 1.41×102

3.000 1.34×103 1.50×103 1.72×103 7.329×100 1.42×10−1 9.97×101

3.500 2.17×103 2.40×103 2.70×103 7.793×100 1.22×10−1 6.77×101

4.000 3.19×103 3.50×103 3.88×103 8.168×100 1.07×10−1 4.28×101

5.000 5.67×103 6.19×103 6.78×103 8.734×100 9.35×10−2 1.41×101

6.000 8.47×103 9.22×103 1.01×104 9.133×100 9.15×10−2 6.29×100

7.000 1.12×104 1.23×104 1.35×104 9.420×100 9.43×10−2 5.26×100

8.000 1.38×104 1.51×104 1.67×104 9.628×100 9.82×10−2 5.59×100

9.000 1.60×104 1.76×104 1.96×104 9.781×100 1.02×10−1 6.07×100

10.000 1.78×104 1.97×104 2.20×104 9.892×100 1.05×10−1 4.63×100
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widths from proton transfer reactions. Four have α-particle
partial widths assigned from (6Li, d ) measurements. Here, we
will address these states individually.

(1) Ex = 8373.94 keV (Ec.m.
r = 46 keV, Jπ = 4+): The

spin-parity assignment of this state is based on (see
Ref. [33] and references therein) inelastic α-particle
scattering, 42Ca(p, t)40Ca, and 36Ar(6Li, d )30Ca. The
latter study also assigned an α-particle spectroscopic
factor of Sα = 0.043.

(2) Ex = 8424.81 keV (Ec.m.
r = 96 keV, Jπ = 2−): This

state cannot contribute to the 39K(p, α)36Ar reaction
rate due to its unnatural parity. Its spin-parity comes
from 41Ca(3He, α)40Ca, inelastic proton scattering,
39K(d, n)40Ca, and 39K(3He, d )40Ca. A proton spec-
troscopic factor of Sp = 0.56 has been determined [27].

(3) Ex = 8551.1 keV (Ec.m.
r = 223 keV, Jπ = 5−): The

spin-parity of the Ex = 8551 keV state is well estab-
lished [33]. A large proton spectroscopic factor has
been obtained in multiple 39K(3He, d )40Ca measure-
ments. Here, we adopt the coupled-channel result of
Sp = 0.84 from Ref. [27]. The α-particle spectroscopic
factor from Ref. [29] is Sα = 0.043.

(4) Ex = 8633 keV (Ec.m.
r = 305 keV, Jπ = 2+): A Jπ =

2+ state at Ex = 8600 keV was observed in
36Ar(6Li, d )30Ca by Ref. [29]. We assign this to the
state observed in inelastic proton scattering at Ex =
8633 keV. However, their resolution and statistics
could lead to an incorrect assignment. There are two
other Jπ = 2+ in the vicinity at Ex = 8587 keV and
Ex = 8578 keV. This state could also correspond to
the Jπ = 5− state at Ex = 8551 keV. We note that no
Jπ = 0+ state was observed in this region by Ref. [29],
as expected from the average level spacing in Ref. [35].
Careful inspection of the angular distributions pre-
sented in Refs. [29] does not rule out a Jπ = 0+
assignment for this state. Clearly, higher resolution
studies are required to precisely identify α-decaying
states using α-particle transfer.

(5) Ex = 8665 keV (Ec.m.
r = 337 keV, Jπ = 1−): This

state has been populated by inelastic proton scatter-
ing and the 39K(d, n)40Ca reaction, but not by the
39K(3He, d )40Ca reaction, where it is obscured by
background from the 16O(3He, d )17F reaction in the
target. The proton spectroscopic factor is Sp = 0.19.

(6) Ex = 8810 keV (Ec.m.
r = 482 keV, Jπ = 2+): A Jπ =

2+ state was populated by the 36Ar(6Li, d )30Ca reac-
tion in Ref. [29] at Ex = 8780 keV. The closest known
Jπ = 2+ state to this is at Ex = 8810 keV and has
been observed in inelastic α-particle scattering [36] and
inelastic proton scattering. It has an inferred α-particle
spectroscopic factor of Sα = 0.11.

IV. REACTION RATES FOR 39K( p, γ )40Ca

Using the information detailed in Sec. III, rates for the
39K(p, γ )40Ca reaction are calculated using the Monte Carlo
method outlined in Sec. II. Those rates are shown in Table III.

FIG. 4. Reaction rate probability densities for the 39K(p, γ )40Ca
reaction. The reaction rate has been normalized to the median,
recommended rate. Hence the thick and thin lines correspond to the
1σ and 2σ uncertainty bands. The color scale highlights that the rate
probability distribution at each temperature is continuous with no
absolute upper or lower limit. The solid green (grey) line represents
the most recent calculation of Ref. [31].

The 39K(p, γ )40Ca reaction rate is shown as a contour plot
in Fig. 4. The contour is normalized to the recommended
(median) rate at each temperature, so this figure serves to
illustrate the temperature-dependent uncertainty in the reaction
rate. Darker (red) colors represent higher probability values
close to the recommended rate, with lighter (yellow) colors
showing lower probability values. Clearly there is no sharp
cutoff of the reaction rate probability distribution. For con-
venience, the 68% and 95% uncertainty bands are shown
in thick and thin black lines, respectively. At 100 MK, for
example, the 95% uncertainties span three orders of magnitude.
The reaction rate has previously been computed in Ref. [31]
for T = 1–9 GK. Their results are clearly lower than our
calculated rates, as shown by the solid green (grey in print
version) line in Fig. 4. This disagreement arises from new
experimental information in Ref. [32].

To identify the resonances dominating the reaction rate at a
particular energy, a contribution plot for the 39K(p, γ )40Ca
reaction is shown in Fig. 5. Inspection of that figure indi-
cates that the large rate uncertainties at 100 MK arise from
the resonance at Ec.m.

r = 223 keV which has experimentally
determined proton and α-particle widths, as well as upper
limit resonances at Ec.m.

r = 212 keV, Ec.m.
r = 250 keV, and

Ec.m.
r = 259 keV. The Ec.m.

r = 337 keV resonance dominates
the reaction rate between about 100 and 500 MK. Clearly these
resonances should be the focus of any future experimental
investigation.
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FIG. 5. Fractional resonance contributions to the 39K(p, γ )40Ca
reaction rate as a function of energy. A value of unity indicates that
a particular resonance is responsible for 100% of the reaction rate at
that temperature. The finite width of resonance contributions reflects
their uncertainty calculated with the Monte Carlo method. To improve
clarity, upper limit resonance contributions are shown by dashed
lines at their 84% “high” contribution value. The solid line at high
temperatures represents the summed contribution of all resonances
that, individually, contribute less than 20% to the total reaction rate.

V. ASTROPHYSICAL IMPLICATIONS

To investigate the astrophysical implications of these reac-
tion rates, we performed a nucleosynthesis calculation based
on the findings of Dermigny and Iliadis [9]. Using a single-zone
nucleosynthesis model, they found the temperature and density
conditions that reproduced the observed abundances of all
elements up to vanadium in the globular cluster NGC 2419.
Their findings indicate that the observations could be matched
between T = 100 MK, ρ = 108 g/cm3 and T = 200 MK,
ρ = 10−4 g/cm3. From these bounds, a representative envi-
ronment with temperature and density of T = 170 MK and
ρ = 100 g/cm3 was selected to test the updated rates and
their uncertainties. Using initial abundances from Ref. [8], the
network was run until the mass fraction of hydrogen fell to
X(H)f = 0.5.

Holding these parameters constant, a Monte Carlo study of
the reaction rate uncertainties was carried out using STARLIB
v6.2 [37]. The STARLIB library2 incorporates the probabilistic
rate formalism described in Sec. II B by giving the median
rate and factor uncertainty (eσ ) over a grid of temperatures.
Following the methods of Ref. [38], these parameters can be
used to draw samples from the rates according to

x(T ) = xmed × f.u.p, (14)

where p is the so called rate variation factor. During each run
of the network, a value pi is drawn from a standard normal dis-

2The current version of STARLIB is available at
https://github.com/Starlib/Rate-Library.
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FIG. 6. Monte Carlo nucleosynthesis results at T = 170 MK and
ρ = 100 g/cm3. The upper row represents results for the STARLIB
reaction rates, while the lower row contains those obtained here by
fully evaluating all experimental information for the 39K(p, γ )40Ca
and 39K(p, α)36Ar reaction. The increased correlation and importance
of 39K(p, γ )40Ca on potassium production is seen in the two right-
most plots.

tribution for each nucleus. Therefore, rates whose uncertainty
strongly influences the production of potassium will have a
correlation between pi and the final abundances of potassium.
Following the suggestions of Ref. [38], the degree of correla-
tion is measured using Spearman’s rank correlation coefficient.

The network was run 2000 times with all rates being simul-
taneously sampled from Eq. (14). A comparison was made by
substituting the reevaluated 39K(p, γ )40Ca reaction rate and
its reverse rate into STARLIB. The correlations between the
final 39K mass fraction and each reaction in the network were
analyzed. It was found that only three reactions in the network
have an appreciable correlation with the final 39K abundance.
As seen in Fig. 6, the original STARLIB rates display large
correlations for both 38Ar(p, γ )39K and 37Ar(p, γ )38K, but the
dependence on 39K(p, γ )40Ca is noticeably weaker. However,
for the new rates all three of these reactions display clear, strong
correlations, and the production of 39K is critically sensitive to
the rate of 39K(p, γ )40Ca.

An additional step is to assess how these new rates influence
the predicted elemental potassium abundance. Spectroscopic
observations are sensitive only to elemental potassium, so its
production is a key constraint on any future theoretical work.
Therefore, the isotopes 39K, the long lived 40K, and 41K all
contribute to the final observed potassium abundance, [K/Fe],
as do the decays of the radioactive nuclei 39Cl, 39Ar, 41Ar, 39Ca,
41Ca, and 41Sc. Using the potassium abundance determination
from each individual calculation, a kernel density estimate
(KDE) [39] was constructed. In addition to the updated and
original STARLIB rates, the commonly used REACLIB library
rates were used [40]. The REACLIB rates cannot be used in the
same Monte Carlo framework because they do not represent
a complete probability distribution, so their recommended
values were used to provide a single comparison value for
the potassium abundance. The predicted observable potassium
abundance for each of these cases is shown in Fig. 7. The
value [K/Fe] was found to vary up to ∼2 orders of magnitude
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FIG. 7. Final abundances for potassium obtained for the Monte
Carlo nucleosynthesis study discussed in the text. A KDE was found
for the STARLIB rates and our reevaluated rates. The REACLIB rate
does not define a probability distribution, so its predicated potassium
abundance is shown by the solid black line.

for both Monte Carlo rates; however, with the updated rates
the KDE is not as sharply peaked, and has a greater density
toward lower values. This effect is due to the increased
uncertainty for the new rates, which contributes to a wider
spread in the predicted potassium production. This reinforces
the conclusions reached in the correlation study of Ref. [9]: the
destruction of potassium via 39K(p, γ )40Ca is a crucial process
in stellar burning environments, and measurements aimed at
reducing its uncertainty are a necessary step in the study of the
Mg-K anticorrelation in NGC 2419.

VI. CONCLUSIONS

The 39K(p, γ )40Ca reaction was found previously to affect
potassium synthesis in stellar environments, leading to the
Mg-K anticorrelation in the globular cluster NGC 2419 [9].
That finding was based on estimates of the current experimental
uncertainty of the reaction cross sections, which spurred a
thorough re-investigation of the current experimental picture.

By considering current experimental measurements of nar-
row resonances and including full characterization of upper

limits on unobserved resonance strengths, we present here
updated estimates of the rate of the 39K(p, γ )40Ca reaction.
The former reaction rate uncertainties also include ambigui-
ties between experimentally determined resonance strengths
reported in Refs. [30,31], and [32]. Correlations between
measurements are also taken into account. The results of this
investigation show that the uncertainties in the 39K(p, γ )40Ca
reaction are larger than previously estimated.

The nucleosynthesis ramifications of these findings are also
presented by considering an astrophysical scenario within the
bounds established in Ref. [9]. We find that the increased
uncertainty in the 39K(p, γ )40Ca reaction rate establishes
a clear correlation between it and the final abundance of
39K. Furthermore, the predicted uncertainty in the elemental
abundance of potassium is broadened towards lower values.
Clearly, the 39K(p, γ )40Ca reaction must be better measured
if astrophysical scenarios explaining the Mg-K anticorrelation
are to be constrained.
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APPENDIX: DIRECTLY MEASURED
RESONANCE STRENGTHS

Direct resonance strength measurements have been per-
formed in the astrophysical energy region of interest. However,
as outlined in Sec. III B, several of these measurements are
in disagreement, so a Bayesian maximum density posterior
interval (MDPI) method is employed here to summarize our
knowledge of resonance strengths for Monte Carlo reaction
rate calculations. The expectation value and variance of each
resonance strength obtained using this method are listed in
Table IV.

TABLE IV. Directly measured resonances from Kikstra et al. [32], Cheng et al. [31], and Leenhouts et al. [30]. The combined expectation
value and variance calculated using the method outlined in Sec. III B are shown in the fifth and sixth columns.

Ec.m.
r (keV) Literature ωγ (eV) Evaluated ωγ (eV)

Ref. [32] Ref. [31] Ref. [30] Expect. val. (eV)
√

Var. (eV)

606.41 2.46(50)×10−2 2.32×10−2 4.86×10−3

666.07 3.85(8)×10−2 3.73×10−2 7.27×10−3

763.26 6.58(14)×10−2 1.38(41)×10−2 1.25(50)×10−2 2.78×10−2 4.79×10−2

807.22 1.36(25)×10−1 4.00(12)×10−2 2.5(10)×10−2 6.15×10−2 1.12×10−1

881.31 8.34(20)×10−2 7.85×10−2 1.93×10−2

898.27 5.91(14)×10−2 5.60×10−2 1.33×10−2

1034.06 8.28(21)×10−2 1.87(56)×10−2 2.5(10)×10−2 3.26×10−2 3.99×10−2

1049.36 4.58(12)×10−2 6.25(25)×10−3 2.67×10−2 6.77×10−2

1059.79 4.94(12)×10−2 1.25(50)×10−2 2.70×10−2 3.70×10−2

1067.30 1.70(50)×10−2 1.25(50)×10−2 1.32×10−2 5.67×10−3

1076.46 6.77(18)×10−2 7.25(22)×10−2 8.62(34)×10−2 6.75×10−2 2.24×10−2
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TABLE IV. (Continued.)

Ec.m.
r (keV) Literature ωγ (eV) Evaluated ωγ (eV)

Ref. [32] Ref. [31] Ref. [30] Expect. val. (eV)
√

Var. (eV)

1077.92 7.52(12)×10−2 7.33×10−2 1.22×10−2

1083.97 3.37(9)×10−2 3.12×10−2 8.40×10−3

1090.40 1.12(25)×10−1 4.50(14)×10−2 5.75(23)×10−2 5.84×10−2 4.14×10−2

1100.63 3.71(25)×10−2 2.38(95)×10−2 2.28×10−2 1.37×10−2

1104.05 4.82(14)×10−1 2.00(25)×10−1 2.5(10)×10−1 2.60×10−1 1.38×10−1

1125.49 1.46(38)×10−1 5.87(18)×10−2 1.04(42)×10−1 8.35×10−2 5.78×10−2

1171.60 7.48(21)×10−2 8.75(26)×10−3 2.5(10)×10−2 2.99×10−2 5.55×10−2

1207.96 1.92(50)×10−1 5.87(18)×10−2 1.04(42)×10−1 9.40×10−2 8.25×10−2

1209.42 4.18(12)×10−2 6.00(18)×10−2 4.44×10−2 1.74×10−2

1274.54 4.04(12)×10−1 2.12(42)×10−1 1.15(46)×10−1 1.72×10−1 1.72×10−1

1276.19 8.41(25)×10−1 5.50(11)×10−1 6.37(26)×10−1 5.95×10−1 2.16×10−1

1312.46 8.26(25)×10−1 5.12(6)×10−1 6.37(26)×10−1 5.84×10−1 1.99×10−1

1327.18 3.61(11)×10−2 3.75(15)×10−2 3.22×10−2 1.23×10−2

1333.90 9.81(25)×10−2 9.19×10−2 2.40×10−2

1340.24 3.91(12)×10−1 3.00(60)×10−1 3.75(15)×10−1 3.13×10−1 1.03×10−1

1451.07 3.40(11)×10−1 2.25(45)×10−1 3.0(12)×10−1 2.43×10−1 9.18×10−2

1456.82 1.54(50)×10−1 1.13(34)×10−1 1.04(42)×10−1 1.08×10−1 4.54×10−2

1473.78 5.66(19)×10−2 2.5(10)×10−2 3.27×10−2 2.55×10−2

1482.66 4.11(14)×10−2 2.5(10)×10−2 2.78×10−2 1.51×10−2

1501.08 1.21(38)×10−1 6.38(25)×10−2 7.50×10−2 4.90×10−2

1506.64 9.05(38)×10−2 3.75(15)×10−2 4.90×10−2 4.04×10−2

1526.13 1.64(50)×10−1 5.00(20)×10−2 8.90×10−2 9.97×10−2

1531.30 7.46(25)×10−2 6.61×10−2 2.37×10−2

1536.76 8.93(25)×10−1 5.62(11)×10−1 6.88(28)×10−1 6.21×10−1 2.37×10−1

1540.85 4.60(15)×10−1 2.63(52)×10−1 3.75(15)×10−1 3.07×10−1 1.31×10−1

1570.19 8.80(25)×10−2 7.98×10−2 2.40×10−2

1593.00 6.25(21)×10−2 3.75(15)×10−2 4.30×10−2 2.30×10−2

1611.33 1.87(62)×10−2 1.69×10−2 5.89×10−3

1625.56 2.29(75)×10−1 8.62(26)×10−2 3.75(15)×10−1 1.73×10−1 1.81×10−1

1648.76 1.56(50)×10−1 1.40×10−1 4.77×10−2

1665.23 7.05(25)×10−2 6.17×10−2 2.35×10−2

1712.12 6.92(25)×10−2 1.63(65)×10−1 8.92×10−2 6.79×10−2

1720.90 6.21(24)×10−1 2.37(48)×10−1 2.37(95)×10−1 2.54×10−1 1.78×10−1

1729.57 2.34(88)×10−2 2.05×10−2 8.22×10−3

1752.28 1.23(50)×10−1 1.04×10−1 4.67×10−2

1802.29 1.87(75)×10−1 6.88(28)×10−2 9.91×10−2 9.00×10−2

1870.72 7.82(25)×10−2 7.01×10−2 2.37×10−2

1876.67 3.0(11)×10−2 2.58×10−2 1.06×10−2

1882.13 1.82(75)×10−1 7.50(30)×10−2 9.57×10−2 8.22×10−2

1904.35 1.67(62)×10−1 7.00(21)×10−2 1.21(48)×10−1 9.57×10−2 5.99×10−2

1934.08 1.66(62)×10−1 1.50(30)×10−1 1.38(55)×10−1 1.37×10−1 4.67×10−2

1939.25 2.4(10)×10−2 2.08×10−2 9.30×10−3

1946.36 3.55(14)×10−2 3.07×10−2 1.29×10−2

1949.48 8.87(38)×10−2 7.56×10−2 3.48×10−2

1956.60 8.85(38)×10−2 7.39×10−2 3.50×10−2

1990.33 1.79(12)×100 1.79(12)×100 1.79(72)×100 1.77×100 2.06×10−1

2004.17 9.95(38)×10−2 8.76×10−2 3.53×10−2

2030.20 7.40(25)×10−2 6.73×10−2 2.36×10−2

2033.02 2.6(10)×10−1 2.23×10−1 9.36×10−2

2047.06 1.47(62)×10−1 1.25×10−1 5.87×10−2

2055.44 2.5(10)×10−1 2.11×10−1 9.36×10−2
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TABLE IV. (Continued.)

Ec.m.
r (keV) Literature ωγ (eV) Evaluated ωγ (eV)

Ref. [32] Ref. [31] Ref. [30] Expect. val. (eV)
√

Var. (eV)

2086.64 7.02(24)×10−1 5.00(20)×10−1 5.16×10−1 2.42×10−1

2092.29 9.66(38)×10−2 8.37×10−2 3.52×10−2

2102.14 3.73(12)×10−1 3.30×10−1 1.19×10−1

2112.96 3.0(10)×10−1 2.67×10−1 9.49×10−2

2115.49 2.04(62)×10−1 1.83×10−1 5.95×10−2

2141.52 7.13(25)×10−2 6.32×10−2 2.35×10−2

2150.29 1.19(50)×10−1 9.97×10−2 4.66×10−2

2174.66 1.29(50)×10−1 1.11×10−1 4.71×10−2

2186.36 2.9(13)×10−1 2.42×10−1 1.18×10−1

2199.32 4.32(19)×10−1 1.06(32)×10−1 1.50(60)×10−1 1.54×10−1 1.37×10−1

2211.61 1.16(38)×10−1 1.05×10−1 3.55×10−2

2223.79 2.09(87)×10−1 1.78×10−1 8.09×10−2

2304.31 2.4(10)×10−1 2.06×10−1 9.20×10−2

2310.64 1.24(50)×100 6.00(12)×10−1 4.63(18)×10−1 5.63×10−1 3.57×10−1

2317.96 1.69(75)×10−1 1.43×10−1 6.98×10−2

2324.78 8.99(38)×10−1 1.75(35)×10−1 1.38(55)×10−1 2.60×10−1 4.17×10−1

2341.94 2.01(88)×100 5.75(12)×10−1 9.38(38)×10−1 8.51×10−1 5.95×10−1

2345.25 5.59(25)×10−1 8.13(24)×10−2 8.13(32)×10−2 1.49×10−1 2.54×10−1

2368.55 3.77(18)×10−1 1.50(60)×10−1 1.91×10−1 1.71×10−1

2371.08 1.11(50)×100 5.00(10)×10−1 4.12(16)×10−1 4.58×10−1 3.02×10−1

2392.33 2.31(87)×10−1 2.01×10−1 8.21×10−2

2409.29 5.04(22)×10−1 1.38(55)×10−1 2.45×10−1 3.11×10−1

2419.33 1.64(75)×100 4.87(10)×10−1 6.88(28)×10−1 6.63×10−1 4.49×10−1

2425.38 4.91(22)×10−1 4.04×10−1 2.09×10−1

2441.75 7.60(38)×10−1 6.18×10−1 3.43×10−1

2447.90 1.74(75)×100 1.63(32)×10−1 5.00(20)×10−1 5.46×10−1 9.17×10−1

2452.48 6.50(25)×10−1 5.58×10−1 2.34×10−1

2459.30 3.24(15)×10−1 2.65×10−1 1.39×10−1

2471.58 1.19(50)×10−1 1.02×10−1 4.61×10−2

2485.23 1.29(6)×100 1.28×100 6.18×10−2

2501.61 2.9(13)×10−1 2.44×10−1 1.15×10−1

2520.03 4.68(21)×10−1 3.83×10−1 1.97×10−1

2540.40 5.50(24)×10−1 4.61×10−1 2.22×10−1

2581.54 7.32(38)×10−1 2.5(10)×10−1 3.48×10−1 3.49×10−1

2592.65 9.38(50)×10−1 7.00(28)×10−1 6.40×10−1 3.55×10−1

2606.01 5.19(25)×10−1 4.30×10−1 2.29×10−1

2623.07 1.65(50)×100 1.49×100 4.75×10−1

2627.55 4.13(20)×10−1 3.40×10−1 1.82×10−1

2647.83 9.24(38)×10−1 8.03×10−1 3.47×10−1

2659.52 8.19(38)×10−1 6.76×10−1 3.49×10−1

2666.25 1.12(50)×100 9.48×10−1 4.63×10−1

2673.95 3.0(15)×10−1 2.48×10−1 1.36×10−1

2682.53 1.42(62)×100 1.19×100 5.81×10−1

2695.40 6.08(25)×10−1 5.23×10−1 2.33×10−1

2713.53 6.06(25)×10−1 5.13×10−1 2.33×10−1

2742.19 3.1(15)×100 6.37(13)×10−1 6.37(26)×10−1 8.33×10−1 9.79×10−1

2788.68 4.95(25)×10−1 3.99×10−1 2.30×10−1

2798.72 5.93(25)×10−1 5.06×10−1 2.32×10−1

2836.84 2.0(10)×10−1 1.55×10−1 9.19×10−2
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