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Deep crustal heating by neutrinos from the surface of accreting neutron stars
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We present a new mechanism for deep crustal heating in accreting neutron stars. Charged pions (π+) are
produced in nuclear collisions on the neutron star surface during active accretion and upon decay they provide
a flux of neutrinos into the neutron star crust. For massive and/or compact neutron stars, neutrinos deposit
≈1–2 MeV of heat per accreted nucleon into the inner crust. The strength of neutrino heating is comparable to the
previously known sources of deep crustal heating, such as from pycnonuclear fusion reactions, and is relevant for
studies of cooling neutron stars. We model the thermal evolution of a transient neutron star in a low-mass x-ray
binary, and in the particular case of the neutron star MXB 1659-29 we show that additional deep crustal heating
requires a higher thermal conductivity for the neutron star inner crust. A better knowledge of pion-production
cross sections near threshold would improve the accuracy of our predictions.
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I. INTRODUCTION

Neutron stars in x-ray binaries accrete matter from their
companion stars. As matter is accreted by the star, the
crust is continually compressed and undergoes a series of
nonequilibrium nuclear reactions such as electron captures,
neutron emissions, and pycnonuclear fusion reactions that
release ≈1–2 MeV per accreted nucleon [1–5]. Energy release
mainly occurs in the inner crust at mass densities of about
1012–1013 g cm−3 and is referred to as deep crustal heating.
During an accretion outburst, deep crustal heating can bring
the entire crust out of thermal equilibrium with the core. When
accretion ends and the neutron star enters quiescence, crust
cooling powers an observable x-ray light curve [6–8]. Ther-
mal evolution models of accreting neutron stars that include
deep crustal heating successfully reproduce most observed
quiescent x-ray light curves [9]. The cooling light curves of
several sources, however, require an additional heat deposition
in the outer crust during outburst to reach observed quiescent
temperatures [10,11]. The source of extra heating remains
unknown, but must be comparable in strength to the heat
release from nonequilibrium nuclear reactions.
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Here we discuss a new source of heating in neutron
star crusts from the decay of charged pions on the neutron
star surface. The neutron star’s strong gravity accelerates
incoming particles to kinetic energies of several hundred MeV
per nucleon before they reach the neutron star surface. The
accreted matter, usually consisting of hydrogen or helium,
undergoes nuclear collisions with the nuclei on the neutron
star surface. Nuclear collisions produce pions, in particular π+,
that upon decay emit a flux of neutrinos. Approximately half
of these neutrinos carry their energy into the crust, where they
experience multiple scatterings and are eventually absorbed in
the inner crust. This neutrino heating provides an additional
source for deep crustal heating. In this work we present
the first calculations of deep crustal heating by neutrinos
from the decay of stopped pions on the surface of neutron
stars.

The paper is organized as follows. In Sec. II we develop
the formalism required to discuss the energy deposition by
neutrinos from the stopped pion decays. We will first briefly
review the main mechanism of deep crustal heating by neu-
trinos in Sec. II A. Following this discussion, in Sec. II B,
we review the main steps involved in calculating the energy
deposited from pion production on the surface of neutron stars.
We close this section by discussing in Sec. II C the approximate
location of the inner crust where neutrinos will deposit their
energies. We then proceed to Sec. III to display the results of
our calculations using various equations of state (EOS) as well
as pion production from three possible nuclear reactions. This
section ends with a discussion of the observational implications
of deep crustal heating in understanding cooling light curves
of neutron stars in x-ray transients. Finally, we offer our
conclusions in Sec. IV.
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II. FORMALISM

A. Main mechanism

Neutron stars in low-mass x-ray binaries typically accumu-
late hydrogen-rich or helium-rich matter from the surface of
their companions in an accretion disk, a rotating disk of matter
formed by accretion around the neutron star. The accumulated
matter is later accreted onto the neutron star surface during an
accretion outburst stage, which makes neutron stars as bright x-
ray sources. If the innermost stable orbit lies outside the neutron
star, or if the accretion disk is truncated by the magnetic field
of the star, the final trajectory of the accreted material can be
close to radial, and the matter arrives at the neutron star surface
with close to the free-fall velocity. For such quasispherical
flows most of the gravitational potential energy is retained
in the incoming particles in the form of the kinetic energy
that particles carry into the neutron star. During outburst, these
incoming particles collide with the nuclei on the neutron star
surface [12] and can produce pions if the particle’s kinetic
energy is above the pion production threshold of ≈290 MeV.
Neutral pions decay almost instantaneously via π0 → 2γ
releasing their energy at the surface. Neutrinos from the decay
of negative pions may be strongly suppressed because π− are
often absorbed, via strong interactions, before they can undergo
a weak decay. Positively charged pions slow down and stop
near the neutron star surface and decay into muons and muon
neutrinos through π+ → μ+νμ. This produces monoenergetic
muon neutrinos, νμ, of energy Eνμ

= 29.8 MeV. The antimuon
subsequently decays through μ+ → e+νeν̄μ on a muon-decay
time scale of τ = 2.2 μs, with a well-determined neutrino
energy spectrum [13]. Approximately half of the neutrinos
produced escape the neutron star and the other half move into
the crust carrying a total energy of

Qν ≈ 0.5
(
Eνμ

+ Eνe
+ Eν̄μ

)
Nπ+ = (50.4 MeV) Nπ+ (1)

per accreted nucleon, where Nπ+ is the total number of π+’s
produced per accreted nucleon. In addition to gravitational
acceleration, accreting particles may undergo electromagnetic
acceleration in the strong electric and magnetic fields that
are likely present. This could significantly increase pion and
neutrino production, but we will explore this in later work.

B. Pion production per accreted nucleon

We now calculate the number of charged pions produced
from in-falling matter. Assuming that the in-falling matter has
zero velocity at infinity (free-falling), we estimate the kinetic
energy T of the accreted matter at the surface of the neutron
star [12] using

T = m0c
2

(
1√

1 − RS/R
− 1

)
, (2)

where RS ≡ 2GM/c2 is the Schwarzschild radius, m0 is the
mass of the in-falling particle, and M and R are the neutron
star mass and radius, respectively. If the kinetic energy of
the incoming particles is sufficiently large, they will collide
with the nuclei on the surface of the neutron star and can
produce pions. The multiplicity of pion production, defined
as the number of pions produced per collision event, strongly
depends on the initial kinetic energy of the incoming particle as
well as on the type of the target nuclei. Here the target nuclei on

the surface of neutron stars could be composed of any mixtures
of light-to-medium nuclei. Since both incoming protons and
α particles are charged particles, before they undergo a hard
nuclear collision, they partially lose energy due to interaction
with atmospheric electrons. The energy loss of charged parti-
cles can be calculated using the Bethe-Bloch equation

−dE

dx
= K

Z2
p

β2

Zt

At

(
1

2
ln

2mec
2β2γ 2Tmax

I 2
− β2 − δ

2

)
, (3)

where K ≈ 0.307075 MeV mol−1 cm2, Zp is the charge
number of the incident particle (projectile), Zt is the atomic
number of the target, At is the atomic mass of the target in g
mol−1, β = v/c, γ = 1/

√
1 − β2 is the relativistic Lorentz

factor, I is the mean excitation energy, and δ is the density
effect correction to ionization energy loss, which is negligible
for energies under consideration. Here

Tmax = 2mec
2β2γ 2

1 + 2γme/m0 + (me/m0)2
, (4)

is the maximum kinetic energy, which can be imparted to a
free electron in a single collision. A complete description of
the electronic energy loss by heavy particles can be found in
chapter 32 of Ref. [14]. A similar study of the incident-beam
particles deceleration through repeated Coulomb scatters from
atmospheric electrons was also carried out in Ref. [12]. The
energy of the particle that undergoes a hard nuclear collision
is therefore

Ef (x) ≈ Ei(x) + λ
dE

dx
, (5)

where λ = 1/nσ is the strong interaction mean-free path, n is
the number density of scattering centers, and σ is the strong
collision cross section. Note that the energy loss dE

dx
depends

on the initial beam energy Ei(x) through Lorentz parameters.
Therefore, Eq. (5) takes an exact form if one replaces λ with
�x = λ/N , where N � 1, and solves the recurrent relation

E(x + �x) = E(x) + �x
dE

dx
, (6)

for all x values. The probability density function for the
interaction of a particle after traveling a distance x in the
medium is given by [15]

w(x) = 1

λ
e−x/λ. (7)

If the incident beam energy per nucleon during hard collision
E(x) is above the threshold energy of ≈290 MeV pions are
produced. The pion production multiplicity, μ(E) = σπ/σtot ,
depends greatly on the kinetic energy of the incident particles
as given by Eq. (6). Here σπ is the pion-production cross
section, whereas σtot is total reaction cross section. We discuss
μ(E) in Sec. III. Then the total number of pions produced per
in-falling particle can be calculated as

Nπ+ =
∫ xmax

0
μπ+ (E)w(x)dx, (8)

where xmax is the range, or the maximum possible distance
the incoming charged particle can penetrate the matter before
losing all of its kinetic energy through electromagnetic energy
loss.
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C. Transport optical depth and deep crustal heating

We want now to demonstrate a rough estimation of the
location in the crust where neutrinos deposit their energies.
The neutrinos moving into the neutron star crust “forget” their
original direction of motion after a succession of collisions and
having been carried a distance corresponding to their transport
mean-free path, which can be determined by the neutrino
transport optical depth

τ tr =
∫ l

0

(
σ tr

νiρi + σ tr
νnρn

)
dl′, (9)

where σ tr
νi (σ tr

νn) is the neutrino-ion (neutrino-free neutron)
transport cross section, nion = n/A is the ion number density
in the crust, A is the number of nucleons in the unit cell,
nn = Nfnion is the number density of free neutrons, and Nf

is the number of free neutrons in a unit cell. The transport
cross section is defined as

σ tr =
∫

d�
dσ

d�
(1 − cos θ ), (10)

with the free-space differential cross section for neutrino-
nucleon elastic scattering given by [16]

dσνn

d�
= G2

F E2
ν

4π2

[
C2

v (1 + cos θ ) + C2
a (3 − cos θ )

]
, (11)

where θ is the scattering angle, Eν is the incoming neutrino
energy, Cv is the vector coupling constant, and Ca is the axial
vector coupling constant. The neutrino-ion elastic scattering
differential cross section is

dσνi

d�
= G2

F E2
ν

4π2
(1 + cos θ )

Q2
w

4
F (Q2)2, (12)

where Qw = NQn
w + ZQ

p
w is the total weak charge of the ion

with Qn
w = −0.9878 and Q

p
w = 0.0721, F (Q2) is the ground-

state elastic form factor of the ions [17]

F (Q2) = 1

Qw

∫
d3r

sin (Qr )

Qr
[ρn(r ) − (1 − 4 sin2 θW)ρp(r )],

(13)

with Q2 = 2E2
ν (1 − cos θ ) being the four-momentum transfer

squared and θW is the Weinberg angle.
Notice that both σ tr

νi and σ tr
νn are functions of the neutrino

energy. The neutrino energy spectrum from stopped pions is
well known [13]. To determine the neutrino-ion and neutrino-
free neutron elastic scattering cross sections we use the root-
mean-square neutrino energies calculated as

Erms
ν =

(∫
E2�(E)dE∫
�(E)dE

)1/2

, (14)

where �(E) is the neutrino flux with energy E [13]. In
particular, we use the root-mean-squared values of Erms

νe
=

33.3 MeV and Erms
ν̄μ

= 37.7 MeV for electron and muon neu-
trinos, respectively [see Eq. (1)], and Eνμ

= 29.8 MeV.
By definition, τ tr , which is given by Eq. (9) represents the

number of transport mean-free paths for the neutrino traveling
from the surface of the star at l = 0 to some inner depth l.
Neutrinos are assumed to forget their original direction of
motion at a depth of l = �R corresponding to τ tr ≈ 1. As

a rough estimate, one can assume neutrinos eventually deposit
their energies around this optical depth.

Electron neutrinos are most likely absorbed in the crust
via inelastic neutrino charged current interactions (e.g.,
νe + n → p + e−, or νe + XA

Z → X′ A
Z+1 + e−), whereas muon

(anti)neutrinos deliver most of their energies through muon
(anti)neutrino-electron scatterings, i.e.,

νμ + e− → ν ′
μ + e− ′,

ν̄μ + e− → ν̄ ′
μ + e−′ .

One can estimate the average fractional energy loss for muon
neutrinos interacting with electrons at rest as well as for the
degenerate gas of electrons [18]. These estimations show that
in about tens of electron scatterings, the muon (anti)neutrinos
will lose most of their energies, and will eventually leave the
star as their energy becomes low enough corresponding to a
very small cross section, hence a very large neutrino mean-free
path.

Another possible channel for neutrinos to deposit their
energies could be through a charged-current reaction νμ +
e− → μ− + ν̄e. This is because the transport optical depth
corresponds to the density regions in the crust where muon
threshold can be reached. Notice that for nonenergetic neutri-
nos the muon threshold is usually at a much higher densities.
Other possible channels such as the neutrino-neutron scattering
might not be as important as neutrino-electron scatterings.
That is because although the cross section for neutrino-neutron
scattering is much bigger than the neutrino-electron scattering,
the amount of energy deposited by a single neutrino-neutron
scattering is much smaller than the one by a single neutrino-
electron scattering. Finally, one can think of inelastic neutral
current neutrino-nucleus scattering as a potentially interest-
ing channel for neutrino energy deposition. This has been
discussed at supernovae neutrino energies and is believed to
be important for supernovae simulations [19]. However, more
work is needed to be done to determine whether this is a robust
channel for neutrino energy deposition in the neutron star crust.
Thus, it is safe to conclude that as a rough estimate most of
the energy of Qν given by the Eq. (1) is delivered to the inner
crust of depths of about ∼�R.

III. RESULTS

A. Equations of state of neutron star matter

As noted earlier, the multiplicity of pion productions
strongly depends on the kinetic energy of the incoming par-
ticles, which in turn depends on the compactness parameter,
RS/R. Since the stellar compactness is strongly sensitive
to neutron star equation of state, for realistic considerations
we will consider a set of the equations of state that are
consistent with current nuclear experimental and observational
constraints. Moreover, a detailed knowledge of the equation of
state of the crust is important in calculations of the transport
optical depth.

The equation of state adopted in this work is composed
of several parts. Matter in the outer crust of the neutron star
is organized into a Coulomb lattice of neutron-rich nuclei
embedded in a degenerate electron gas. The composition in
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this region is solely determined by the masses of neutron-rich
nuclei in the region of 26 � Z � 40 and the pressure support
is provided primarily by the degenerate electrons. For this
region we adopt the equation of state by Haensel, Zdunik,
and Dobaczewski (HZD) [20]. The inner crust begins at the
neutron-drip density of ρdrip ≈ 4×1011 g cm−3. The EOS for
the inner crust at mass densities ρ > ρdrip is, however, highly
uncertain and must be inferred from theoretical calculations. In
addition to a Coulomb lattice of progressively more neutron-
rich nuclei embedded in an electron gas, the upper layers of
the inner crust now includes a dilute vapor of likely superfluid
neutrons. As the density increases, at the bottom layers of
the inner crust, complex and exotic structures—referred to as
“nuclear pasta”—have been predicted to emerge [21–23]. For
this region we use the EOS by Negele and Vautherin [24]. The
inner crust ends at a mass density near ρt ≈ 1.3×1014 g cm−3,
beyond which the neutron star matter becomes uniform. For
this uniform liquid core region we assume two equations of
state that cover a wide range of uncertainties that currently
exist in the determination of the equation of state of nuclear
matter at normal and supranuclear densities:

(i) The relativistic mean-field model by Chen and
Piekarewicz [25] (FSU2), whose parameters were cali-
brated to reproduce the ground-state properties of finite
nuclei and their monopole response, as well as to
account for the maximum neutron star mass observed
to date [26–28]. Due to the lack of stringent isovector
constraints, the original FSU2 predicts a relatively
stiff symmetry energy of J = 37.6 ± 1.1 MeV with
density slope of L = 112.8 ± 16.1 MeV. It is known
that by tuning two purely isovector parameters of
the RMF model one can generate a family of model
interactions that have varying degrees of softness in
the nuclear symmetry energy without compromising
the success of the model in reproducing ground-state
properties [29,30]. Following this scheme we tuned the
purely isovector parameters of the FSU2 model to get
J = 31.1 MeV and L = 50.0 MeV and refer to this
model as the FSU2 (soft). The maximum neutron star
masses predicted by these models are 2.07 M
 and
2.03 M
, respectively.

(ii) The soft and stiff equations of state that agree with
the lower and upper limits of the EOS band derived
from microscopic calculations of neutron matter are
based on nuclear interactions from chiral effective field
theory by Hebeler et al. [31] (HLPS). Notice that the
symmetry energy parameters in this model are 29.7 <
J < 33.5 MeV and 32.4 < L < 57.0 MeV. Similarly,
the maximum stellar masses predicted by these models
are 2.04 M
 and 2.98 M
, respectively.

A recent survey on the mass spectrum of compact objects
in x-ray binaries from 19 sources shows that their masses can
be anywhere in the range of M = (0.9–2.7) M
 [32]. Note
that stars made with stiff equations of state can accelerate
particles to near the pion-production threshold only for more
massive stars, whereas those with soft equations of state allow
particles to gain kinetic energies significantly larger than the

TABLE I. The radii R of a 1.4 and 2.0 M
 neutron stars as
well as the incoming kinetic energies T of a nucleon (with mass of
mN = 939 MeV) at the surface of neutron stars predicted by the four
equations of state discussed in the text.

Model R14 (km) T14 (MeV) R20 (km) T20 (MeV)

FSU2 (soft) 12.89 200.5 12.03 377.2
FSU2 (stiff) 14.10 178.0 12.95 334.2
HLPS (soft) 9.95 289.5 9.68 565.2
HLPS (stiff) 13.59 186.8 14.14 291.6

pion-production threshold even for low-mass neutron stars
(see Table I).

B. Production of π+ in p- p, p-Fe, and α-Fe collisions

In this section we will discuss the sensitivity of the pion
production to the incoming energy of the particle and to the
target nuclei. We assume that the accreted matter (incoming
particles) is composed of either protons or helium. The surface
composition of neutron stars (target nuclei), however, remains
an outstanding problem [33]. For accreting neutron stars,
the upper layer is likely composed of lighter elements such
as hydrogen or helium, depending on the composition of
accreted material from the companion star. Ultracompact low-
mass x-ray binaries with orbital periods of tens of minutes
accrete from a hydrogen-deficient companion that can be a He,
C-O, or O-Ne-Mg white dwarf, so that the neutron star surface
composition would consist of heavier elements than H or He,
e.g., see Ref. [34]. For the sake of simplicity, instead of a range
of target nuclei, we assume only two types of the target nuclei,
protons and Fe, and only a select nuclear collisions: p-Fe, p-p,
and α-Fe.

Charged pion production from the interaction of proton
beams with some selected nuclei have been measured at
incident energies of 585 MeV [35], 730 MeV [36], as well
as at 800 and 1600 MeV [37,38]. Inclusive pion production
at lower incident energies of 330, 400, and 500 MeV from
proton-nucleus collisions (12C and 138U) nuclei have also
been measured. However, measurements of pion production
cross sections at medium beam energies for proton-nucleus
collisions are still incomplete.

Based on the available experimental data Ref. [39] per-
formed a Monte Carlo simulation to evaluate the total pion
production cross sections at various proton beam energies on
selected nuclei. Using these Monte Carlo data and the p-Fe
reaction cross sections we estimated pion multiplicities for
p-Fe collision at incident beam energies above 325 MeV, see
Fig. 1. Note that the pion-production cross section in Monte
Carlo simulations is assumed to go to zero at energies below
325 MeV [39]. It is important to mention, however, that pions
can be produced at subthreshold energies via the excitation and
decay of � resonances (see Ref. [44] and references therein).
The Fermi motion of nucleons in nuclei can also greatly
enhance the pion production cross sections in the vicinity
of the threshold energy [45,46]. Despite efforts to measure
subthreshold pion production in the past (see Ref. [47] and
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FIG. 1. The multiplicity of pion production as a function of beam
energy for p-Fe collisions (dash-dotted black line) estimated using
the Monte Carlo results of Ref. [39] and for p-p collisions (dashed
blue line), which is a polynomial fit to the experimental data from
[40–43] (blue diamond symbols). Also shown is π+ multiplicities
from the isospin-dependent Boltzmann-Uehling-Uhlenbeck (IBUU)
transport simulations in the α-Fe collision (solid red line).

references therein), regrettably, experimental data on this front
still remains incomplete.

For stars that accrete hydrogen from the companion, the
p-p collision becomes an interesting case [12,48] to study the
pion production. Fortunately, there are sufficient experimental
data available on the pion production in p-p collisions. Using
the experimental data from [40–43] we plot the multiplicity of
pion production as a function of the proton beam energy from
the p-p collisions (see Fig. 1). The current experimental error
bars are in the order of 25% for most of these measurements,
except for few cases. In particular, when beam energies are in
the range of 344.6 < E < 380.6 MeV, the relative error bars
have been reported to be as large as �80%.

On the other hand, experimental measurements of pion pro-
duction in α-Fe collisions are still missing. For this we use the
IBUU transport model to calculate π+ multiplicities at various
incident beam energies per nucleon and impact parameters. For
a detailed description of this transport model we refer the reader
to Refs. [49,50]. The results are presented in Fig. 1 alongside
p-Fe and p-p collisions. In Fig. 2 we display predicted π+
multiplicities as a function of the incident beam energies
per nucleon for subthreshold energies. For comparison, we
also show the results from p-p collisions in the lower right
corner. In this model all subthreshold pions are produced from
decays of low-mass �(1232) resonances formed in nucleus-
nucleus inelastic collisions. While the pion production cross
sections drop sharply when the energy per nucleon is below
threshold, there is an appreciable pion-production cross section
at incident beam energies as low as 150 MeV per nucleon
mostly due to Fermi motion of nucleons in Fe. Note that pion
production in heavy-ion collisions depends on the EOS and the
ratio of charged pions on the nuclear symmetry energy used.
In this exploration study, we use a momentum-independent
potential corresponding to a stiff EOS with K0 = 380 MeV and
a symmetry energy that is linear in density. In our calculation

150 200 250 300
0.000

0.005

0.010

0.015

0.020
-Fe

p-p

μ π

E/A (MeV)

E = 293 MeV

FIG. 2. Same as Fig. 1 but now for subthreshold energies.

for α-Fe collisions, we used μπ+ multiplicities averaged over
the impact parameter b:

μπ+, ave =
∫ bmax

0 μπ+ (b)bdb∫ bmax

0 bdb
, (15)

whose dependence is plotted in Fig. 3. For head-on collisions
with b = 0 fm the pion-production cross section is obviously
much larger. In generating these data we run 100 000 events for
most cases, except for low incident energies, where we used up
to 300 000 events to have a better statistics. The statistical error
bars for these simulations are of the order of ≈30%. It is worth
noting that uncertainties coming from different EOS models
and the density dependence of the symmetry energy are of the
same order as the statistical errors quoted above. The detailed
model dependencies near the pion production threshold are
addressed in Ref. [51].

C. Neutrino energy deposition in the inner crust

We now calculate the total energy carried by neutrinos into
the inner crust. In Table II we present results for a 2 M


0 1 2 3 4 5 6
0.000

0.002

0.004

0.006

0.008

0.010

0.012

μ π

b (fm)

E/A = 250 MeV

FIG. 3. The π+ multiplicity in α-Fe collisions versus impact
parameter b for incident α energies per nucleon of E/A = 250 MeV
calculated using IBUU transport simulations.
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TABLE II. The total energy per accreted nucleon deposited by
neutrinos in the inner crust for a 2.0 [1.4] M
 neutron star using the
four equations of state discussed in the text and for three possible
reactions: pp, p-Fe, and α-Fe.

Model Qpp
ν (MeV) QpFe

ν (MeV) QαFe
ν (MeV)

FSU2 (stiff) 0.009 [0.000] 0.005 [0.000] 0.258 [0.004]
FSU2 (soft) 0.069 [0.000] 0.131 [0.000] 0.493 [0.009]
HLPS (stiff) 0.000 [0.000] 0.000 [0.000] 0.114 [0.006]
HLPS (soft) 2.114 [0.000] 1.963 [0.000] 2.822 [0.109]

and for a 1.4 M
 (in square brackets) neutron star and the
four equations of state discussed in the text. In Fig. 4 we
display the full results as a function of the neutron star mass
for soft equations of state only. As is also evident from
Table I, low-mass neutron stars can accelerate the in-falling
matter to energies of about the pion-production threshold only.
Therefore the result is highly sensitive to the pion-production
cross section around threshold energies. This result calls for
improved experimental measurements of pion production in
proton-proton collisions, as well as for pion production in p-Fe
and α-Fe collisions for beam energies per nucleon in the range
of 150–600 MeV.

Moreover, there is a strong sensitivity of the pion production
to the equation of state employed in determination of stellar
structure. In particular, if the equation of state is very stiff—
such as the HLPS (stiff)—then even for a 2 M
 neutron star the
incoming particles are not accelerated enough to produce pions
(see Tables I and II). On the other hand, if the equation of state
is soft, then for a M = 2 M
 neutron star the energy deposited
by neutrinos can be as large as Qν � 2.8 MeV per accreted
nucleon. The result is more pronounced if helium is being
accreted onto the surface of neutron star, mainly because the
IBUU simulations suggest that a substantial amount of pions
can be produced at subthreshold beam energies. In Fig. 5 we
plot the mass-vs-radius relation predicted by the four equations
of state, where the contours of Qν = 0, 0.05, and 2.0 MeV
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FIG. 4. The total energy deposited by neutrinos into the inner
crust as a function of neutron start mass for the soft EOSs discussed
in the text: HLPS (soft) and FSU2 (soft).

8 10 12 14 16 18
0.0

0.5

1.0

1.5

2.0

2.5

3.0

FSU2 (soft)
FSU2 (stiff)

HLPS (stiff)

Q =2.0 MeV

Q =0.5 MeV

M
 (M

)

R (km)

Q =0 MeV

HLPS (soft)

FIG. 5. Mass-vs-radius relation predicted by the four EOS models
discussed in the text. The contours of constant neutrino heat deposits
are shown with dotted curves.

coming from α-Fe collisions are plotted. As evident from the
figure, the heating gets more pronounced for massive and/or
compact stars only.

Finally, let us investigate the impact of the neutron star’s
compactness parameter on the amount of heat deposition.
While stars built with the HLPS (stiff) equation of state may
not accelerate the in-falling matter to high kinetic energies for
low-mass stars, it can certainly do so for very massive neutron
stars. In particular, for a M = 2.8 M
, the total energy deposit
is Qν = 1.89 (1.33) MeV, when α-Fe (p-Fe) collisions take
place at the surface (also see Fig. 5). To cover all possible
equations of state in Fig. 6 we plot the results as a function of
the compactness parameter.

We find that the heat deposition from neutrinos is compara-
ble with other previously known sources of deep crustal heating
such as from pycnonuclear fusion reactions. In Table III we
present our results for the approximate location in the neutron
star inner crust, where neutrino transport optical depth equals
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FIG. 6. The total energy deposited by neutrinos into the inner
crust as a function of neutron star compactness, RS/R.
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TABLE III. The location in the neutron star inner crust, where neutrino transport optical depth equals τ tr = 1. Here ρμ̄, ρe, and ρμ are the
mass density of the neutron star matter in the crust where neutrinos with different flavors are first scattered (or absorbed), y = P/g and �R

are the corresponding column depth [9] and radial depth, where P is the local pressure and g is the local gravitational acceleration [52] at
r = R − �R.

Model M ρμ̄ yμ̄ �Rμ̄ ρe ye �Re ρμ yμ �Rμ

(M
) (1012 g cm−3) (1016 g cm−2) (km) (1012 g cm−3) (1016 g cm−2) (km) (1012 g cm−3) (1016 g cm−2) (km)

FSU2 (soft) 1.4 5.0 3.2 0.60 6.1 3.9 0.62 7.1 4.7 0.63
2.0 9.7 4.0 0.31 11.3 5.0 0.31 12.9 6.1 0.32

HLPS (soft) 1.4 7.4 4.0 0.34 8.5 4.6 0.35 10.4 5.6 0.35
2.0 16.5 5.0 0.17 18.7 6.1 0.17 20.7 7.4 0.18

to 1. The results are presented for the more interesting cases of
soft equations of state only, where Qν is significant even for
moderate-mass neutron stars. Depending on the mass of the
star and the EOS model used, the energy of Qν is delivered to
the regions of the inner crust where mass densities are of the
order 1012–1013 g cm−3. For example, for a 2 M
 neutron star
this would correspond to mass densities of 9.69 < ρ12 < 20.74
in units of 1012 g cm−3, or equivalently to baryon densities of
0.036 < ρ/ρ0 < 0.078, where ρ0 ≈ 2.66×1014 g cm−3 is the
nuclear saturation density.

Obviously, τ tr = 1 is only a rough estimate for the location
of the neutrino heat deposition. Moreover, Table III assumes
that half of the neutrinos produced from the decay of stopped
pions travel radially inward. In reality, the decay is isotropic
and therefore it is worth analyzing the approximate location of
heat delivery as an angle of incidence of neutrinos. The fraction
of the number of neutrinos within a cone with apex angle 2θ to
the total number of neutrinos is equal to x = 1

2 (1 − cos θ ).
Here θ = 0 corresponds to the angle of incidence in the
radial direction, whereas θ = π

2 corresponds to the direction
horizontal to the surface. In Fig. 7 we display the location
of heat deposition as a function of 1 − cos θ for a 1.4 M

neutron star using HLPS (soft) EOS. The result shows that
most of neutrinos are delivered to the deep region of the
crust, and only a small fraction of them scatter at shallower
regions.
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FIG. 7. The location in the neutron star inner crust, where neu-
trino transport optical depth equals τ tr = 1 for different angles of
incidence θ .

Note that in our calculations above we did not take into
account additional red-shift effects as neutrinos go deeper
into the crust. The effective neutrino energy should slightly
increase due to the gravitational red shift by a factor of
e−φ(r )/c2√

1 − RS/R, where φ(r ) is the local gravitational
potential [52]. However our calculations show this effect is
�2% because the crust is thin.

D. Observational implications

In this section, we will discuss observational implications
of the extra heating from neutrinos in the presence of other
sources of deep crustal heating. We will first discuss general
implications for neutron stars cooling observation and then
apply our result to a particular neutron star MXB 1659-29.

1. Cooling neutron stars

Nonequilibrium nuclear reactions during active accretion
heat the neutron star crust out of thermal equilibrium with
the core. When accretion stops, the crust cools toward ther-
mal equilibrium with the core [6,7,53,54]. Crust cooling is
observed as a quiescent x-ray light curve, with one of the
most well-studied examples being the cooling transient MXB
1659-29 [6,9,53,54]. Cooling observations at successively later
times into quiescence probes successively deeper layers in the
crust with increasingly longer thermal times [9]. In particular,
it was shown that about a year into quiescence the shape of
the cooling light curve is sensitive to the physics at mass
densities greater than neutron drip ρ > ρdrip corresponding to
the inner crust [55]. This suggests that cooling light curves
of neutron stars in low-mass x-ray binaries one-to-three years
after accretion outbursts should be sensitive to the additional
deep crustal heating by neutrinos [9].

Comparing our results with the heat released from pycnonu-
clear fusion reactions [5] we notice that not only are they of the
same order, but also the heat is deposited in the same density
regions (crust layer). Subsequently we calculated the column
depths where neutrinos are first scattered, y = ∫ ∞

r
ρdr ≈ P/g

[9]. Here P is the local pressure and the neutron star’s surface
gravity is g = (GM/R2)(1 − 2GM/Rc2)−1/2. We find that
the column depth values lie in the range of 4.0×1016 < P/g <
7.4×1016 g cm−2 (see Table III). Since the amount of heat
deposited for massive stars is comparable to the heat released
from pycnonuclear reactions, the observation of cooling light
curves, in particular, could be used to help distinguish massive
stars from the low-mass stars.

025801-7



F. J. FATTOYEV et al. PHYSICAL REVIEW C 98, 025801 (2018)

FIG. 8. The red-shifted surface temperature in units of eV as a
function of time into quiescence. For the details of each curve please
refer to the text.

To analyze the sensitivity of crustal heating by neutrinos
on the cooling curves, we simulate the thermal evolution of a
2 M
 neutron star crust using the thermal evolution code dStar
[56], which solves the fully general relativistic heat diffusion
equations

∂

∂t

(
T eφ/c2) = e2φ/c2 εin − εout

C
−

∂
∂r

(
Le2φ/c2)

4πr2ρC(1 + z)
, (16)

Le2φ/c2 = −4πr2Keφ/c2

1 + z

∂

∂r

(
T eφ/c2)

, (17)

where εin is the nuclear and/or neutrino heating emissivity
and εout is the neutrino emissivity from the core, C is the
specific heat, K is the thermal conductivity, and 1 + z =
[1 − 2GM/(rc2)]−1/2 is the gravitational red-shift factor. The
detailed microphysics of the crust is discussed in Ref. [9] and
the parameters of the cooling model are described in Ref. [57].
In particular, the core neutrino emissivity εout includes the
modified and direct Urca reactions that may impact quiescent
crust cooling at late times depending on the core’s heat capacity
[58]. Though the core’s heat capacity remains unknown, long-
term monitoring observations can be used to place a lower
limit on its value [59]. This model also assumes an impurity
parameter of Qimp = 1.0 throughout the crust, which is defined
as

Qimp = 1

nion

∑
i

ni (Zi − 〈Z〉)2, (18)

where ni is the number density of the nuclear species with Zi

number of protons, and 〈Z〉 is the average proton number of
the crust composition.

In Fig. 8 we display the crust cooling curves for four
possible cases. The solid black curve corresponds to the case
without heat deposition from neutrinos in the inner crust
with Qimp = 1.0. The red dashed curve corresponds to the
case when a 2.0 MeV per accreted nucleon heat source is

deposited at density regions of 1012 < ρ < 1013 g cm−3. The
crust temperature is marginally increased by the neutrino
heating because most of the additional heat is transported into
the core.

We then examine two cases, with and without neutrino
heating, but including a nuclear pasta layer in the inner crust.
It is expected that nuclear pasta forms at densities above
ρ > 8.0×1013 g cm−3 corresponding to the bottom layers of
the inner crust. The thermal conductivity of nuclear pasta could
be small, corresponding to a large impurity parameter [60].
The black short-dashed curve shows the case of no neutrino
heating, but Qimp = 20 at densities of ρ > 8.0×1013 g cm−3

corresponding to nuclear pasta. Finally, in blue dash-dotted line
we display a cooling curve that includes both nuclear pasta and
the heat deposition from neutrinos. The crust temperature is
higher in these two cases, because the low thermal conductivity
of the nuclear pasta layer prevents a large portion of heat from
diffusing into the core.

As evident from Fig. 8, the additional heat source can make
a noticeable change in the cooling light curves. The cooling
rate depends on many other factors and in particular strongly
depends on the crust thickness, which is usually small for
massive stars. Moreover, as illustrated in Fig. 8 the low thermal
conductivity corresponding to the nuclear pasta can strongly
affect thermal diffusion time maintaining a temperature gradi-
ent between the neutron star’s inner crust and core for several
hundred days into quiescence [57]. Microscopic theories of
dense matter suggest that neutrons suffer a singlet 1S0 state
pairing at nuclear densities pertaining to the crust of neutron
stars. We used two models of the neutron superfluid critical
temperature profile [61,62]. The first model uses a pairing gap
that closes in the core [61] and is labeled as S03. Whereas
the second model uses a pairing gap that closes in the inner
crust [62] and is subsequently labeled as G08. Note that results
reported in Fig. 8 uses the same pairing gap model of S03. We
have also tested the G08 pairing gap model, and the results are
qualitatively similar to that of Fig. 8.

2. Crust cooling in MXB 1659-29

As described above, neutrino deep crustal heating will
noticeably increase the crust temperature and the shape of the
cooling light curve. Here we investigate the impact of extra
heating from neutrinos on the particular case of MXB 1659-29
that entered quiescence after an ≈2.5 year accretion outburst
[63–65] and cooled for ≈4000 days before entering outburst
once more [66]. The late time cooling observations probe the
thermal properties of the inner crust and make MXB 1659-29
an interesting test case for neutrino heating.

Our thermal evolution model of MXB 1659-29 uses a M =
1.6 M
 and R = 11.2 km neutron star at the observed outburst
accretion rate of ṁ ≈ 0.1 ṁEdd. The model includes a Q =
1 MeV per accreted nucleon shallow heat source between y =
2×1013 g cm−2 and y = 2×1014 g cm−2, consistent with the
findings from Ref. [9]. Using a model without nuclear pasta,
the cooling light curve is fit with an impurity parameter for
the entire crust of Qimp = 3 and the S03 pairing gap [61].
We then test representative values of neutrino heating: 1, 2,
and 3 MeV per accreted nucleon. As can be seen in Fig. 9,
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FIG. 9. Observed cooling light curve of MXB 1659-29 (black data
points) [63] and thermal evolution models for three cases of neutrino
heating. (a) Crust cooling models with the S03 pairing gap and no
nuclear pasta. The models use an impurity parameter of Qimp = 3
for the entire crust and a core temperature of Tcore = 4.2×107 K.
(b) Crust cooling models with the G08 pairing gap and nuclear pasta.
The models use an impurity parameter of Qimp = 1 for the crust
and a Qimp = 20 layer representing nuclear pasta at mass densities
ρ � 8×1013 g cm−3. These models have a core temperature of
Tcore = 3.75×107 K.

the model fit with Qimp = 3 becomes inconsistent with the
observational data once neutrino heating is added to the inner
crust. In order to reestablish a fit, the crust impurity parameter
must be lowered to Qimp < 3 (corresponding to a higher crust
thermal conductivity) as Qν increases.

Alternatively, the cooling of MXB 1659-29 may be fit with
a nuclear pasta layer in the crust if the G08 pairing gap model is
used [62], as we demonstrate in Fig. 9(b). In this case, the low
thermal conductivity of the nuclear pasta maintains a higher
crust temperature during quiescence and a layer of normal
neutrons forms at the base of the crust [57]. Without neutrino
heating, the cooling observations of MXB 1659-29 are fit with
a crust impurity of Qimp = 1 and a pasta impurity parameter of
Qimp = 20. We find that, similar to the model without nuclear
pasta, as neutrino heating is increased in the inner crust, the
pasta impurity parameter must decrease to reestablish a fit to
the observations.

Note that the cooling of MXB 1659-29 may be fit with other
neutron star masses and radii [9] and the results in Fig. 9 are for
a fixed gravity in the neutron star crust (and crust thickness).
Therefore our studies above are qualitative only as the amount
of neutron heating for a M = 1.6 M
 and R = 11.2 km
neutron star from α-Fe collision in particular is just about
0.13 MeV and is bigger only for more massive and/or compact
stars (see also Fig. 5). Cooling light curve shapes are degenerate
in several parameters, for example: the neutron star gravity, the
crust impurity parameter, and the mass accretion rate. Because

the effect of neutrino heating is difficult to delineate from the
effects of other model parameters we therefore can not deter-
mine if neutrino heating is present during outburst. It is worth
noting, however, that if deep crustal heating from neutrinos
is present then existing constraints derived from cooling light
curves will need to be revisited, likely requiring a higher crust
thermal conductivity or a different neutron star gravity.

IV. CONCLUSION AND OUTLOOK

We presented a new mechanism of deep crustal heating of
neutron stars in mass-transferring binaries by neutrinos that
are decay remnants of charged pions produced at the surface
of neutron stars. Our calculations showed that massive and
compact stars can accelerate in-falling matter to energies sub-
stantially larger than the pion-production threshold resulting
in ample generation of neutrinos. Approximately half of these
neutrinos travel into the inner crust and deposit ≈1–2 MeV per
accreted nucleon for massive and compact stars.

The deep crustal heating from neutrinos is comparable in
strength to pycnonuclear fusion reactions and other nonequi-
librium nuclear reactions taking place during active accretion.
Additional deep crustal heating will affect the cooling light
curves of accreting neutron stars at late times �300 days
into quiescence. The effect is most pronounced when the star
is massive and might help distinguish high-mass stars from
low-mass stars. In general, for a fixed gravity in the neutron
star crust we find that additional deep crustal heating requires a
higher thermal conductivity for the crust and the crust impurity
parameter must be lowered. In the particular case of MXB
1659-29, for a model without nuclear pasta and the S03 pairing
gap, Qimp � 3 is required if any neutrino heating is added. For
a model with nuclear pasta and the G08 pairing gap, Qimp � 20
for nuclear pasta is needed if neutrino heating is present.

Our calculation of pion production assumes that the in-
coming protons are slowed by Coulomb collisions with atmo-
spheric electrons [67]. Plasma instabilities or a collisionless
shock may instead stop the proton beam (e.g., see Ref. [68]),
reducing the rate of nuclear collisions. In addition, depending
on the accretion geometry, the incoming particles may not
have the full free-fall velocity, e.g., in disk accretion if the
disk reaches all the way to the neutron star surface. Neutrino
heating may operate only with a quasispherical accretion flow
or if the neutron star lies within the last stable orbit (e.g., see
discussion in Ref. [69]).

There is also a strong sensitivity of our results to the pion
production cross sections at near threshold energies. Pion
production may play a significant role in stellar environments
and in particular, a better knowledge of pion-production cross
sections in p-p, p-Fe, α-α, and α-Fe reactions at beam energies
150–600 MeV/nucleon may help us to better understand the
structure and transport properties of neutron star crusts from
cooling observations.
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