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A K̄N -π�-π� coupled-channel potential is constructed on the basis of chiral SU(3) dynamics. Several
matching conditions are introduced to formulate an equivalent local potential that reproduces the coupled-channel
scattering amplitudes resulting from chiral SU(3)L × SU(3)R meson-baryon effective field theory. In contrast to
a previously constructed effective single-channel K̄N potential, the explicit treatment of the π� channel yields a
natural description of the low-mass pole as part of the two-pole structure of the �(1405) resonance. The energy
dependence of the potential can now be parametrized with a minimum of polynomial orders. To study the properties
of the �(1405) as a quantum-mechanical quasibound state, we derive the normalization condition of its wave
function generated by the energy-dependent coupled-channel potential, using the Feshbach projection method.
This framework provides an improved understanding of this system from the viewpoint of the compositeness of
hadrons. With the properly normalized wave function, we demonstrate and confirm that the high-mass pole of
the �(1405) is dominated by the K̄N component.
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I. INTRODUCTION

An active research area of hadron physics is the search for
exotic baryons, systems with one unit of baryon number that
do not fit into the traditional scheme of ordinary three-quark
states. A prominent candidate in this category has always been
the �(1405) [1–3]. Notorious difficulties in understanding the
�(1405) within the frame of standard quark models [4] have
stimulated considerations toward a possibly more complex
structure.

A successful picture began to emerge many decades ago
[5–7] when the �(1405) was treated as a K̄N quasibound
state embedded in the π� continuum, using a coupled-channel
approach combined with a vector meson exchange potential
model. Later developments in Refs. [8–11] established such
a framework from the viewpoint of low-energy QCD as
an effective meson-baryon field theory with spontaneously
(and explicitly) broken chiral SU(3)L × SU(3)R symmetry.
Several examples of more recent theoretical evidence sup-
port this picture. In a lattice QCD simulation [12,13], the
strange quark contribution to the magnetic form factor of
the �(1405) is shown to vanish when approaching physical
quark masses, in qualitative contrast to expectations from a
simple uds constituent-quark model. The spatial structure of
the �(1405) is studied by evaluating its form factors [14,15],
utilizing finite-volume effects [16], and analyzing the K̄N
wave function [17,18]. In all cases, the spatial size of the
dominant K̄N component is found to be unusually large and
of a magnitude indicating a hadronic molecular picture of
the �(1405). A further criterion comes from evaluating the
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compositeness of hadrons [19–29], a concept generalizing
the wave function renormalization constant [30,31]. Recent
studies of the compositeness of the �(1405) reveal once
again that its structure is dominated by the K̄N component
[16,22–24,26,28,32,33].

The attractive K̄N interaction underlying the picture of
the �(1405) as a two-body quasibound state, with a nominal
binding energy of 27 MeV, has motivated a multitude of
studies concerning the possible existence of antikaon-nuclear
quasibound systems (K̄ nuclei) [34]. In particular, predictions
of deeply bound states of some antikaonic nuclei were made
in Refs. [35,36], based on g-matrix calculations with opti-
cal potentials derived from phenomenological meson-baryon
two-body interactions. These studies were followed by more
elaborate and accurate few-body calculations, either using
variational approaches [37–41] or solving Faddeev equations
[42–46]. For the K̄NN prototype system, all of these compu-
tations agree qualitatively about the existence of a quasibound
state with spin parity JP = 0− and isospin I = 1/2 in the en-
ergy window between K̄NN and π�N thresholds. However,
the predicted binding energy BK̄NN and decay width �K̄NN

vary over a wide range depending on the type of potential used
and its extrapolation below K̄N threshold.

An important empirical condition at threshold is imposed
by the measurement of the energy shift and width of the
kaonic hydrogen 1S state, performed by the SIDDHARTA
Collaboration [47,48]. An accurate value of the complex K−p
scattering length was deduced from these data through the im-
proved Deser formula [49]. Thanks to this strong constraint, the
uncertainties of theoretical subthreshold extrapolations of K̄-
nucleon amplitudes have been significantly reduced [50,51].
Energy-dependent interactions based on chiral SU(3) dynam-
ics and subject to this constraint generally produce modest
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binding, BK̄NN ∼ 15–35 MeV, together with widths �K̄NN ∼
30–50 MeV. On the other hand, purely phenomenological,
energy-independent potentials tend to give much stronger bind-
ing. The still existing theoretical uncertainties of K̄-nuclear
calculations are primarily rooted in the subthreshold behavior
of the K̄N two-body interaction. In particular, the energy
region around the �(1405) is governed by the dynamics of the
π� and π� channels and their coupling to the subthreshold
K̄N system.

Experimental searches for a K̄NN bound state have been
actively pursued in recent years [52–59], although a fully
conclusive and consistent answer to the quest for a K̄-nuclear
bound state has not been reached. Recently the J-PARC E15
experiment observed a peak structure in the �p invariant
mass distribution of the K− 3He → �p n reaction, interpreted
in terms of BK̄NN = 15 ± 7 ± 12 MeV and �K̄NN = 110 ±
18 ± 27 MeV [59]. In view of the strong broadening of the ob-
served signal, questions remain, however, concerning, e.g., the
role of final-state interactions and related reaction mechanisms
(see also discussion in Ref. [60]). Further E15 investigations
with improved statistics and including a measurement of the
“K−pp” → π�N decay channels are being performed to
clarify the situation [61].

Motivated by these recent developments, two of the present
authors have constructed a quantitatively reliable K̄N single-
channel potential constrained by the SIDDHARTA data [18].
This complex and energy-dependent effective potential is
particularly suitable for applications in few-body calculations.
It follows the strategy described in Ref. [62] where a realistic
model based on chiral SU(3) dynamics has been developed
that succeeds in reproducing the available K−p cross sections
and the SIDDHARTA data with χ2/d.o.f. � 1 [50,51]. Chiral
SU(3) dynamics [2,8–11] is a nonperturbative coupled-channel
extension of chiral SU(3)L × SU(3)R perturbation theory. It
is designed to extrapolate K̄N amplitudes reliably into the
subthreshold region not directly accessible by K̄N scattering
experiments. A characteristic feature of chiral SU(3) dynamics
in the K̄N -π� coupled channels with isospin I = 0 is the ap-
pearance of two resonance poles corresponding to the �(1405)
in the scattering amplitude [1–3,63]. In Ref. [18], the equivalent
local K̄N potential has been constructed to reproduce this
two-pole structure of the amplitude in the complex energy
plane.

An instructive recent example for the application of this
K̄N potential near threshold is the high-precision three-body
calculation of the 1S energy shift and width of kaonic deu-
terium [64]. The same potential has also been applied in
computations of K̄ nuclei up to seven-body systems using an
accurate few-body technique: the stochastic variational method
with a correlated Gaussian basis [41]. In the K̄NN system, a
relatively small binding energy of 25–28 MeV is found. This
binding energy increases as one adds more nucleons, and it
reaches 70–80 MeV in the seven-body systems. However, in
view of the fact that the π� threshold lies roughly 100 MeV
below the K̄N threshold, an explicit treatment of the π�

channel is certainly necessary for a more detailed analysis of
such deeply bound states. In fact, even in the K̄NN system,
the importance of treating the π� channel explicitly has been
pointed out in Refs. [43,65].

The present work extends the previous construction of the
K̄N single-channel potential [18,62] to a multichannel local
potential with explicit treatment of the K̄N -π�-π� coupled
channels. The framework is again chiral SU(3) dynamics
with inclusion of the SIDDHARTA constraint [50,51]. Some
issues inherent in coupled-channel scattering require special
attention. For example, in contrast to the complex K̄N single-
channel potential, with its imaginary part reflecting the open
π� and π� channels, the coupled-channel potential is given
in matrix form with real elements representing the interactions
in the K̄N , π�, and π� channels and their couplings.

This newly constructed potential can then be used to analyze
the structure of �(1405) by evaluating the wave functions
of the two-body eigenstates. However, the normalization of
the wave function is not straightforward. The coupled-channel
potential is energy dependent. For such potentials, it is known
that the standard normalization condition and the rules for com-
puting expectation values are not valid [66–72]. Furthermore,
the �(1405) is an unstable state, and therefore the boundary
condition for the eigenstate inevitably makes the system non-
Hermitian, even for a real potential. Hence, we are going to
establish a method for treating a non-Hermitian system with
energy-dependent potential, based on the Feshbach projection
method. This formulation provides a natural interpretation of
the wave-function normalization condition and the composite-
ness of the state under consideration [19–21,27].

This paper is organized as follows: In Sec. II, we develop
the scheme for deriving the coupled-channel local potential
equivalent to chiral SU(3) dynamics. The direct comparison
with the interaction kernel of chiral SU(3) dynamics deter-
mines the strengths of the equivalent local potential. The
energy dependence of the potential strengths is parametrized
in each channel with a minimal set of polynomial orders. The
explicit construction of the realistic K̄N -π�-π� potential
follows in Sec. III, mainly focusing on the I = 0 channel in
which the �(1405) appears. This matrix potential reproduces
the original scattering amplitudes resulting from chiral SU(3)
dynamics in the complex energy plane, including the poles
relevant to the structure of the �(1405). In Sec. IV, we
derive the normalization condition for the wave functions of
non-Hermitian systems resulting from an energy-dependent
potential. With this formalism, the compositeness and the
spatial structure of the �(1405) are analyzed. The paper closes
with a summary in Sec. V.

II. CONSTRUCTION SCHEME FOR THE
COUPLED-CHANNEL POTENTIAL

This section introduces the procedures for constructing a lo-
cal meson-baryon potential with explicit treatment of coupled
channels, generalizing the single-channel case in Refs. [8,62].
The aim is to generate a coupled-channel potential such that the
solution of the Schrödinger equation equivalently reproduces
the scattering amplitudes of chiral SU(3) dynamics which, in
turn, reproduce all available K̄N scattering data. To this end,
we derive the relation between the strengths of the coupled-
channel potential and the interaction kernel in chiral SU(3)
dynamics with several matching conditions. Finally, an explicit
form of the parametrized potential is given for practical use.
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A. Chiral SU(3) dynamics for meson-baryon scattering

The analysis of the �(1405) baryon resonance requires a
nonperturbative calculation of the two-body scattering ampli-
tude. In chiral SU(3) dynamics [8–11], the coupled-channel
T matrix Tij , with the indices i and j denoting the relevant
meson-baryon channels, is computed by resumming tree-
level amplitudes, Vij , derived from leading orders of chiral
SU(3)L × SU(3)R meson-baryon effective field theory (EFT).
The strategy and framework is analogous to the chiral EFT
treatment of the nuclear force [73,74]. The Bethe-Salpeter
equation for the S-wave T matrix at the center-of-mass energy√

s is

Tij (
√

s) = Vij (
√

s) +
∑

k

Vik (
√

s) Gk (
√

s) Tkj (
√

s)

= ([{V (
√

s)}−1 − G(
√

s)]−1)ij , (1)

where Gi (
√

s) is the meson-baryon loop function in channel
i. With the convention in Ref. [2], the corresponding meson-
baryon scattering amplitudes, Fij , are given by

Fij (
√

s) = −
√

MiMj

4π
√

s
Tij (

√
s), (2)

with the baryon masses Mi and Mj in channels i and j ,
respectively.

This framework has been applied to the �(1405) system
in many studies [50,51,75–83]. In the present investigation,
we adopt the model of Refs. [50,51], with interaction kernels
up to next-to-leading-order (NLO) terms in chiral perturbation
theory. In this model, the free parameters are the low-energy
constants of the NLO Lagrangian and the subtraction constants
in the meson-baryon loop functions. These parameters are fixed
by fits to the following experimental data of the low-energy
K̄N system:

(1) K−p elastic and inelastic cross sections [84–91],
(2) branching ratios at K−p threshold [50,51], and
(3) the energy shift and width of kaonic hydrogen from the

SIDDHARTA measurements [47,48] and the deduced
K−p scattering length [49].

The result of the χ2 fit is χ2/d.o.f. = 0.96. The amplitudes
thus determined are the basis for the quantitative discussion
in the following sections. The precise threshold constraint
provided by the SIDDHARTA measurements limits the the-
oretical uncertainties of the subthreshold extrapolations of the
amplitudes to about 20%.

For practical applications of the potential in few-body
calculations, it is useful to reduce the number of coupled
channels from the full model space in the original amplitude.
This channel reduction can be exactly performed as shown
in Refs. [18,62]. Here we explicitly include the channels that
are open and active below the K̄N threshold, namely K̄N ,
π�, and π�. In the following, Vij stands for the effective
interaction suitably constructed within the set of these active
channels. Other channels with thresholds at higher energies
(η�, η�,K�) are “integrated out.” Their effects are absorbed
through the additional term in the interaction kernel. We
also use isospin-averaged masses to avoid the splitting of

threshold energies for isospin multiplets. This turns out to be
a well-justified approximation. Deviations appear only in the
near-threshold region as shown in Ref. [18].

B. Construction of the equivalent potential

Consider now the equivalent potential, V equiv
ij , to be used in

the Schrödinger equation,[
− ∇2

2μi

δij + �Mi δij + V
equiv
ij (r, E)

]
ψj (r ) = Eψi (r ). (3)

The nonrelativistic two-body energy is

E = √
s − mK̄ − MN = √

s − Mi − mi + �Mi, (4)

where mi and Mi are the meson and baryon masses in channel
i. The mass difference in that channel, measured from the
reference energy at K̄N threshold, is

�Mi ≡ mi + Mi − (mK̄ + MN ). (5)

The kinetic energy term involves the reduced mass,

μi ≡ miMi

mi + Mi

. (6)

The two-body wave function in channel i = 1, . . . , N is
denoted by ψi (r ).

The scattering solution of Eq. (3) is subject to the boundary
condition for incoming waves. By choosing the incident
channel with index j , the asymptotic form of the wave function
with angular momentum l = 0 in channel i for a given energy
E is related to the coupled-channel S matrix, Sij , as

rψl=0
i,j (r )

∣∣
r→∞ ∝ e−iki r δij −

√
μikj

μjki

Sij (E) eiki r , (7)

ki =
√

2μi (E − �Mi ). (8)

The detailed derivation of this wave function from the coupled-
channel Schrödinger equation (3) is given in Appendix A. The
s-wave scattering amplitude is then obtained as

F
equiv
ij (E) = Sij (E) − δij

2i
√

kikj

. (9)

Our aim is to construct the equivalent potential V
equiv
ij such

that F
equiv
ij (E) reproduces the original amplitudes Fij (

√
s):

F
equiv
ij (E) = Fij (

√
s). (10)

One expects that V
equiv
ij is related to the original Vij , but

one should note that the scattering equations which use these
potentials as input are different. For first orientation, consider
identifying V

equiv
ij with the Fourier transform of Vij . As the

interaction kernels in Refs. [50,51] are momentum indepen-
dent, this Fourier transform gives a potential proportional to a
δ function in coordinate space:

V
equiv,δ
ij (r, E) = δ3(r ) Nij (

√
s) Vij (

√
s), (11)

where Nij is a kinematic factor that accounts for the difference
between scattering equations, determined in Born approxima-
tion for Eq. (10) as in Ref. [8]. In chiral SU(3) dynamics, the
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Born approximation of the amplitude Fij is

Fij (
√

s) = −
√

MiMj

4π
√

s
Tij (

√
s)

Born≈ −
√

MiMj

4π
√

s
Vij (

√
s). (12)

On the other hand, the equivalent potential in Eq. (11) gives

F
equiv,δ
ij (E) = −(2π )2√μiμj T

equiv,δ
ij (E)

Born≈ −
√

μiμj

2π

∫
d3r e−i(ki−kj )·r V

equiv,δ
ij (r, E)

= −
√

μiμj

2π
Nij (

√
s) Vij (

√
s), (13)

where ki is the meson momentum in channel i in the center-of-
mass frame. Comparing Eqs. (12) and (13), Nij is determined
as1

Nij (
√

s) = 1

2

√
MiMj

sμiμj

. (14)

Although the Fourier transform of Vij (
√

s) formally pro-
vides a δ-type potential in coordinate space, this is not an exact
correspondence because ultraviolet divergences are tamed by
regularizing the loop functions Gi in chiral SU(3) dynamics.
The equivalent potential correspondingly involves finite-range
distributions which replace δ3(r ) in Eq. (11). The physical
interpretation is as follows. Contact terms and subtraction
constants associated with the regularization of loops in chiral
SU(3) dynamics reflect physics at high-energy scales not
treated explicitly in (low-energy) chiral EFT. The complemen-
tary coordinate-space potential does not resolve details of the
corresponding short-distance physics, which are then encoded
in conveniently parametrized finite-range distributions. These
distributions can be thought of as representing length scales
characteristic of short-range effects such as vector meson
exchange and finite-size meson-baryon vertex form factors.

Expressing the spatial distributions of the potential by
functions gij (r ), we rewrite the potential as

V
equiv,g
ij (r, E) = gij (r ) Nij (

√
s) Vij (

√
s) . (15)

The normalization of gij (r ) is determined as follows. First, we
impose the condition that the diagonal parts of the amplitudes
in Born approximation coincide with each other at each
threshold:

F
equiv,g
ii (E = �Mi )|Born = Fii (

√
s = Mi + mi )|Born, (16)

which implies for the diagonal component in channel i∫
d3r gii (r ) = 1. (17)

1In previous works [18,62,92], a semirelativistic form of the flux
factor Nij in Ref. [8] has been used, whereas Eq. (14) should have been
used in order to be consistent with the Schrödinger equation (3). The
difference between these flux factors is absorbed by the adjustment
term �V (see Sec. II C) so that the parametrized form of the potential
is consistent with the (nonrelativistic) Schrödinger equation.

The range parameters in the off-diagonal distributions gij (r )
with i �= j should be determined by the diagonal parts since
the regularization in chiral SU(3) dynamics is performed for
the diagonal loop function in each channel. Motivated by the
separable form of the regulator function, we make the ansatz
of a “geometric mean” of the diagonal parts:

gij (r ) = [gii (r )gjj (r )]1/2. (18)

In practice, Gaussian distributions are used which are conve-
nient for few-body calculations. With normalization conditions
specified by Eqs. (17) and (18), an explicit form of the spatial
distribution is

gij (r ) = e−r2(1/2b2
i +1/2b2

j )

(πbibj )3/2
, (19)

where bi represents the potential range in the diagonal
channel i.2

The resulting equivalent potential becomes

V
equiv,g
ij (r, E) = e−r2(1/2b2

i +1/2b2
j )

2(πbibj )3/2

√
MiMj

sμiμj

Vij (
√

s) . (20)

In the next step, we examine the original condition (10)
with this potential. The condition for the Born approximation
amplitudes, Eq. (16), can be satisfied by any range parameters
bi under the normalization (17), whereas the nonperturbative
scattering amplitude F

equiv,g
ij (E = �Mi ; {bi}), determined by

the asymptotic behavior of the wave function, depends on
the range parameters in all channels. It is thus required
that the equivalent potential should reproduce the diagonal
amplitudes Fii of the full chiral SU(3) dynamics calculation at
the threshold energies of each channel i:

F
equiv,g
ii (E = �Mi ; {bi}) = Fii (

√
s = Mi + mi ), (21)

where a given component F equiv,g
ii depends on the range param-

eters in all channels. In practice, the scattering amplitude at the
threshold is complex except for the lowest energy channel, and
hence Eq. (21) provides 2N − 1 conditions in the N -channel
problem for N range parameters bi . We determine the {bi} by
minimizing the sum of the deviations,

�Fg ≡
∑

i

∣∣Fii (
√

s = mi +Mi ) − F
equiv,g
ii (E = �Mi, {bi})

∣∣,
(22)

between the full chiral SU(3) amplitudes and those generated
by the equivalent potential at the channel thresholds.

While Eq. (21) guarantees that the requirement (10) is
satisfied near the thresholds, there can still be deviations
distant from the thresholds, reflecting, for example, differences
of the scattering equations used to calculate the respective

2An alternative prescription for the off-diagonal distribution is

gij (r ) = e
−r2/b2

ij /(π 3/2b3
ij ) with bij = (bi + bj )/2 which satisfies∫

d3r gij (r ) = 1. We have checked that the results of the scattering
amplitudes change only marginally with this prescription.
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amplitudes. To compensate for such deviations, we add an
adjustment term, �Vij , to Eq. (20) at each energy as in
Refs. [18,62]:

V
equiv,�V
ij (r, E) = e−r2(1/2b2

i +1/2b2
j )

2(πbibj )3/2

√
MiMj

sμiμj

× [Vij (
√

s) + �Vij (
√

s)]. (23)

This adjustment permits to apply the equivalent potential over
a wide energy range. The magnitude of �Vij is expected to be
small if the potential is properly constructed. The explicit �Vij

is chosen to reproduce the original amplitude at each energy√
s = E + mK̄ + MN . We then minimize the real quantity

�F (
√

s) ≡
∑
i�j

∣∣Fij (
√

s) − F
equiv,�V
ij (E)

∣∣, (24)

at each energy to determine �Vij (
√

s).

C. Parametrization of the equivalent potential

As shown in Eq. (23), the strength of the equivalent potential
depends on the total energy

√
s. For practical convenience, we

parametrize the energy dependence by a polynomial of the
nonrelativistic energy E = √

s − MN − mK̄ ,

V
equiv
ij (r, E) = e−r2(1/2b2

i +1/2b2
j )

αmax∑
α=0

Kα,ij

(
E

100 MeV

)α

,

(25)

where the degree of the polynomial, αmax, is to be determined as
explained in the following. This parametrization also permits
us to perform the analytic continuation of the amplitude into the
complex energy plane,

√
s → z ∈ C, an important property in

order to study the pole structure.3

As in Ref. [18], the energy range for the parametrization
of the potential strength in polynomial form is optimized to
reproduce FK̄N in the complex energy plane. For a quantitative
assessment of this optimization, we define the following
dimensionless measure for the deviation of the amplitudes in
the complex plane:

�fij (z) ≡
∣∣∣∣∣Fij (z) − F

equiv
ij (z)

Fij (z)

∣∣∣∣∣, (26)

where F
equiv
ij now denotes the scattering amplitudes calculated

with the parametrized equivalent potentials (25). We then
define average deviations of the �fij (z) as follows:

�f̄ (z) ≡ �fπ�,π� (z) + �fπ�,K̄N (z) + �fK̄N,K̄N (z)

3
. (27)

In Refs. [50,51], theoretical uncertainties of the scattering
amplitudes Fij (

√
s) are estimated to be roughly 20%. We take

this uncertainty measure for guidance and regard the complex
energy z as being in an acceptable window if �f̄ (z) < 0.2. The

3Note that an immediate analytic continuation of the potential in the
form of Eq. (23) is not possible because �Vij (

√
s) is not given as an

analytic function of
√

s.
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FIG. 1. Density plot of �Fg of Eq. (22) on the plane of the range
parameters bπ� and bK̄N of the equivalent potential (20) in the isospin
I = 0 channels.

acceptable parameter range is then determined by maximizing
the percentage measure,

P =
∫∫

d(Re z)d(Im z) �[0.2 − �f̄ (z)]∫∫
d(Re z)d(Im z)

×100, (28)

where the integration region is set as

1332 MeV � Re z � 1450 MeV, (29)

−100 MeV � Im z � 50 MeV, (30)

guided by Ref. [18].4

III. THE K̄ N-π�-π� LOCAL POTENTIAL

In this section, we construct the strangeness S = −1 meson-
baryon potential in the K̄N -π�-π� coupled channels, fol-
lowing Sec. II. We start with the isospin I = 0 potential in
the coupled K̄N -π� channels where the �(1405) appears.
The I = 1 potential in the K̄N -π�-π� coupled channels is
thereafter constructed in the same way.

A. I = 0 potential

Consider now first the I = 0 channel. As explained in
Sec. II B, the range parameters bi are determined by minimiz-
ing �Fg of Eq. (22) calculated with the potential V equiv,g

ij (r, E)
of Eq. (20). The behavior of �Fg under variations of the range
parameters is shown in the density plot, Fig. 1. From this
figure, it is seen that the range parameters can be uniquely
determined within reasonably narrow margins. The optimized

4The lower boundary of Re z is set at the π� threshold. Although
the coupled-channel potential is applicable beyond the π� threshold,
we use the same definition of P as in Ref. [18] in order to enable a
direct comparison of the present results with the K̄N single-channel
potential.
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FIG. 2. Scattering amplitudes in the I = 0 channel: F
equiv,g
ij (dotted lines) generated by the potential (20), in comparison with the original

amplitudes Fij (solid lines) from chiral SU(3) dynamics. The real (imaginary) parts are shown by the thick (thin) lines.

range parameters in the I = 0 channels are found to be

bI=0
π� = 0.80 fm, bI=0

K̄N
= 0.43 fm. (31)

In Fig. 2, the scattering amplitude F
equiv,g
ij (E) generated by

the potential V
equiv,g
ij is compared with the original amplitude

Fij (
√

s). Even though the matching is done with minimal
conditions, the potential V

equiv,g
ij reproduces the original am-

plitudes Fij remarkably well. This supports our prescription
in Sec. II B for constructing the potential. In Appendix B, the
validity and the physical interpretation of the range parameters
bπ� and bK̄N are discussed further.

It is instructive to compare the present result with the
single-channel K̄N potential [18], obtained by eliminating
the π� channel. In Fig. 3, we show F equiv,g in the K̄N
single-channel case for comparison.5 While this single-channel
potential is designed to reproduce FK̄N near and above the K̄N
threshold, the deviation becomes larger at lower energies, as
seen by comparison with Fig. 2. This indicates the importance

5Here the normalization factor in Eq. (14) is adopted, in contrast to
the previous work in Ref. [18].

FIG. 3. Scattering amplitudes F
equiv,g

K̄N
produced by the single-

channel K̄N potential (dotted lines) in comparison with the original
chiral SU(3) dynamics amplitude FK̄N (solid lines) in the I = 0
channel. The real (imaginary) parts are shown by the thick (thin)
lines.

of treating the π� channel explicitly in this lower energy
region as one moves closer to the π� threshold.

The analytic continuation of the scattering amplitude pro-
duced by the coupled-channel potential reveals two poles in
the relevant energy region. The pole positions of F

equiv,g
ij are

listed in Table I. In comparison to the original chiral SU(3)
amplitude, it turns out that V equiv,g reproduces the position of
the high-mass pole within a few MeV, while the position of
the low-mass pole deviates from the original one beyond the
theoretical uncertainties reported in Ref. [51]. The “accuracy
measure” P in Eq. (28) is relatively low, indicating that the
amplitude in the complex plane is not reproduced very well.
As the pole positions are essential for the detailed analysis
of the �(1405) and possible K̄ nuclei, the potential needs to
be further improved, and this is accomplished by adding the
adjustment term �Vij .6

As discussed in Sec. II B, we determine the adjustment term
�Vij (

√
s) by minimizing �F of Eq. (24). A useful quantity

for further demonstration is the volume integral of the potential
in the diagonal and nondiagonal channels,

U
equiv,�V
ij (

√
s) =

∫
d3r V

equiv,�V
ij (r, E), (32)

shown in Fig. 4 by solid lines. It is seen that the energy
dependence of the Uij is almost linear in the region of interest.
This energy dependence is primarily generated by the leading-
order Tomozawa-Weinberg term in the chiral Lagrangian, plus
contributions from the next-to-leading-order terms and from
the elimination of channels with higher energy thresholds.7

As an additional bonus, the nonanalytic behavior at the π�

threshold found in the single K̄N potentials [18,62] does not
appear when the π� channel is treated explicitly, and so the
potential is applicable in this entire energy region.

6We recall that the low-mass pole is not generated by the single-
channel K̄N potential of Ref. [18] unless this adjustment term is
added. The occurrence of the low-mass pole in the absence of
the adjustment term �Vij (although its position is not determined
accurately) points once again to the importance of treating the π�

channel explicitly in the coupled-channel potential.
7Note that actually the energy dependence is approximately linear in

the nonrelativistic energy E. The denominator proportional to 1/
√

s in
Eq. (23) can be expanded as (MN + mK̄ )−1{1 + O[E/(MN + mK̄ )]}
in the relevant energy region.
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TABLE I. Results of computations using the equivalent coupled-channel potentials, V
equiv,g
ij of Eq. (20) and V

equiv
ij of Eq. (25). Shown are,

in this sequence, the polynomial order of V
equiv
ij , the energy range used for parameter fixing, the “accuracy measure” given by the percentage

P , and the pole positions in the I = 0 scattering amplitude. The theoretical uncertainties of the original chiral SU(3) dynamics pole positions
are taken from Ref. [51].

Potential (polynomial in E) Energy range [MeV] P High-mass pole [MeV] Low-mass pole [MeV]

V equiv,g 32 1425 − 23i 1336 − 69i

V equiv (first order) 1403–1440 84 1423 − 26i 1378 − 80i

V equiv (second order) 1362–1511 99 1424 − 27i 1380 − 81i

Original poles [51] 1424+3
−23 − 26+3

−14i 1381+18
−6 − 81+19

−8 i

Not surprisingly, the potential strengths seen in Fig. 4
reflect qualitatively the trends already expected from the
leading-order (LO, Tomozawa-Weinberg) terms of the chi-
ral SU(3) meson-baryon Lagrangian. For example, the LO
I = 0 K̄N diagonal potential at threshold, when integrated
over volume, gives UK̄N→K̄N � −3/(4f 2) � −3.4 fm2, with
the pseudoscalar meson decay constant f � 92 MeV. The
corresponding LO I = 0 π� diagonal potential is slightly
stronger and gives Uπ�→π� � −1/f 2 � −4.5 fm2. Next-to-
leading-order terms are important, of course, and contribute to
the more detailed quantitative behavior of the Uij .

The smooth energy dependence of U
equiv,�V
ij (

√
s) in Fig. 4

justifies terminating the polynomial expansion (25) of the
parametrized potential V

equiv
ij at low orders (i.e., first or second

order, αmax = 1, 2). The energy range of validity for this
parametrization is determined by maximizingP as discussed in
Sec. II B. The lower boundary of this energy window is varied
in steps of one MeV upward from 1200 MeV, while the upper
boundary is chosen below 1660 MeV in order to avoid the
nonanalytic behavior at the threshold of the (eliminated) η�

channel. By this procedure, the energy window of optimized

FIG. 4. Solid lines: volume integrals of equivalent potentials
including the adjustment term �Vij (

√
s), U

equiv,�V
ij (

√
s) of Eq. (32),

in the isospin I = 0 channels (K̄N → K̄N, π� → π�, and K̄N →
π�). Shown for comparison are the parametrizations U

equiv
ij (

√
s )

according to Eq. (25) with first- and second-order polynomial ex-
pansions (dotted and dashed lines, respectively). The energy range
for fitting the first-order (second-order) polynomial representations
of V

equiv
ij is 1403–1440 MeV (1362–1511 MeV).

fitting is determined as 1403–1440 MeV (1362–1511 MeV)
for the first-order (second-order) polynomial. The resulting
polynomial coefficients, Kα,ij , are summarized in Table II.
They display excellent convergence in the following sense: The
K2 coefficients are an order of magnitude smaller than K0 and
K1. The latter do not change significantly when including the
K2 terms. This indicates the dominance of the linear energy
dependence and justifies the truncation of the expansion at
the second order. The volume integral U

equiv
ij (

√
s) is shown

in Fig. 4 by dashed (first-order parametrization) and dotted
(second-order parametrization) lines.

The scattering amplitudes calculated using the optimized
potential V

equiv
ij of Eq. (25), with first- and second-order

polynomials, are compared with the original chiral SU(3)
dynamics amplitudes in Fig. 5. The results of both the first- and
second-order parametrizations are now significantly improved
from those of F equiv,g in Fig. 2, thanks to the added adjustment
term. It is worth noting that the potential with the first-
order polynomial properly extrapolates the amplitude down
to the region near the π� threshold even though the lower
boundary of the energy range for parameter adjustment is
around 1400 MeV, far above the π� threshold at ∼1330 MeV.
This can be understood by the almost linear energy dependence
of the potential strength seen in Fig. 4.

In order to investigate the pole structure of the �(1405), the
scattering amplitudes are analytically continued into the region
of complex energies. In Fig. 6, we plot the deviations of the
amplitudes, �fij (z) of Eq. (26), in the complex energy plane.
With both the first- and second-order polynomial potentials,
each component of the original chiral SU(3) amplitude matrix
is reproduced with 20% accuracy, including the energy region
of the high-mass (K̄N -dominated) pole of the �(1405). The
low-mass pole can likewise be covered when the second-order
polynomial is used. For a more quantitative assessment, the
pole positions and the accuracy measure P defined in Eq. (28)
are summarized in Table I. The first-order polynomial potential
reproduces the pole positions within the theoretical uncertain-
ties given in Ref. [51]. The second-order polynomial version of
the potential further improves these pole positions, which are
then reproduced to an accuracy of 1 MeV. The value of P is as
high as 84 (99) with the first-order (second-order) potential.
This result is comparable with or better than that of the
single-channel K̄N potential in Ref. [18], which givesP = 96.
Recalling that the complete set of available experimental data
for K−p scattering and reactions is reproduced accurately by
the original amplitude of chiral SU(3) dynamics, the equivalent
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TABLE II. Polynomial coefficients Kα,ij in Eq. (25) of the equivalent coupled-channel potentials in the I = 0 channels. Results of the
coefficients of the first- and second-order polynomials in the energy E = √

s − mK − MN are summarized. In both cases, the range parameters
are bπ� = 0.80 fm and bK̄N = 0.43 fm.

Polynomial type Channel K0 [MeV] K1 [MeV] K2 [MeV]

First order π�, π� −5.67×102 −2.90×102

π�, K̄N 4.11×102 1.16×102

K̄N, K̄N −1.03×103 −2.58×102

Second order π�, π� −5.76×102 −2.74×102 −3.93×100

π�, K̄N 4.11×102 1.05×102 −6.42×101

K̄N, K̄N −1.03×103 −2.59×102 −1.86×101

potential in its second-order polynomial representation and
with its explicit treatment of coupled channels can justifiably
be called a realistic K̄N -π� potential.

It is remarkable that the energy-dependent strengths of
the coupled-channel potential can be parametrized very well
by minimal polynomial orders. This is in strong contrast
to the single-channel K̄N effective potential for which the
parametrization of the energy dependence requires a tenth-
order polynomial [18]. This important difference can be traced
to the explicit treatment of the π� channel. In Refs. [62,93],
it is shown by switching off the π� ↔ K̄N channel coupling
that the low-mass and high-mass poles are dynamically gener-
ated, respectively, by the attractive single-channel π� and K̄N
interactions in chiral SU(3) dynamics. In the single-channel
K̄N potential [18], a nontrivial strong energy dependence
necessarily emerges through the condition to incorporate the
low-mass pole that appears in the eliminated π� channel.
Using the coupled-channel potential, this low-mass pole is now
generated dynamically in the explicitly included π� channel.

A point of practical importance is the observation that
the coupled-channel potential represented by a first-order
polynomial in the energy works already very well in a rea-
sonably broad energy interval, including extensions to the
complex energy plane. An application of this potential to
few-body K̄-nuclear calculations would be of some interest.
A linear E dependence of the potential can be renormalized
into an equivalent nonlocality (see, e.g., Ref. [94]). This
provides a way to avoid ambiguities related to the energy
dependence of the potential, which are a prime source of
theoretical uncertainties in computations of few-body K̄
nuclei [41].

B. I = 1 potential

The K̄N -π�-π� local coupled-channel potential in the
I = 1 channel is constructed in the same manner as the
potential in the I = 0 channel. The range parameters are
determined to minimize the deviation �Fg in Eq. (22) for
the π�, π�, and K̄N channels. The results for the range
parameters in the I = 1 channel are

bI=1
π� = 0.43 fm, bI=1

π� = 0.51 fm, bI=1
K̄N

= 0.35 fm. (33)

An assessment of these parameters and their validity is again
given in Appendix B. Figure 7 summarizes the scattering
amplitudes F

equiv,g
ij resulting from the potential (20) (without

�Vij ), in comparison with the original amplitudes from chiral
SU(3) dynamics.8 As in the I = 0 case, the qualitative agree-
ment is already quite acceptable at this stage.

Next we add the adjustment term �Vij as in Eq. (23).
The optimal �Vij is determined to minimize the deviation
�F (

√
s) in Eq. (24) at each energy. We find again that the

energy dependence of the volume integrals of the potentials
is almost linear in each I = 1 channel. The strengths of these
optimized equivalent potentials are then parametrized by first-
and second-order polynomials as in the I = 0 case. We use
the same energy ranges for parametrization as before, namely
1403–1440 and 1362–1511 MeV for the first- and second-order
polynomial expansions, respectively. Once again, low-order

8The nonanalytic behavior around 1360 MeV in Fig. 7 is related to
the treatment of unphysical subthreshold cuts of the u-channel Born
term in the on-shell formalism [79,95].

FIG. 5. Scattering amplitudes F
equiv
ij calculated using the potential in Eq. (25) with first-order (dotted lines) and second-order (dashed lines)

polynomials in comparison with the original chiral SU(3) dynamics amplitudes Fij (solid lines) in the I = 0 channel. The real (imaginary)
parts are shown by the thick (thin) lines.
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FIG. 6. Deviations �fij (z) [see Eq. (26)] of the I = 0 amplitudes in the complex energy plane relative to the original chiral SU(3)
amplitudes, visualized as contours. Upper and lower figures represent the results for �fij computed with first- and second-order polynomial
parametrizations of the potential strengths, respectively. From the left, each figure displays �fπ�,π� , �fπ�,K̄N , and �fK̄N,K̄N . Crosses denote
positions of the two poles of the original amplitude in the complex plane. The sequence of contour lines are given in steps of 0.2.

FIG. 7. Scattering amplitudes F
equiv,g
ij (dotted lines) resulting from the equivalent potential (20) in comparison with the original chiral SU(3)

dynamics amplitudes (denoted by F , sold lines) in the I = 1 channel. The real (imaginary) parts are shown by the thick (thin) lines.
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TABLE III. Coefficients Kα,ij in Eq. (25) of the strength of the equivalent potentials in the I = 1 channel. The results of the first- and
second-order polynomials are summarized. In both cases, the range parameters are bπ� = 0.43 fm, bπ� = 0.51 fm, and bK̄N = 0.35 fm.

Polynomial type Channel K0 [MeV] K1 [MeV] K2 [MeV]

First order π�, π� 4.73×102 3.58×102

π�, π� −4.87×102 −1.77×102

K̄N, K̄N −5.68×102 −2.69×102

π�, π� −3.25×102 4.11×101

π�, K̄N 6.05×102 6.30×101

π�, K̄N 6.37×102 −2.62×101

Second order π�, π� 4.35×102 1.63×102 −2.99×102

π�, π� −4.65×102 −1.74×102 1.59×100

K̄N, K̄N −5.83×102 −3.78×102 9.13×101

π�, π� −3.27×102 −2.83×100 9.09×101

π�, K̄N 5.95×102 2.89×101 2.20×101

π�, K̄N 6.35×102 −1.37×102 −2.87×101

polynomials turn out to be sufficient for the present purpose.
Table III lists the polynomial coefficients of the parametrized
potentials. The amplitudes F

equiv
ij resulting from the optimized

equivalent potential are shown in Fig. 8. The original chiral
SU(3) amplitudes are now quantitatively well reproduced. (We
note that, in the I = 1 channel, theoretical uncertainties of the
Fij from chiral SU(3) dynamics are larger than those in the
I = 0 channel [3,51].)

IV. ANALYSIS OF �(1405) COMPOSITION
AND STRUCTURE

A. Normalization and wave function
with energy-dependent potential

Our coupled-channel local potential is energy dependent as
seen from Eq. (23). In order to analyze the structure of the

�(1405) in this context, one must first examine the proper
normalization condition for its wave function. A system with
an energy-dependent and real potential requires a modification
of the normalization scheme and orthogonality condition for
eigenstates in order to satisfy fundamental rules of quantum
mechanics [18,66–72]. The generalization to a non-Hermitian
system with a single-channel energy-dependent potential has
been performed in Ref. [18], referring to the treatment of a
resonance eigenstate with a complex potential [96–98].

The normalization condition for the coordinate space wave
function ψ (r ) of a discrete eigenstate is derived, starting from
the continuity equation, as

1 =
∫

d3r ψ (r )

[
1 − δV

δE
(r, E)

]
ψ (r ), (34)

FIG. 8. Scattering amplitudes F
equiv
ij resulting from the potential (25) with first-order (dotted lines) and second-order (dashed lines)

polynomials, in comparison with the original chiral SU(3) amplitudes (denoted by Fij , solid lines) in the I = 1 channel. The real (imaginary)
parts are shown by the thick (thin) lines.
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where V is the energy-dependent potential. This condition can
be directly extended to a coupled-channel system:

1 =
∫

d3r
∑
i,j

ψi (r )

[
δij − δVij

δE
(r, E)

]
ψj (r ), (35)

as explained in Appendix C. However, in this derivation,
the physical interpretation of the δVij /δE term needs to be
clarified. In the present work, we give an interpretation of the
modified norm by deriving Eq. (35) in an alternative way using
the Feshbach projection method [99,100].

The energy-dependent potential is defined in a certain
model space (such as K̄N -π�), called “P space” for later
convenience. We consider the P space as a subspace of the
“full space” in which the Hamiltonian is energy independent.
In other words, we assume that the energy dependence of the
potential emerges from the elimination of implicit channels in
the full space. In our case of meson-baryon interactions, the
implicit channels can be, for example, a one-body discrete state
representing a “bare” �∗ as a three-quark state, higher energy
meson-baron channels, meson-meson-baryon channels, and so
on. Thus, we first prepare the state vector in the full space |ψ〉
and the corresponding Gamow state |ψ†〉,

|ψ〉 =

⎛
⎜⎝

|ψ1〉
|ψ2〉

...

⎞
⎟⎠, |ψ†〉 =

⎛
⎜⎜⎝

|ψ†
1〉

|ψ†
2〉
...

⎞
⎟⎟⎠, (36)

conceptually including all possible channels (that is, the set
of |ψi〉 represents all one-body to many-body systems of
any relevant degrees of freedom acting in the full space).
The Gamow vector |ψ†〉 is introduced to properly normalize
resonance wave functions.

These state vectors satisfy the Schrödinger equations,9

Ĥ |ψ〉 = (Ĥ0 + V̂ )|ψ〉 = E|ψ〉, (37)

〈ψ†|Ĥ = 〈ψ†|(Ĥ0 + V̂ ) = 〈ψ†|E, (38)

with an energy-independent interaction V̂ and a free Hamil-
tonian Ĥ0 which is diagonal for each channel. A resonance
wave function can be normalized as 〈ψ†|ψ〉 = 1 employing
the Gamow state vector.

Suppose now that the full space is reduced to a model space
(P space). The effective interaction acting on P space will
then be energy dependent. The reduction of channels can be
performed by the Feshbach projection method [99,100]. Let P̂
be the projection operator onto P space. The projection opera-
tor to the eliminated channels is denoted by Q̂. These operators
meet the usual relations for general projection operators,
P̂ + Q̂ = 1, P̂ Q̂ = 0, P̂ 2 = P̂ , Q̂2 = Q̂. We introduce the
quantities Xi and Z as the norm of channel i in the P space and
the sum of the norms of the channels in Q space, respectively:

Xi = 〈ψ†
i |ψi〉 (i ∈ P ), Z = 〈ψ†|Q̂|ψ〉. (39)

9In Ref. [96], the Gamow vector is shown to satisfy the Schrödinger
equation, Ĥ †|ψ †〉 = E∗|ψ †〉, which is equivalent to Eq. (38). The
Hermitian conjugate of Ĥ is defined with proper boundary conditions
for both ψ and ψ † (see Ref. [96] for more details).

Inserting P̂ + Q̂ = 1 in the normalization of the state vector,
〈ψ†|ψ〉 = 1, implies the following sum rule for Xi and Z:

〈ψ†|P̂ + Q̂|ψ〉 = 〈ψ†|P̂ P̂ |ψ〉 + 〈ψ†|Q̂Q̂|ψ〉
=

∑
i∈P

Xi + Z = 1. (40)

When the P space consists of only two-body states [such as
the K̄N -π� coupled-channel system of the �(1405)], Xi

and Z, respectively, correspond to the compositeness and
the “elementarity” of the states |ψi〉 ∈ P [19–22,24–27].
Historically, Z has been introduced in quantum field theory
as the renormalization constant of a bare field [30]. Its
interpretation as elementarity has later been extended to stand
for the contribution from the implicit channels including
continuum states [22]. The Feshbach projection formalism
provides a foundation for this interpretation, with Z including
the contributions from all channels in Q space. Operating
with P̂ or Q̂ from the left (right) to Eq. (37) and Eq. (38), the
state vectors in P space and Q space are related as

Q̂|ψ〉 = 1

E − Q̂Ĥ Q̂
(Q̂V̂ P̂ )P̂ |ψ〉, (41)

〈ψ†|Q̂ = 〈ψ†|P̂ (P̂ V̂ Q̂)
1

E − Q̂Ĥ Q̂
. (42)

The reduced Schrödinger equation for the P -space channels,
P̂ |ψ〉, becomes

(P̂ Ĥ 0P̂ )P̂ |ψ〉 + V̂ eff(E)P̂ |ψ〉 = EP̂ |ψ〉, (43)

with the effective potential

V̂ eff(E) = P̂ V̂ P̂ + (P̂ V̂ Q̂)
1

E − Q̂Ĥ Q̂
(Q̂V̂ P̂ ) . (44)

The second term in Eq. (44) introduces the energy dependence
of this effective potential. Acting on P̂ |ψ〉, V̂ eff(E) is
constructed such that it exactly reproduces the wave functions
|ψ〉 of the full Schrödinger equation for the channels within
the restricted model space.

From Eqs. (41) and (42), the norm Z of the eliminated Q-
space channels can be expressed in terms of P -space quantities
as follows:

Z = 〈ψ†|Q̂Q̂|ψ〉

= 〈ψ†|P̂ (P̂ V̂ Q̂)

(
1

E − Q̂Ĥ Q̂

)2

(Q̂V̂ P̂ )P̂ |ψ〉

= 〈ψ†|P̂
(

−δV̂ eff

δE
(E)

)
P̂ |ψ〉. (45)

This is the general expression for the elementarity in operator
form. It is related to the additional term appearing in Eq. (35).
Denoting the wave function in P space as P |ψ〉 ≡ |ψP 〉, the
general form of the normalization condition for |ψP 〉 with the
energy-dependent effective P -space potential is

1 = 〈ψ†
P |

(
I − δV̂ eff

δE
(E)

)
|ψP 〉. (46)
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In the present case of the �(1405), the P space consists of
the two-body system of coupled K̄N and π� channels. All
other channels such as η�, K�, and bare �∗ are eliminated
and included in Q space. The completeness relation is written
as

1 = P̂ + Q̂ =
∑
i∈P

∫
d3ri |r i〉〈r i | + Q̂, (47)

where r i denotes the relative coordinates in the P -space
two-body channels. Inserting the completeness relation into
Eq. (45) gives

Z =
∑
i,j∈P

∫∫
d3rid

3rj ψi (r i )

(
−δV eff

ij

δE
(r i , rj ; E)

)
ψj (rj ),

(48)

where 〈 r i | ψ 〉 = 〈ψ† | r i 〉 ≡ ψi (r i ) is the P space wave
function. If the effective interaction is local as in Sec. III, with
V eff ∝ δ(3)(r i − rj ), this relation reduces to

Z =
∑
i,j∈P

∫
d3r ψi (r )

(
−δV eff

ij

δE
(r; E)

)
ψj (r ). (49)

This is exactly the same as the second term in Eq. (35). The
compositeness Xi for channel i in P space can simply be
written as

Xi = 〈ψ†
i |ψi〉 =

∫
d3r ψ2

i (r ) (i ∈ P ). (50)

The normalization of the full wave function |ψ〉, or equiva-
lently, the sum rule (40), leads to the normalization condition
of the P -space wave function in Eq. (35). In this way, using the
Feshbach projection method, we derive an appropriate normal-
ization condition of the wave function for non-Hermitian sys-
tems with energy-dependent potentials. At the same time, this
formulation substantiates the “elementarity” interpretation of
the energy-derivative term, previously discussed in Ref. [27].

We comment briefly on the relation between the energy
dependence of the potential and positivity aspects in Q space.
For a stable bound state, both compositeness and elementarity
are given by absolute values squared and hence should be non-
negative [21]. In this case, Eq. (49) implies that the energy
derivative of the potential should be negative. However, the
Q space is not necessarily a physical space. In the present
context, it is introduced as an auxiliary means to interpret the
energy dependence of the potential. In such a case, negative
norm states are not unusual as an effective description (see
Refs. [101,102]).

Next, consider the expectation value of an operator Ô in the
full P + Q space:

〈Ô〉 = 〈ψ†|P̂ ÔP̂ |ψ〉 + 〈ψ†|Q̂ÔQ̂|ψ〉
+ 〈ψ†|P̂ ÔQ̂|ψ〉 + 〈ψ†|Q̂ÔP̂ |ψ〉. (51)

Like the normalization condition (46), we wish to express
〈Ô〉 within P space only. If Ô is diagonal with respect to
the channels, the last two terms in Eq. (51) vanish. The first
term represents the expectation value in P space and can
be straightforwardly calculated. The second term stands for

the contribution from Q space. One might naively expect an
expression analogous to the normalization condition, namely
〈ψ†|P̂ Ô(− ∂V̂ eff

∂E
)P̂ |ψ〉, in terms of P -space quantities. How-

ever, with Eqs. (41) and (42), the correct expression becomes

〈ψ†|Q̂ÔQ̂|ψ〉

= 〈ψ†|P̂ (P̂ V̂ Q̂)
1

E − Q̂Ĥ Q̂
Ô

1

E − Q̂Ĥ Q̂
(Q̂V̂ P̂ )P̂ |ψ〉.

(52)

This form must be maintained unless Ô commutes with all
other operators. Therefore, in contrast to the normalization
condition, the calculation of the full 〈Ô〉 can generally not be
reduced to P space only. The limited information that can be
extracted is the channel expectation value of the ith component,
〈ψ†

i |Ô|ψi〉 ≡ 〈Ô〉i in P space. For example, the mean-squared
distance of a two-body system in channel i is written as

〈r̂2〉i =
∫

d3r r2ψ2
i (r ) (i ∈ P ). (53)

Note that for a resonance, with its normalization involving the
Gamow state vector, this quantity will in general be complex,
reflecting the instability of that resonant state.

B. Application to �(1405)

We are now prepared to calculate the norms of the K̄N
and π� components of the �(1405) as a composite two-body
object, together with its “mean distance,” using the realistic
K̄N -π� potentials in the I = 0 channel constructed in Sec. III.
We recall that the detailed properties of the �(1405) are
strongly influenced by the energy dependence of the (real)
coupled-channel potentials V

equiv
ij (r, E) of Eq. (25) which we

now identify with V eff
ij of Eq. (44). In the present context,

the energy dependence can be thought of as coming from
two sources. First, there is the primary energy dependence of
the chiral interaction which has its origin in the “integrating
out” of high-energy degrees of freedom when constructing the
low-energy chiral EFT.10 Second, restricting the active degrees
of freedom to the K̄N and π� channels as elements of P space
means relegating other channels with higher mass thresholds
to Q space, which generates additional energy dependence in
V

equiv
ij . The complete E dependence of the potential is then

determined by reproducing empirical data and parametrized in
the polynomial form (25).

In general, the K̄N -π� two-component wave functions at
an energyE in Eq. (3) are subject to boundary conditions for the
incident and outgoing states. At the energy corresponding to a
pole of the scattering amplitude, the wave function behaves like
a discrete eigenstate, satisfying an outgoing-wave boundary

10As an example, consider a linear σ model in which pseudoscalar
and scalar fields interact with Fermions through (energy-independent)
Yukawa couplings. In the low-energy limit with spontaneously bro-
ken chiral symmetry, eliminating the (heavy) scalar field implies
pseudovector derivative couplings of the (pseudoscalar) Nambu-
Goldstone bosons in the resulting nonlinear σ model, with energy
dependence generated by time derivatives.
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TABLE IV. Compositeness Xi and elementarity Z for each pole of the �(1405) coupled-channel system, calculated using the K̄N -π�

potential of Eq. (25). Results from the K̄N single-channel potential in Ref. [18] are also shown for comparison, together with residues of the
poles of the scattering amplitudes evaluated in Ref. [22].

State Method Xπ� XK̄N Z

High-mass pole Coupled-channel K̄N -π� potential (first order) −0.05 − 0.23i 0.96 − 0.15i 0.09 + 0.38i

Coupled-channel K̄N -π� potential (second order) −0.02 − 0.25i 1.01 − 0.13i 0.01 + 0.37i

Single-channel K̄N potential [18] 1.01 − 0.07i

Residue of the pole [22] −0.19 − 0.22i 1.14 + 0.01i 0.05 + 0.21i

Low-mass pole Coupled-channel K̄N -π� potential (first order) 0.31 + 0.86i −0.22 + 0.03i 0.91 − 0.90i

Coupled-channel K̄N -π� potential (second order) 0.18 + 0.97i −0.30 + 0.07i 1.12 − 1.04i

Single-channel K̄N potential [18] −0.33 − 0.03i

Residue of the pole [22] 0.66 + 0.52i −0.39 − 0.07i 0.73 − 0.45i

condition. Such wave functions are then calculated at the
energies of the high-mass and low-mass poles of the �(1405).
Both these poles are located on the second Riemann sheet in
the π� channel. In particular, the π� component of the wave
function, ψπ� (r ), diverges at r → ∞. To calculate matrix
elements, we regularize the wave function using the complex
scaling method [103–105]. The relative coordinate r and the
wave function ψi are transformed as

r → reiθ , (54)

ψi (r ) → ei 3θ
2 ψi (reiθ ), (55)

with a real parameter θ . It is known that expectation values with
respect to discrete eigenstates remain unchanged under this
transformation. Hence, the compositeness Xi , the elementarity
Z, and the expectation value of r̂2 can be calculated as

Xi = 1

N
∫

d3r ψ2
i (reiθ ), (56)

Z = 1

N
∑
i,j

∫
d3r ψi (reiθ )

[
−δV

equiv
ij (reiθ , E)

δE

]
ψj (reiθ ),

(57)

〈r2〉i = 1

N
∫

d3r r2e2iθψ2
i (reiθ ), (58)

with

N =
∑
i,j

∫
d3r ψi (reiθ )

[
δij − δV

equiv
ij (reiθ , E)

δE

]
ψj (reiθ ),

(59)

where the sums over i, j refer to the P -space channels, K̄N
and π�. We note that Xi, Z, and 〈r2〉i involving regularized
integrals are independent of the parameter θ . These quanti-
ties are computed for both poles of the �(1405), using the
realistic coupled-channel potentials in Sec. III, with strengths
parametrized by first- or second-order polynomials.

Results of the compositeness Xi in channel i and the
“elementarity” Z are summarized in Table IV. The unstable
nature of the resonances and their description in terms of
Gamow states has a consequence that the Xi and Z emerge
as complex numbers. While the imaginary parts add up to zero
in the sum rule

∑
i Xi + Z = 1, their physical interpretation in

the individual terms is not straightforward. A natural criterion
is proposed in view of the similarity of the resonance wave
function with that of a stable bound state [22,26]: If the
compositeness of a channel i is close to unity with small
imaginary part, then this channel dominates the structure of the
resonance. With this criterion, we conclude that the high-mass
pole is indeed dominated by the K̄N channel. In fact, this upper
pole moves to the real axis and becomes a K̄N bound state
when the coupling to the π� channel is turned off. With this
coupling activated, the �(1405) figures as a K̄N quasibound
state embedded in the π� continuum.

The low-mass pole, on the other hand, is characterized by
a large imaginary part; i.e., the pole position is far removed
from the real axis. In this case, following the discussion in
Refs. [24–27], a definite interpretation concerning the physical
composition and detailed structure associated with this pole is
not possible.

From Table IV, one finds that deviations between results
calculated with different parametrizations of V

equiv
ij (r, E) are

less than 0.1 for the high-mass pole and about 0.2 for the low-
mass pole. The larger deviations in the latter can be understood
by differences in the position of the low-mass pole as shown
in Table I.

Alternatively, one can make use of the complex numbers in
Table IV and introduce real quantities,

X̃i = |Xi |∑
j |Xj | + |Z| , Z̃ = |Z|∑

j |Xj | + |Z| ,∑
i

X̃i + Z̃ = 1, (60)

which permit a probabilistic interpretation [24–27]. For the
realistic V

equiv
ij in its second-order polynomial version, this

yields the following values at the K̄N -dominated high-mass
pole,

X̃K̄N = 0.62, X̃π� = 0.15, Z̃ = 0.23, (61)

whereas for the low-mass pole one finds

X̃K̄N = 0.11, X̃π� = 0.35, Z̃ = 0.54. (62)

This confirms the dominance of the K̄N component in the
high-mass pole. For the low-mass pole, the results, Eq. (62),
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TABLE V. Root-mean-squared distance
√

〈r2〉
i

in each channel, calculated using Eq. (58). The K̄N -π� coupled-channel potentials with
first- and second-order polynomial representations are employed. Results obtained using the K̄N single-channel potential in previous work [18]
are shown for comparison.

State Method
√

〈r2〉π� [fm]
√

〈r2〉K̄N [fm]

High-mass pole Coupled-channel K̄N -π� potential (first order) 0.46 + 0.17i 1.03 − 0.60i

Coupled-channel K̄N -π� potential (second order) 0.45 + 0.21i 1.05 − 0.62i

Single-channel K̄N potential [18] 1.04 − 0.61i

Low-mass pole Coupled-channel K̄N -π� potential (first order) 0.38 − 0.56i 0.12 + 0.36i

Coupled-channel K̄N -π� potential (second order) 0.42 − 0.57i 0.17 + 0.42i

Single-channel K̄N potential [18] 0.13 + 0.41i

do not offer a straightforward interpretation because of the
large imaginary parts of Xπ� and Z.

It is instructive to compare the present results with those
of other evaluations based on the same scattering amplitudes
in Refs. [50,51]. First, using the single-channel K̄N potential
constructed in Ref. [18], we evaluate the compositeness of the
K̄N channel, also shown in Table IV. Remarkably, XK̄N is
quantitatively close to the corresponding quantity, resulting
from the second-order coupled-channel potential, for both
high-mass and low-mass poles. This confirms that the K̄N
component of the wave function can be properly determined
even with the single-channel potential as starting point, once
the normalization condition (35) is applied.

The compositeness can also be looked at by studying the
residues at the poles of the on-shell scattering amplitudes in
Ref. [22]. We show the results of Ref. [22] by rewriting Z +
Xη� + XK� → Z in order to be consistent with the present
model space. While these numbers display a similar tendency
compared with the results obtained from the coupled-channel
potential, there are nonetheless sizable deviations. Composite-
ness and elementarity are in general model-dependent quan-
tities except for near-threshold states [21,24,27]. The norm
(50) of the wave function depends on the off-shell behavior of
the amplitude. In the present calculations, off-shell behavior
is reflected in the spatial distribution of the potential, while it
is implicitly determined by dimensional regularization in the
formulation of Ref. [22]. Hence, we may regard the difference
of those results as a measure of model dependence related to
off-shell behavior. Nevertheless, the K̄N dominance of the
high-mass pole is a robust conclusion in all of these studies,
as also indicated by an approach based on a generalized
weak-binding relation [24,26].

Results for root mean-squared distances,
√

〈r2〉i , are sum-
marized in Table V, together with those obtained using the
single-channel K̄N potential of Ref. [18]. Small deviations
between values of

√
〈r2〉i calculated with different potentials

show a tendency seen before in the compositeness: The differ-
ence between first- and second-order polynomial parametriza-
tions of the potential is larger in the low-mass pole results,
reflecting the difference of the pole positions in those cases. On
the other hand,

√〈r2〉K̄N calculated using the coupled-channel
potential in second-order polynomial form differs from the
value found with the single-channel K̄N potential by less than
0.1 fm. Both these potentials are based on the same scattering
amplitude, so the properly constructed equivalent potentials
give consistent spatial distributions of the wave functions.

The interpretation of the complex
√

〈r2〉i , likewise a con-
sequence of the unstable nature of the resonance states, is
again not straightforward. In Ref. [18], the real-valued spatial
size associated with the high-mass pole is estimated to be
1.44 fm from the behavior of the wave function at large
distance. This indicates that the size of the �(1405) is larger
than that of ordinary hadrons. A similar tendency is seen
for the magnitudes of

√〈r2〉K̄N . The wave function resulting
from the coupled-channel potential displays an unusually large
distance scale in the diagonal K̄N matrix element of r2. We
thus conclude that the large spatial extension of the �(1405)
is confirmed by the present calculations using the K̄N -π�

equivalent potential.

V. SUMMARY

In the present work, we have constructed a quantitatively
reliable K̄N -π�-π� coupled-channel local potential. This
potential accurately reproduces the subthreshold amplitudes
based on chiral SU(3) dynamics, with stringent threshold
constraints from the SIDDHARTA kaonic hydrogen data.
This novel potential is suitable for systematic and detailed
computations using few-body equations in theoretical studies
of the �(1405) and of K̄-nuclear systems, relevant for the
analysis and interpretation of current and future experiments.

The determination of the energy-dependent potential
strengths is systematically performed by imposing matching
conditions for the scattering amplitudes. In the practical ap-
plication to the K̄N -π�-π� system of coupled channels,
Gaussian spatial distributions are adopted, with range pa-
rameters uniquely determined to reproduce the scattering
amplitudes near thresholds. In comparison with the previously
developed effective single-channel K̄N potential [18], it is
noteworthy that the explicit treatment of the π� channel natu-
rally generates the low-mass pole within the two-pole structure
of the �(1405). Furthermore, a second-order polynomial turns
out to be sufficient as a quantitatively successful parametriza-
tion of the energy dependence of the coupled-channel potential.
With this representation, the results are comparable to those
using the single-channel K̄N potential [18], which, however,
required a tenth-order polynomial to achieve a similar level of
accuracy.

Using the wave functions derived from the so-constructed
equivalent coupled-channel potential, the detailed structure
and composition of the �(1405) has been analyzed. For this
purpose, it is necessary to establish a proper normalization
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condition of the resonance wave functions generated by the
energy-dependent potential. This energy dependence intro-
duces a specific additional term in the normalization condition.
Its derivation is demonstrated using the Feshbach projection
method. This scheme offers a well-posed interpretation for
each part of the normalization condition in terms of the notions
of compositeness and elementarity that have recently been used
to investigate the structure of hadrons. When applied to the
calculation of properties of the �(1405), it is found that the
K̄N component of the properly normalized wave function of
the coupled-channel system is consistent with the one obtained
using the single-channel effective K̄N potential. We demon-
strate that the high-mass pole of the �(1405) is dominated
by the K̄N component which features a characteristic spatial
distance scale significantly larger than that of ordinary hadrons,
and supporting the picture of the �(1405) as a quasibound K̄N
molecular state embedded in the π� continuum.
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APPENDIX A: SCATTERING SOLUTIONS OF
COUPLED-CHANNEL SCHRÖDINGER EQUATION

In this Appendix, we present practical procedures
to obtain scattering solutions of the N coupled-channel
Schrödinger equation (3). For a spherically symmetric poten-
tial V

equiv
ij (r, E), the s-wave radial Schrödinger equation reads

[(
− 1

2μi

d2

dr2
+ �Mi

)
δij + V

equiv
ij (r, E)

]
uj (r ) = Eui (r ),

(A1)

where ui (r ) = rψl=0
i (r ). To extract the coupled-channel S

matrix, the wave function must satisfy the boundary condition
in Eq. (7), namely,

ui,j (r )
∣∣
r→∞ ∝ e−iki r δij −

√
μikj

μjki

Sij (E) eiki r (A2)

≡ e−iki r δij − eiki r S̃ij (E), (A3)

with ki = √
2μi (E − �Mi ). This wave function represents

the scattering solution with an incoming wave in channel
j which is then scattered into channel i with the weight
determined by S̃ij .

Equation (A1) is a second-order differential equation. Its
general solution for a scattering state is specified by the
boundary condition at r = 0, as in the single-channel problem.
For a given energy E, by setting

ui (r = 0) = 0 (A4)

and choosing a value for the derivative,

dui (r = 0)

dr
≡ u′

i (r = 0), (A5)

a particular solution is obtained, which we denote ū
(1)
i (r ).

At sufficiently large r = R, where the potential vanishes, the
wave function behaves as a superposition of the incoming and
outgoing waves. In general, it contains incoming waves in all
channels. It can therefore be expressed as a linear combination
of solutions (A3) as

ū
(1)
i (R) =

∑
j

[e−ikiRδij − eikiRS̃ij (E)] A
(1)
j , (A6)

with weight factors A
(1)
j (j = 1, . . . , N).

To obtain the solution with the proper boundary condition
at large r , we now prepare a set of N solutions ū

(1)
i , . . . , ū

(N )
i

by choosing different u′
i (r = 0). Because the weight factors in

Eq. (A6) depend on the choice of u′
i (r = 0), we can construct

N linearly independent solutions. These are again written as
linear combinations of Eq. (A3):

ū
(α)
i (R) =

∑
j

[e−ikiRδij − eikiRS̃ij (E)] A
(α)
j , (A7)

α = 1, . . . , N. (A8)

Their derivatives with respect to r become

ū
(α)′
i (R) =

∑
j

iki[−e−ikiRδij − eikiRS̃ij (E)] A
(α)
j . (A9)

The weight matrix A
(α)
j is then determined from Eqs. (A7)

and (A9):

A
(α)
j = eikj R

ikj ū
(α)
j (R) − ū

(α)′
j (R)

2ikj

. (A10)

Constructing the inverse of the matrix A
(α)
j , the S matrix can

be calculated as

S̃ij (E) =
√

μikj

μjki

Sij (E) (A11)

= e−2ikiRδij − e−ikiR
∑

α

ū
(α)
i (A−1)

(α)
j . (A12)

APPENDIX B: RANGE PARAMETERS
OF THE POTENTIAL

Here we discuss the validity and interpretation of the range
parameters, bi , of the potential determined in Secs. II B and
III. This includes checking the sensitivity of the scattering
amplitudes with respect to variations of the range parameters.
In Fig. 9, we show the K̄N and π� scattering amplitudes in
the I = 0 channel generated by the potential V

equiv,g
ij (r, E)

of Eq. (15), using different sets of range parameters: bπ� =
bK̄N = 0.2, 0.6, and 1.0 fm. By comparison with Fig. 2 and
the optimized values of bπ� = 0.80 fm and bK̄N = 0.43 fm, it
is evident that the amplitudes are very sensitive to the range
parameters. Although the deviations in Fig. 9 can in principle
be absorbed by tuning the adjustment term �Vij , it is certainly
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FIG. 9. Scattering amplitudes F
equiv,g
ij (dotted lines) produced by the potential of Eq. (20) in comparison with the original amplitudes, F ,

from chiral SU(3) dynamics (solid lines) in the I = 0 channel. In the series of figures from top to bottom, the range parameters are chosen
bπ� = bK̄N = 0.2, 0.6, and 1.0 fm, respectively. Real (imaginary) parts of the amplitudes are displayed as thick (thin) lines.

better justified instead to use the amplitudes in Fig. 2 as a
starting point. This validates the entire procedure in Sec. II B
for the determination of the range parameters.

In order to interpret the distance scales associated with the
range parameters (31) and (33), it is instructive to consider
a Yukawa-type potential as it would be realized in a boson-
exchange picture. The procedure for determining the range
parameters is the same as for the Gaussian case in Sec. II B.
The explicit form of the Yukawa potential which meets the
requirements (17) and (18) is given by

V
equiv,Y
ij (r, E) = e−r/(1/2bY

i +1/2bY
j )

4πrbY
i bY

j

√
MiMj

sμiμj

Vij (
√

s), (B1)

with range parameters bY
i . With this potential, minimizing

�F of Eq. (22) gives bY
π� = 0.66 fm and bY

K̄N
= 0.34 fm.

We have checked that this Yukawa potential reproduces the
scattering amplitudes as well as the Gaussian potential in Fig. 2.
Translating the Yukawa range parameters into mass scales of
hypothetically exchanged “bosons,” mY

i ∼ 1/bY
i , one finds in

the K̄N channel

mY
K̄N

∼ 580 MeV (B2)

and in the π� channel

mY
π� ∼ 300 MeV. (B3)

These mass and distance scales are of natural order of magni-
tude. While mY

π� is reminiscent of two-pion exchange at inter-
mediate range, the K̄N channel reflects dynamics at shorter
distance involving a higher mass scale. In essence, several
mechanisms presumably combine in determining the finite-
range parameters. Consider, for example, the subtraction con-
stants regularizing ultraviolet divergences in chiral SU(3) dy-
namics. These constants encode high-energy (short-distance)
physics not resolved in the low-energy EFT, i.e., not treated
explicitly within the active model space. These subtraction
constants turn out to be different in sign and magnitude for the
π� and K̄N I = 0 channels: aπ� � +4.4×10−3 and aK̄N �
−2.4×10−3 (at a renormalization scale μ = 1 GeV) [51],
effectively reducing the strong π� attraction [106] while
slightly enhancing the K̄N attraction with respect to the
leading-order driving interactions, as required by the detailed
fits to the empirical K−p data base. Such differences in the
subtraction constants are expected to be reflected also in the
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range parameters of the equivalent coupled-channel potential
although there is no one-to-one correspondence.

A further distinctive short-distance effect may be the (par-
tial) Pauli blocking at the quark level in the π0�0 system,
with an extra quark pair of identical flavor appearing in the
[uū − dd̄][uds] configuration. This mechanism selectively
suppresses part of the I = 0 π� attraction. Whether such
effects might be at the origin of the different range parameters
found in the I = 1 and I = 0 channels (bI=1

π� � 0.5 fm as
compared to bI=0

π� � 0.8 fm) poses an interesting question. In
the future, one may expect that lattice QCD computations [107]
will also contribute to the determination of the range parame-
ters in question.

APPENDIX C: NORMALIZATION AND
ORTHOGONALITY CONDITIONS WITH

ENERGY-DEPENDENT POTENTIAL

Here we derive the normalization condition in Eq. (35)
together with the orthogonality relation of wave functions
for an energy-dependent coupled-channel potential in a non-
Hermitian system, following previous work on the correspond-
ing Hermitian system [70]. The derivation for a non-Hermitian
single-channel system is given in Ref. [18].

The strategy is to define the probability density PE′E and
the current JE′E for a pair of eigenstates (with energies E and
E′) that satisfy the continuity equation,

∂

∂t
PE′E (r, t ) = −∇ · JE′E (r, t ). (C1)

For an energy-independent potential, this continuity equation
implies the conservation of the norm and the orthogonality
relation for the wave function. We first show the continuity
equation for the eigenstates with energy-dependent potential,
from which the normalization condition and the orthogonality
relation are derived.

To this end, we start from the coupled-channel Schrödinger
equation with an energy-dependent complex potential Vij ∈ C:

i
∂

∂t
�i (r, t ) =

∑
j

Hij�j (r, t ),

Hij = H
(0)
i δij + Vij

(
r, i

∂

∂t

)
, (C2)

H
(0)
i = − ∇2

2μi

+ �Mi,

with the reduced mass μi , the mass difference �Mi , and the
multicomponent wave function � = (�1,�2, . . .)T . The time-
dependent eigenfunction of H with energy E is expressed as

�E,i (r, t ) = e−iEtψE,i (r ), (C3)

and the time-independent wave function ψE,i satisfies∑
j

HijψE,j (r ) =
∑

j

[
H

(0)
i δij + Vij (r, E)

]
ψE,j (r )

= EψE,i (r ). (C4)

To deal with the non-Hermitian systems, we introduce the
Gamow vectors �

†
E and ψ

†
E [96–98] so that the current,

jG
E (r, t ) ≡ −

∑
i

i

2μi

[�†∗
E,i (r, t )∇�E,i (r, t )

−{∇�
†∗
E,i (r, t )}�E,i (r, t )], (C5)

vanishes at |r| → ∞ (see Ref. [96]).11 This requirement is met
for

�
†
E,i (r, t ) = e−iE∗tψ

†
E,i (r ),

ψ
†
E,i (r ) = ψ∗

E,i (r ), (C6)

which satisfy the Schrödinger equation for H ∗,

i
∂

∂t
�

†
E,i (r, t ) =

∑
j

H ∗
ij�

†
E,j (r, t ),

∑
j

H ∗
ijψ

†
E,j (r ) =

∑
j

[
H

(0)
i δij + V ∗

ij (r, E)
]
ψ

†
E,j (r )

= E∗ψ†
E,i (r ). (C7)

Namely, we adopt the eigenstate of H ∗ as the Gamow state
which satisfies the boundary condition for the current jG

E . The
time-independent Schrödinger equation is just the complex
conjugate of Eq. (C4), whereas the time-dependent wave
functions are not complex conjugate with respect to each other,
�

†
E,i �= �∗

E,i .
Next, we express the probability density P G

E′E (r, t ) and the
current JG

E′E (r, t ) in terms of the wave functions. In order to
reduce to Eq. (C5) when E′ → E, the current is written

JG
E′E (r, t ) = −

∑
i

i

2μi

[�†∗
E′,i (r, t )∇�E,i (r, t )

−{∇�
†∗
E′,i (r, t )}�E,i (r, t )], (C8)

as a generalization of the standard form. On the other hand,
given the Schrödinger equations (C3) and (C7), the time
derivative of a corresponding ansatz for the probability density
becomes

∂

∂t

∑
i

[�†
E′,i (r, t )]∗�E,i (r, t )

= −∇ · JG
E′E + i

∑
i,j

�
†∗
E′,i[Vij (E′) − Vij (E)]�E,j . (C9)

Because of the energy dependence of the potential, there
appears the second term on the right-hand side of Eq. (C9).

11In Ref. [96], from the definition of the Hermitian conjugate of H ,
the boundary condition for the current jG

E → 0 at |r| → ∞ leads to
the expression of the adjoint Hamiltonian as the complex conjugate
of the Hamiltonian, H † = H ∗. This then ensures the adjoint wave
function ψ

†
E = ψ∗

E as an eigenstate of H †. On the other hand, when the
potential is energy dependent, the relation H † = H ∗ does not follow
from this boundary condition. Thus we define the Gamow state ψ

†
E

as the eigenstate of H ∗.
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In a similar way as in Ref. [70], we can rewrite this term in the
form of a time derivative,

∂

∂t

{
�

†∗
E′,i

[
Vij (E′) − Vij (E)

E′ − E

]
�E,j

}

= i�
†∗
E′,i[Vij (E′) − Vij (E)]�E,j , (C10)

using the Schrödinger equations (C3), (C4), and (C7). Hence,
the additional term in Eq. (C9) can be regarded as a part of the
probability density,

P G
E′E (r, t ) ≡

∑
i,j

�
†∗
E′,i

[
δij − Vij (E′) − Vij (E)

E′ − E

]
�E,j . (C11)

Therefore, the following generalized continuity equation
holds:

∂

∂t
P G

E′E (r, t ) = −∇ · JG
E′E (r, t ). (C12)

Let us discuss several consequences of this continuity
equation. Given the probability density, we define the norm
of a state with energy E as

NG
E (t ) = lim

E′→E

∫
d3r P G

E′E (r, t )

=
∑
i,j

∫
d3r �

†∗
E,i (r, t )

[
δij − δVij

δE
(E)

]
�E,j (r, t )

=
∑
i,j

∫
d3r ψE,i (r )

[
δij − δVij

δE
(E)

]
ψE,j (r ). (C13)

The last expression demonstrates that the norm is time inde-
pendent, as it should be. This can also be shown by substituting
Eq. (C12) with the boundary condition of jG

E → 0 at |r| → ∞.
Setting NG

E = 1, we obtain the normalization condition in

Eq. (35) for the eigenstates of the energy-dependent coupled-
channel potential. Next, we consider the orthogonality relation.
In a non-Hermitian system, the current JG

E′E vanishes at the
boundary for a pair of suitably regularized resonance wave
functions, while this is not the case for general eigenstates.
The orthogonality relation can therefore be derived only for
regularized eigenstates.12 Performing the spatial integration in
Eq. (C12), we obtain

∂

∂t

∑
i,j

∫
d3r �

†∗
E′,i

[
δij − Vij (E′) − Vij (E)

E′ − E

]
�E,j

= e−i(E−E′ )t
∑
i,j

∫
d3r ψE′,i

[
δij−Vij (E′) − Vij (E)

E′ − E

]
ψE,j

= 0 (E′ �= E), (C14)

which implies the orthogonality relation for the time-
independent wave functions, ψE,j and ψE′,i , with E′ �= E.

It is mandatory to introduce the Gamow states for the
treatment of non-Hermitian systems. Had we used�∗

E′,i instead

of �
†∗
E′,i , the second term in Eq. (C11) would be

−�∗
E′,i

V ∗
ij (E′) − Vij (E)

E′∗ − E
�E,j , (C15)

which diverges in the limit E′ → E ∈ R for a complex
potential Im[Vij ] �= 0. The corresponding current would be

JE′E (r, t ) = −
∑

i

i

2μi

[�∗
E′,i (r, t )∇�E,i (r, t )

− {∇�E′,i (r, t )}∗�E,i (r, t )], (C16)

which cannot be regularized uniquely for resonance wave
functions, in contrast to jG

E′E : Norm conservation and the
orthogonality relation rely crucially on the introduction of
Gamow state vectors.

12There is a correspondence at this point to the extended com-
pleteness relation in the complex scaling method, which incorporates
the regularized resonant states as well as the bound and continuum
states [108].
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