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Background: Experimental data from heavy-ion experiments at RHIC-BNL and LHC-CERN are quantitatively
described using relativistic fluid dynamics. Even p + A and p + p collisions show signs of collective behavior
describable in the same manner. Nevertheless, small system sizes and large gradients strain the limits of
applicability of fluid-dynamical methods.
Purpose: The range of applicability of fluid dynamics for the description of the collective behavior, and in
particular of the elliptic flow, of small systems needs to be explored.
Method: Results of relativistic fluid-dynamical simulations are compared with solutions of the Boltzmann
equation in a longitudinally boost-invariant picture. As the initial condition, several different transverse energy-
density profiles for equilibrated matter are investigated.
Results: While there is overall a fair agreement of energy- and particle-density profiles, components of the
shear-stress tensor are more sensitive to details of the implementation. The highest sensitivity is exhibited by
quantities influenced by properties of the medium at freeze-out.
Conclusions: For some quantities, like the shear-stress tensor, agreement between fluid dynamics and transport
theory extends into regions of Knudsen numbers and inverse Reynolds numbers where relativistic fluid dynamics
is believed to fail.
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I. INTRODUCTION

One of the main goals of heavy-ion experiments at RHIC-
BNL and LHC-CERN is to create hot and dense strong-
interaction matter, i.e., a quark-gluon plasma (QGP), and
study its properties. The matter properties cannot, however, be
directly measured, but need to be inferred indirectly from the
experimental data through dynamical models of the collision.
One of the main tools for understanding the dynamics and
extracting the matter properties is relativistic fluid dynamics. It
is a natural framework for such a task, as it is the limit where the
dynamics is governed entirely by a few macroscopic properties,
such as the equation of state and the transport coefficients,
which are the very properties one is interested in.

Comparisons of fluid-dynamical model calculations with
experimental data, especially for the azimuthal structure of
hadron spectra, have revealed that the ratios of shear and
bulk viscosity to entropy density must be small in order to be
consistent with the data [1–7]. The good agreement between
fluid-dynamical models and experimental data is one of the
strongest evidences that a small droplet of QGP is indeed
formed in these collisions. However, such a system is extremely
small, of the order of the size of an atomic nucleus, and it is
nontrivial that fluid dynamics can be applied for such small
systems.

The fluid-dynamical equations of motion can be written as
a power series in two types of quantities, the Knudsen number

Kn and the inverse Reynolds number R−1 [8]. The Knudsen
number is a ratio of a microscopic and a macroscopic length
or time scale. For example, in the Boltzmann equation the
microscopic scale is essentially the mean free path of the
particles λmfp = 1/(nσ ), where n is the particle density in
the local rest frame and σ is the cross section. The (local)
macroscopic scale is given by gradients of fluid-dynamical
variables, such as energy density or flow velocity. On the other
hand, the inverse Reynolds number measures the deviation
from local thermal equilibrium, and can be expressed as a ratio
of a dissipative quantity, such as the shear-stress tensor πμν ,
and an equilibrium quantity, e.g., the thermodynamic pressure.
When both measures are sufficiently small, i.e., gradients are
sufficiently weak, and the system is sufficiently close to local
thermal equilibrium, one expects that fluid dynamics becomes
a good approximation to describe the space-time evolution of
the matter.

The Knudsen and inverse Reynolds numbers assumed in
heavy-ion and proton-nucleus (p + A) collisions were esti-
mated in Ref. [9]. Even for heavy-ion collisions the cor-
responding values can be so large that one may doubt the
applicability of fluid dynamics. On the other hand, even
smaller systems like those formed in p + A or event-by-event
proton-proton (p + p) collisions experimentally exhibit signs
of collective behavior that can be at least qualitatively described
by fluid-dynamical models [10–17]. All these observations
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raise the question about the conditions when fluid dynamics is a
sufficiently good approximation for describing the space-time
evolution of these systems, so that the matter properties can
be reliably extracted by comparing fluid-dynamical models to
experimental data.

One way to address this question is to test the validity
of fluid dynamics in situations where the underlying mi-
croscopic theory can be explicitly solved. The Boltzmann
equation represents such a theory, as it can be numerically
solved in situations that resemble those formed in heavy-ion
collisions [18]. Furthermore, the fluid-dynamical limit of the
Boltzmann equation is known, i.e., fluid-dynamical equations
of motion and the pertinent transport coefficients can be
derived in various approximations by employing the method
of moments [8,19–22].

Currently, there are several works that compare the solutions
of fluid dynamics to the solutions of the Boltzmann equation
in simple systems. In Ref. [23] the second Fourier coefficient
of the azimuthal particle spectrum, the so-called elliptic-flow
coefficient, was compared from calculations within ideal fluid
dynamics and the Boltzmann equation starting from initial con-
ditions resembling a heavy-ion collision. It was concluded that
the cross section must be unrealistically large in order to obtain
an agreement between the two approaches. However, in that
work, viscous effects were neglected, and within the current
understanding of heavy-ion collisions, ideal fluid dynamics
is not sufficient to describe experimental data. The Israel-
Stewart formulation of fluid dynamics has been compared
to the Boltzmann equation in the (0 + 1) dimensional boost-
invariant expansion scenario in Refs. [24–26], and for (1 + 1)
dimensional shock waves in Refs. [22,27,28]. Furthermore, in
the relaxation-time approximation (RTA), both the Boltzmann
equation becomes much easier to solve and also the derivation
of fluid dynamics from the underlying microscopic theory,
in this case the Boltzmann equation, becomes much simpler.
Here, many comparisons between the Boltzmann equation in
RTA and Israel-Stewart fluid dynamics, and also its extension,
so-called anisotropic fluid dynamics, exist [29–36].

While in the above mentioned cases the numerical solution
of the Boltzmann equation is readily obtained, it is not clear
how the results of these comparisons can be translated to more
realistic scenarios and in particular to experimental observ-
ables. The comparisons between viscous fluid dynamics and
the Boltzmann equation were made in azimuthally symmetric
cases, where the transverse flow has only a radial component.
However, the most direct constraints for the viscosity coef-
ficients come from the azimuthal structure of the transverse-
momentum spectra in heavy-ion collisions, which in turn result
from the azimuthal asymmetries of the transverse-flow field.

The aim of this work is to compare the solutions of the full
Boltzmann equation with the corresponding fluid-dynamical
solution in situations that resemble the system formed in heavy-
ion or p + A collisions, allowing us to access experimental
observables like transverse-momentum spectra and flow coef-
ficients. In particular, in this work, the Boltzmann equation is
solved by the “Boltzmann Approach to Multiparticle collisions
(BAMPS)” framework [18] in several different boost-invariant
geometries with different values for a constant isotropic cross
section. These solutions are compared to numerical solutions

of the fluid-dynamical equations of motion within a theory
derived by Israel and Stewart using the 14-moment approxima-
tion [21]. For convenience and simplicity, the initial conditions
are taken to be thermal at some initial proper time, although this
is not a realistic assumption for the initial stage of heavy-ion
collisions.

The paper is organized as follows: In Sec. II a short
introduction to the Boltzmann equation and relativistic fluid
dynamics is given, followed by Sec. III, where the numerical
methods to solve the fluid-dynamical equations of motion and
the Boltzmann equation are described. The initial conditions
and the setup to compare the space-time evolution are given
in Sec. IV, and the comparisons of fluid-dynamical quantities
from both approaches are shown in Sec. V. In Sec. VI, compar-
isons of transverse-momentum spectra and elliptic flow follow.
A discussion and conclusions are given in Sec. VII. Units are
h̄ = c = kB = 1, the metric tensor is gμν = diag(+,−,−,−).

II. RELATIVISTIC FLUID DYNAMICS FROM
THE BOLTZMANN EQUATION

Fluid dynamics is an effective theory describing the long-
wavelength, small-frequency dynamics of a system. The basic
equations of fluid dynamics are the conservation of energy,
momentum, and charge number,

∂μT μν = 0, (1)

∂μNμ = 0, (2)

where the energy-momentum tensor T μν and the charge four-
current Nμ can be decomposed with respect to the four-
velocity uμ as

T μν = euμuν − P�μν + πμν, (3)

Nμ = nuμ + nμ, (4)

where e = uμuνT
μν is the energy density in the local rest frame

(LRF), P = − 1
3�μνT

μν is the isotropic pressure, πμν = T 〈μν〉
is the shear-stress tensor, n = uμNμ is the charge density in
the LRF, and nμ = �μ

ν Nν is the charge-diffusion current. In
this work, the four-velocity is defined in the Landau frame,
i.e., it is the timelike eigenvector of the energy-momentum
tensor, T μνuν = euμ. Furthermore, �μν = gμν − uμuν is the
projection operator onto the three-space orthogonal to uμ.
Usually, the isotropic pressure is decomposed as P = p0 + �,
with p0 = p0(e0, n0) being the thermodynamic pressure of a
fictitious system in local equilibrium that has the same energy
density, e0 = e, and charge density,n0 = n, as the system under
consideration (the so-called Landau matching conditions), and
with � being the bulk viscous pressure. Angular brackets
denote the traceless and symmetric part of a tensor that is
orthogonal to uμ, i.e.,

T 〈μν〉 = 1
2

(
�μ

α�ν
β + �

μ
β�ν

α − 2
3�μν�αβ

)
T αβ. (5)

The conservation laws do not form a closed system; ad-
ditional assumptions are needed in order to close the set of
equations. In principle, the simplest dissipative theory is a
relativistic generalization of the Navier-Stokes theory, where
the dissipative currents are proportional to the first-order
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gradients of four-velocity and the so-called thermal potential
α0,

π
μν
NS = 2ησμν ≡ 2η∇〈μ uν〉, (6)

n
μ
NS = κn∇μα0. (7)

Here, ∇μ = �μν∂ν and the thermal potential is defined as
α0 ≡ μ0/T0, where μ0 and T0 are the charge chemical potential
and temperature of the fictitious local equilibrium system,
respectively (i.e., the entropy density of that system is s0 =
∂p0/∂T0, while the charge density is n0 = ∂p0/∂μ0). The
proportionality constants η and κn are the shear-viscosity and
charge-diffusion coefficients, respectively. It is well known that
this theory suffers from the problem that the signal-propagation
speed is not limited by the speed of light, and that this acausality
leads to the instability of an equilibrated system when viewed
from a moving reference frame [37–41]. This cannot be cured
by accounting for higher-order terms in gradients. Rather, the
gradient expansion itself is not guaranteed to converge [42,43].

The simplest well-behaved relativistic fluid-dynamical the-
ory is that of transient or second-order fluid dynamics [21,37].
In these types of theories the basic equations governing the
evolution of nμ and πμν can, in the absence of bulk viscosity,
be written as

τnṅ
〈μ〉 + nμ = κn∇μα0 − τnnνω

νμ − δnnn
μθ

+ �nπ�μν∇λπ
λ
ν − τnππμν∇νp0

− λnnnνσ
μν − λnππμν∇να0, (8)

τπ π̇ 〈μν〉 + πμν = 2ησμν − 2τππ
〈μ
λ ω ν〉λ − δπππμνθ

− τπππλ〈μ σ
ν〉

λ − τπnn
〈μ ∇ ν〉p0

+ �πn∇〈μ nν〉 + λπnn
〈μ ∇ ν〉α0, (9)

where the expansion scalar is θ = ∇μuμ. The vorticity is
defined as ωμν = (∇μuν − ∇νuμ)/2. In principle, this theory
comprises the contributions up to second order in gradients to
the evolution of πμν and nμ. The main feature of the theory
is that the dissipative quantities relax to the values given by
the gradient expansion within the time scales τπ and τn. In
general, τπ and τn are scales of the underlying microscopic
theory [44]. The various coefficients appearing in the equations
can be obtained by matching to the underlying microscopic
theory.

If one takes the Boltzmann equation as the microscopic
theory, it is possible to explicitly calculate all transport coeffi-
cients appearing in Eqs. (8) and (9). The Boltzmann equation
is an evolution equation for the single-particle momentum-
distribution function fk(x),

kμ∂μfk(x) = C[f ], (10)

where kμ = (k0, k) is the (on-shell) four-momentum of the
particle, and C[f ] is the collision integral. In the following,
we consider a gas of massless classical particles undergoing
elastic binary collisions only, which conserve particle number,
energy, and momentum. In this case, conservation of charge is
synonymous with conservation of particle number. Moreover,
the bulk viscosity is zero and the isotropic pressure is equal to
the thermodynamic equilibrium pressure P = p0 = e0/3.

In thermal equilibrium the distribution function is given by

f0k = exp(α0 − β0Ek ), (11)

where β0 = 1/T0 is the inverse temperature, and Ek = kμuμ

is the energy of the particle in the LRF. Fluid dynamics can be
obtained by considering deviations δfk(x) from f0k,

fk = f0k + δfk, (12)

and expanding δfk in a complete basis of irreducible tensors
k〈μ1 · · · kμ�〉 [where the angular brackets denote a generaliza-
tion of the rank-4 projection tensor in Eq. (5) to rank 2�; for
more details, see Ref. [8]]. The coefficients of this expansion
are the so-called irreducible moments of δfk,

ρ
μ1···μ�

i =
∫

d3k

(2π )3k0
Ei

kk
〈μ1 · · · kμ�〉δfk, (13)

which can be taken as dynamical variables instead of the
distribution function fk itself. Note that πμν = ρ

μν
0 and nμ =

ρ
μ
0 . In order to derive the fluid-dynamical equations of motion

in terms of quantities that solely appear in T μν and Nμ, the
infinite set of irreducible moments needs to be truncated and
reduced to the fluid-dynamical degrees of freedom. An implicit
assumption here is that the system is sufficiently close to local
thermal equilibrium so that the deviations from equilibrium
can be expressed by only a few dissipative quantities.

A simple way to do this is the so-called 14-moment
approximation. Here, the expansion of δfk is truncated after
the first 14 lowest-rank irreducible tensors [21]. Then, by
matching this expansion to T μν and Nμ, the irreducible tensors
are expressed in terms of the dissipative quantities appearing
in T μν and Nμ, in this case the shear-stress tensor and the
particle-diffusion current. Hence, δfk can be written as

δfk = f0k

(
1

8p0T 2
k〈μkν〉πμν − 5

p0
kμnμ + 1

p0T
Ekkμnμ

)
.

(14)

Inserting this ansatz into the Boltzmann equation leads to the
fluid-dynamical equations of motion, Eqs. (8) and (9). It should
be noted that this approach only gives approximate values for
the transport coefficients. The reason for this is that directly
truncating the moment expansion does not correspond to a
truncation of given order in the gradient expansion. In order to
account for all terms of first and second order in the gradient
expansion we need to resum an infinite number of moments;
see Ref. [8] for details of this procedure. The resummation
also produces new terms that can violate the causality of
the theory. In order to overcome such problems it would be
necessary to extend the basis of dynamical variables beyond
those appearing in the energy-momentum tensor and particle
four-current [22]. The investigation of these extensions of the
fluid-dynamical theory is left as future work. Here, we take the
Israel-Stewart 14-moment approximation as fluid-dynamical
theory [however, with the prescription of Ref. [25] to compute
the transport coefficients], which is also the most widely used
theory to describe the dynamics of ultrarelativistic heavy-
ion collisions. The coefficients in this approximation for the
massless, classical gas with constant cross section σ are shown
in Tables I and II, respectively [25,45]. These can be compared
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TABLE I. The coefficients of the particle-diffusion current in the
14-moment approximation.

κn τn/λmfp δnn/τn λnn/τn λnπ/τn �nπ/τn τnπ/τn

3/(16σ ) 9/4 1 3/5 β0/20 β0/20 β0/(80p0)

to the transport coefficients from the full resummation of
moments in Ref. [8]. Especially for the nonlinear terms the
corrections can be quite large, but, e.g., for the shear viscosity,
which is the most important transport coefficient in our test
cases, the corrections are quite small. We also note that in
the RTA the resummation procedure becomes trivial, and
most of the transport coefficients agree with the 14-moment
approximation [46].

The requirements that the dynamics of the system is domi-
nated by long-wavelength excitations and that it is sufficiently
close to local equilibrium manifest in Eqs. (8) and (9) in such a
way that they can be considered as a power series in two types
of quantities, Knudsen number and inverse Reynolds number.
The Knudsen number can in general be defined as a ratio of
a microscopic and a macroscopic time or length scale, Kn =
�micr/Lmacr, and thus quantifies the separation between these
two types of scales. In the Boltzmann equation the microscopic
scales are proportional and of the same order as the mean
free path, and the slowest of these scales appear as relaxation
times in transient fluid dynamics, τn and τπ in Eqs. (8) and
(9), respectively. The local macroscopic time scales can be
calculated, e.g., from the expansion rate L−1

macr = θ , or from the
energy density L−1

macr = √|∇μe∇μe|/e. The inverse Reynolds
number can be defined as a ratio of a dissipative and a ther-
modynamic quantity, e.g., R−1 = |nμ|/n0 or R−1 = |πμν |/p0.
Both definitions measure the local deviation from equilibrium.
Powers of Knudsen and inverse Reynolds numbers higher
than 2 are neglected in the derivation of the fluid-dynamical
equations of motion (8) and (9). It is then natural to expect that
the applicability of fluid dynamics requires that these two types
of quantities are sufficiently small, i.e., Kn � 1 and R−1 � 1.

III. NUMERICAL METHODS

A. Fluid dynamics: SHASTA

In the following the fluid-dynamical equations of motion
in the longitudinally boost-invariant case [47] with arbitrary
transverse expansion are solved. In this case the solutions
depend only on the transverse coordinates x = (x, y) and the
longitudinal proper time τ = √

t2 − z2, i.e., they do not depend
on the space-time rapidity ηs = 1

2 ln[(t + z)/(t − z)]. Thus it
is sufficient to solve the system of equations numerically in
(2 + 1) dimensions.

TABLE II. The coefficients of the shear-stress tensor in the 14-
moment approximation.

η τπ/λmfp τππ/τπ λπn/τπ δππ/τπ �πn/τπ τπn/τπ

4/(3σβ0 ) 5/3 10/7 0 4/3 0 0

The conservation laws (1) and (2) together with Eqs. (8) and
(9) are solved numerically using the time-honored SHASTA
algorithm [48,49]. The details of this algorithm are presented,
e.g., in Ref. [50]. The additional ingredient is that the time step
must be adapted in order to resolve the two fast time scales τn

and τπ in Eqs. (8) and (9), which become small when the cross
section is large. Another fast time scale is given by the initially
large longitudinal expansion rate ∼1/τ . All of these time scales
need to be resolved by the numerical algorithm.

The effectiveness of the algorithm can be tested by com-
paring the numerical solutions to a semianalytic solution,
the so-called “Gubser” solution, which describes a radially
expanding system which is boost-invariant in the longitudinal
direction [51]. In this case simplified Israel-Stewart equations
with a constant η/s = 0.08 and without particle number and
diffusion can be solved semianalytically, i.e., the solution can
be obtained by solving an ordinary differential equation. This
solution can then be compared to a corresponding numerical
solution using SHASTA, without explicitly accounting for the
symmetries in the Gubser solution, except for boost invariance.
A comparison of the resulting shear-stress tensor components
πzz and πxx is shown in Fig. 1 at several fixed values of τ and
two different numerical resolutions. As can be seen in Fig. 1,
the numerical solution reproduces the semianalytic solution
very well for both resolution scales, only πxx shows clear
deviations for the lower resolution, but converges rapidly to
the actual solution when the resolution is increased.

B. Boltzmann equation: BAMPS

As the microscopic transport model we choose the
Boltzmann equation, which is solved via the BAMPS algorithm
[18]. Besides many other studies, this model has already
been applied very successfully to study elliptic and triangular
flow in ultrarelativistic p + p collisions [52]. BAMPS was
also already applied to a comparison with fluid-dynamical
calculations in the case of a (0 + 1) dimensional expansion
scenario [53] and in the framework of the relativistic Riemann
problem [27,28].

Many of the complex features implemented in BAMPS
are not used in the present study. But a very important
aspect is the correct realization of the collision rate. This is
guaranteed by the implementation of the collision criterion
not by a geometrical, but a stochastic interpretation of the
underlying cross section. The transport equations are solved via
the test-particle method. Scaling the cross section guarantees
the correct solution of the underlying Boltzmann equation
in the limit of infinitely many test particles.

A drawback of the stochastic implementation of the cross
section is the discretization of the spatial coordinates. Particles
are grouped into spatial cells according to their x, y, and ηs

coordinates and only interactions between particles in each of
these cells are considered. Since the number of test particles
(Ntest = rNphys, where r is 1000 for A + A and 7000 for
p + p and p + A collisions) is limited by the computational
resources, also the number of test particles in a cell is finite. If a
cell contains only one particle, no interactions occur in this cell.
On the other hand, if one increases the overall number of test
particles by, e.g., a factor of 10, then also approximately ten test
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FIG. 1. Comparing the semianalytic “Gubser” solution of the
Israel-Stewart equations [51] to the numerical solution using
SHASTA with two different numerical resolutions as indicated in
the plots. Panel (a) shows the πzz profile and panel (b) shows the πxx

profile at different times τ = 1.2, 1.5, 2.0 fm. The curves with the
larger maximum absolute value of πμν correspond to earlier times.

particles would be found in the specific cell. Thus, interactions
are possible. In the actual solution, only interactions in cells
with at least Ntest � 4 test particles are allowed. In physical
terms, the particle density is then below 1 fm−3 for proper
times larger than 1 fm [for r = 1000 (7000), the transverse
cell size is �x = �y = 0.25 (0.08) fm, while �ηs ∼ 0.06].
As we shall see below, in the comparison with fluid-dynamical
calculations this has to be kept in mind.

One of the main challenges for this study is the fact that
BAMPS uses a Cartesian coordinate system for time t and
(longitudinal) space coordinate z, while the boost-invariant
Bjorken expansion scenario is formulated in proper time τ
and space-time rapidity ηs . This introduces the following three
problems:

(i) Because of boost invariance, we can restrict our consider-
ations to a rapidity interval I�ηs

≡ [−�ηs/2,+�ηs/2] around
ηs = 0. In the calculations, we choose �ηs = 1 (see below). In
a boost-invariant system, the rapidity range extends formally
from −∞ to ∞, but computational resources (computer

memory and CPU time) limit the rapidity range realizable in
the actual calculations, Iηs,max = [−ηs,max,+ηs,max]. The value
for ηs,max has to be chosen sufficiently large, such that there
is no information propagating from the boundaries ±ηs,max

to the midrapidity interval I�ηs
, where the actual comparison

between fluid dynamics and BAMPS is performed. Otherwise,
the vacuum at |ηs | > ηs,max will start to influence the solution
in the rapidity interval I�ηs

, leading to artefacts like a decrease
in the particle density that is stronger than permitted in a
boost-invariant scenario.

(ii) A related problem is that the boost-invariant fluid-
dynamical calculation starts at proper time τ0, while the
BAMPS calculation is initialized at a fixed Cartesian time
t0 = τ0. One therefore has to make sure that the initial condition
for BAMPS at t0 gives the same initial condition as for fluid
dynamics at τ0. At z = ηs = 0, this is formally guaranteed [see,
however, (iii) below], but at any nonzero value for ηs , one has to
propagate the information about the initial condition from the
τ0 = const hypersurface back to the t0 = const hypersurface.
In practice, this is done by propagating the particles without
collisions from t0 to a time tp when the particle word line
crosses the τ0 hypersurface.

(iii) While the initial conditions for BAMPS and fluid
dynamics are formally the same at z = ηs = 0 (see above),
in practice one has a cell of nonzero longitudinal extension
at this point. This cell is initially filled with particles, but the
ones with positions zp 	= 0 are at a longitudinal proper time
τp < τ0. One therefore has to wait until these particles have
also reached the τ0 = const hypersurface. For a typical cell
size used in BAMPS this means that the BAMPS calculation
starts at a time slightly later than t0 (typically t0 + 0.01 fm).

A boost-invariant (2 + 1) dimensional formulation of the
BAMPS algorithm would avoid all three problems, but is
currently not available.

IV. INITIAL CONDITIONS

In all test cases presented here, the evolution is started in
local equilibrium, i.e., the initial local particle distributions are
given by Eq. (11). Three different initializations for the initial
particle density in the transverse plane are considered. The
first two scenarios are given by a radially symmetric Gaussian
profile with a width parameter w = 1 or 3 fm,

n(τ0, x) ∼ exp

(
− x2

2w2

)
. (15)

The smaller width parameter corresponds to a system created
in p + p or p + A collisions, while the larger width parameter
corresponds to the case of event-averaged A + A collisions.

In the third initialization scenario, labeled “nBC” (for
“particle density, binary collisions”) in the following, the initial
transverse density profile is proportional to the density of
binary collisions computed within the optical Glauber model,

n(τ0, x) ∝ TA(x − b/2)TA(x + b/2), (16)
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FIG. 2. Initial energy-density profiles.

with impact parameter b = 7.5 fm, taken along the x direction,
and where TA is the standard nuclear thickness function,

TA =
∫ ∞

−∞
dz ρ(x, z), (17)

with ρ(x, z) being the Woods-Saxon parametrization of the
nucleon density with radius R = 6.38 fm and surface thickness
d = 0.55 fm.

The initialization time is always set to τ0 = 0.2 fm, and the
maximum temperature at x = y = 0 is T0 = 500 MeV, with
the temperature dropping towards larger radii guaranteeing a
constant fugacity eα0 = 1 for all radii at initial time τ0. The
constant isotropic cross section is varied from σ = 1 mb to
σ = 20 mb. The three different energy-density profiles are
shown in Fig. 2.

For the case of an ultrarelativistic Maxwell-Boltzmann gas
(with degeneracy factor g), the entropy density s and the shear
viscosity η are given by [25]

s = eα0 (4 − α0)
g

π2
T 3, η = 4

3

T

σ
. (18)

Here the degeneracy factor is taken as g = 16. In Fig. 3,
the ratio η/s as a function of temperature corresponding to
different constant isotropic cross sections and for α0 = 0 is
shown. One observes that quite a wide range of η/s values is
covered.

V. SPACE-TIME EVOLUTION

A. Rapidity-averaging procedure

The numerical algorithm to solve the fluid-dynamical equa-
tions of motion is explicitly boost-invariant, i.e., the solution
is independent of the space-time rapidity ηs . It thus uses the
coordinates (τ, x, y), where τ is the proper time. However,
the BAMPS code solves the Boltzmann equation in Cartesian
(t, x, y, z) coordinates. In practice the components of T μν and
Nμ need to be obtained by averaging over a finite space-time
rapidity range �ηs at fixed Cartesian time. However, if we
did that in the BAMPS calculational frame, the averaging

FIG. 3. Shear viscosity-to-entropy density ratio as a function of
temperature for a constant isotropic cross section.

would result in, e.g., a nonzero shear-stress tensor even if the
fluid is locally isotropic. This is due to the fact that in the
boost-invariant expansion the longitudinal velocity is always
vz = z/t , and averaging over any finite rapidity interval would
lead to T zz > T xx (with vx < vz), i.e., the averaged momentum
distribution would not be isotropic.

In order to avoid this problem, every particle is boosted by
−ηs,p, where ηs,p is the space-time rapidity of the particle,
before performing the average over �ηs . This makes sure
that for the averaging procedure the particle is considered in
a rest frame moving with +ηs,p with respect to the BAMPS
calculational frame. The decomposition (3) and (4) of T μν and
Nμ, respectively, is then done after boosting and averaging.
This procedure minimizes an artificial creation of dissipative
quantities due to the averaging procedure, and, e.g., the average
value of πxx quantifies directly the deviation from local
equilibrium.

In order to have a one-to-one comparison of the space-time
evolution of different quantities, the fluid-dynamical solutions
need to be averaged in the same way as in the BAMPS
calculation, i.e.,

〈T μν〉�ηs ,t = 1

�z

∫ �z/2

−�z/2
dz T μν (τ =

√
t2 − z2, x, y), (19)

where �z/2 = t tanh(�ηs/2). We choose �ηs = 1 in all our
calculations.

B. Gaussian profile w = 3 fm

We first consider a Gaussian profile with w = 3 fm and vary
the cross section from σ = 20 mb down to 1 mb. In the upper
row of Fig. 4, the space-time evolution of the Knudsen number
Kn = λmfpθ extracted from the fluid-dynamical calculations is
shown for this case. The Knudsen number is smallest at earliest
times and in the center of the system. Each figure shows also the
contour where the test-particle number per computational cell
in the BAMPS calculation is 4. As discussed above, outside this
region the particles are not interacting anymore, and therefore
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FIG. 4. Knudsen-number contours for a Gaussian w = 3 fm (top) and w = 1 fm (bottom) profile, with σ = 20, 5, and 1 mb (from left to
right). The contour line shows where the test-particle number per computational cell in the BAMPS calculation assumes the value 4.

the comparison between the BAMPS solution of the Boltzmann
equation and fluid dynamics is meaningful only inside this
region. As can be seen from the figures, if the cross section is
large, the Knudsen number stays small Kn � 1 within almost
the whole Ntest > 4 region, but as the cross section decreases,
the Knudsen number increases, and for σ = 1 mb, one finds
Kn > 1 in the whole region.

The energy-density and transverse-velocity profiles at dif-
ferent times are shown in Fig. 5 for σ = 1 mb. As can be
seen from the figures, the agreement between the Boltzmann
equation and fluid dynamics remains extremely good over the
whole space-time evolution even up to quite high Knudsen
numbers. Naturally, the agreement remains good for larger

values of the cross section. The components of the shear-stress
tensor πμν provide a more sensitive probe of the applicability
of fluid dynamics. Figure 6 shows as an example the transverse
profile of πxx/e at different times for σ = 20, 5, and 1 mb. Here
already at early times small deviations are visible, especially
in the case of small cross sections. At later times, t = 4 fm,
differences become large. This occurs in regions where the
Knudsen number becomes quite large, Kn ∼ 2–4. As expected,
for even larger cross sections, the deviations become smaller
(not shown here).

In order to illustrate the degree of isotropization, the ratio of
longitudinal over transverse pressure as function of the radial
coordinate is shown in Fig. 7. The longitudinal and transverse

FIG. 5. Energy-density (left) and vx (right) profiles for σ = 1 mb and a w = 3 fm Gaussian initial density profile for different times t = 1, 2,
and 4 fm. Solid lines represent fluid-dynamical results, while dashed lines show the BAMPS solutions.
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FIG. 6. The πxx profiles scaled by energy density e for σ = 20 mb, 5 mb, and 1 mb (from left to right) and a w = 3 fm Gaussian initial
density profile.

pressures can be calculated as

PL = T μν�μ�ν = P − πzz, (20)

PT = 1
2 (3P − PL) = P + 1

2πzz, (21)

where �μ = γz(vz, 0, 0, 1) is a spacelike unit vector pointing
into the longitudinal direction, with γz = (1 − v2

z )−1/2. The
last equalities in Eqs. (20) and (21) hold in our case of a
boost-invariant expansion. The comparison of fluid dynamics
and BAMPS shows a similar pattern as πxx/e, but deviations
for small cross sections are larger. As expected, the ratio stays
always positive in the kinetic description, while for small
cross sections, the fluid-dynamical results assume negative
values.

C. Gaussian profile w = 1 fm

Now we consider the smaller value w = 1 fm for the width
of the Gaussian number-density profile. The cross section is
varied from σ = 20 mb down to 1 mb, as before. The space-
time evolution of the Knudsen number Kn = λmfpθ is shown
for each case in the lower row of Fig. 4. As before, the Ntest = 4
contour shows the region where the comparison between fluid
dynamics and BAMPS is meaningful. The plots in Fig. 4 for the
small width w = 1 fm look very similar to that for the larger
one, but notice the difference in the space and time scales.

The spatial profiles of energy density and velocity with
σ = 1 mb are shown in Fig. 8 for different times. As for the
case w = 3 fm, the agreement between fluid dynamics and the
Boltzmann equation is very good for all cross sections. Notable

differences appear only in the region where Ntest < 4, i.e.,
where the particles in the BAMPS calculation are essentially
free-streaming.

As mentioned and already observed above, the shear-stress
tensor exhibits a much larger sensitivity to the Knudsen
number. The πxx/e components for the smaller system are
shown for different cross sections in Fig. 9. For the large σ =
20 mb cross section the agreement between the two approaches
remains good until Ntest = 4 is reached, but for smaller cross
sections there are larger deviations at the end of the evolution,
t ∼ 1–2 fm. We note, however, that even with the smallest
cross section σ = 1 mb, the profiles are quite well described
up to t = 1 fm, even if Kn ∼ 2–4 throughout the evolution.

Again, as for the larger system, also the ratio of longi-
tudinal over transverse pressure is examined; see Fig. 10.
The discrepancies between the kinetic and the fluid-dynamical
calculations are not as big as in the case of the large system
with w = 3 fm. We note that in the smaller system also the
momentum-space distributions deviate less from an isotropic
distribution (characterized by PL/PT = 1). The reason for this
is the stronger transverse expansion in the smaller system that
counteracts the initial strong asymmetry in the longitudinal
versus the transverse expansion, which is the main driving
force in reducing the PL/PT ratio.

Overall, the agreement between kinetic theory and fluid
dynamics is very good for σ = 20 mb and σ = 5 mb. Only
for σ = 1 mb there are significant deviations between the two
approaches. This is also expected, as for σ = 1 mb one finds
Kn � 2 already at the beginning of the evolution. It is notable,

FIG. 7. The ratio of longitudinal over transverse pressure PL/PT for σ = 20 mb, 5 mb, and 1 mb (from left to right) and a w = 3 fm Gaussian
initial density profile.
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FIG. 8. Energy-density (left) and vx (right) profiles for σ = 1 mb and a w = 1 fm Gaussian initial density profile for different times
t = 0.5, 1, and 2 fm. Solid lines represent the fluid-dynamical results, while dashed lines show the BAMPS solutions, as in Fig. 5.

however, that the energy-density and velocity profiles are well
described by fluid dynamics in all cases.

D. Binary Glauber profile b = 7.5 fm

The last case considered is an initial nBC profile from the
Glauber model with an impact parameter b = 7.5 fm. The
Knudsen-number contours are shown in Fig. 11, the energy-
density and velocity profiles are shown in Fig. 12, and the
πxx/e profiles in Fig. 13. Note that in this case the system is
not azimuthally symmetric anymore, and the profiles are shown
along the x axis, which is the direction of the impact parameter.
In this case, calculations for three values of the cross section,
σ = 20, 10, and 5 mb, are shown. The agreement between
BAMPS and fluid dynamics is quite similar to the Gaussian
profile with w = 3 fm, which is not surprising as the initial
profiles are quite similar as seen from Fig. 2. The comparison
looks very similar also along the y axis.

As before, also in this case the agreement of the energy-
density and velocity profiles remains good even in space-time
regions where the Knudsen number becomes large. The good
agreement holds for all values of the cross section. The same
is true for πxx/e, shown in Fig. 13, and for the PL/PT ratio,
shown in Fig. 14. Only at t = 4 fm and with σ = 5 mb one
can observe more significant deviations in πxx/e. This is also
the region where the Knudsen number becomes clearly larger
than 1.

The momentum-space asymmetry of the solutions can
be quantified by calculating the so-called momentum-space
eccentricity,

εp = 〈T xx − T yy〉
〈T xx + T yy〉 , (22)

where the angular brackets denote the integral over the trans-
verse plane at fixed time,

〈· · · 〉 = 1

�z

∫
dxdydz(· · · ), (23)

with the average over the z coordinate performed as in
Eq. (19). In order to avoid space-time regions where the
BAMPS particles are free-streaming, we restrict the transverse
integrals to radial distances r � 3 fm. The time evolution of
the momentum eccentricities is shown in Fig. 15 for all three
values of the cross section. As seen in the figures, in the σ = 20
and 10 mb cases the agreement between fluid dynamics and
the Boltzmann equation is good throughout the evolution, but
for the 5 mb cross section the differences, especially towards
the end of the evolution, are more pronounced. However, the
overall magnitude of the momentum eccentricity is still well
described even for σ = 5 mb.

FIG. 9. The πxx profiles scaled by energy density for σ = 20, 5, and 1 mb (from left to right) and a w = 1 fm Gaussian initial density
profile, as in Fig. 6.
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FIG. 10. The ratio of longitudinal over transversal pressure PL/PT for σ = 20, 5, and 1 mb (from left to right) and a w = 1 fm Gaussian
initial density profile, as in Fig. 7.

VI. TRANSVERSE-MOMENTUM SPECTRA
AND ELLIPTIC FLOW

In the solution of the Boltzmann equation the particles
automatically decouple when the mean free path becomes
sufficiently large, and the transverse-momentum spectra can be
calculated simply by counting particles at sufficiently late time.
However, in fluid dynamics this freeze-out must be modeled
separately, as the applicability of the fluid-dynamical equations
of motion does not extend all the way to free-streaming. The
standard way to model decoupling is the so-called Cooper-
Frye freeze-out procedure [54], where the final transverse-
momentum spectrum is calculated by integrating the particle
flux through some decoupling surface �,

E
dN

d3k
= dN

dypd2kT

=
∫

�

d�μkμfk(x), (24)

where �μ is the normal vector on the (suitably defined) freeze-
out surface �, yp = 1/2 ln[(k + kz)/(k − kz)] is the longitu-
dinal rapidity of the (massless) particle, and kT is its transverse
momentum. The single-particle distribution function fk(x) is
given by Eqs. (12) and (14) in the 14-moment approximation.
In the following the standard freeze-out surface is taken as
a surface of constant Knudsen number, Knfr = λmfpθ = Cfr,
with Cfr being some constant to be determined later. As de-
scribed above, in addition to this physical freeze-out condition,
in the BAMPS calculation the particles become free-streaming
when the number of test particles in the computational cell

becomes less than 4. This needs to be taken into account also in
the fluid-dynamical calculation, in order to have a meaningful
comparison with BAMPS results. In practice, we use the
test-particle number per cell Ntest = 5 contour as the freeze-out
surface, if the test-particle number drops below this limit before
the Knudsen-number criterion is reached. We note that Ntest

fluctuates around the average in each BAMPS simulation, so
that this numerical freeze-out is not really a sharp surface.
Thus, the constant Ntest freeze-out in fluid dynamics should
also be considered as an effective description. In practice,
Ntest = 5 gives a good agreement with the BAMPS low-kT

spectra when the freeze-out is almost completely determined
by the Ntest criterion. Moreover, some of the particles decou-
ple immediately at the beginning of the evolution, i.e., the
Knudsen-number or test-particle-number criterion is reached
already at τ = τ0. This part needs to be included into the
construction of the decoupling surface. The contour surfaces
of the solution needed for the calculation of the particle spectra
are determined by the Cornelius algorithm [55].

The most commonly used decoupling criterion in modeling
heavy-ion collisions is that of a constant temperature. One can
argue that decoupling happens when the mean free path of the
particles becomes of the order of the size of the system. If
one assumes that the system size does not vary significantly
between different collisions, the criterion can also be written as
λmfp(T , α0) = const. If chemical potentials can be neglected
this is equivalent to the constant-temperature decoupling con-
dition. Our standard condition above is similar to the dynamical

FIG. 11. Knudsen-number contours for an nBC Glauber initial profile for σ = 20, 10, and 5 mb (from left to right). The white line
corresponds to the test-particle number per computational cell Ntest = 4 contour in the BAMPS calculation.
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FIG. 12. Energy-density (left) and vx (right) profiles for σ = 5 mb and an nBC Glauber initial density profile for times t = 1, 2, and 4 fm.
Solid lines represent fluid-dynamical results, while dashed lines show the BAMPS solutions.

freeze-out condition of Refs. [56–60]. Additionally, we also
consider the constant-mean free path and constant-temperature
decoupling conditions. These also include the Ntest = 5 surface
as a part of the freeze-out surface.

The generic shape of the freeze-out surface can be read off
from Fig. 11, where both the Knudsen-number contours and
Ntest = 4 contour are shown. The surface that corresponds to
the immediately frozen-out particles is the τ = 0.2 fm surface
extending from around x ∼ 3 fm to the edge of the system.

The azimuthal asymmetry of the spectrum is usually char-
acterized by the Fourier decomposition

dN

dypdk2
T dφ

= dN

dypdk2
T

[1 + 2v2(kT ) cos(2φ)

+ 2v4(kT ) cos(4φ) + · · · ], (25)

where φ is the azimuthal angle. For the boost-invariant expan-
sion one can replace the particle rapidity yp by the space-time
rapidity ηs , i.e.,

dN

dypdk2
T dφ

= dN

dηsdk2
T dφ

. (26)

We have calculated both the azimuthally averaged
transverse-momentum spectra, as well as the elliptic flow
v2(kT ) with the nBC initialization using σ = 20, 10, and 5 mb.
The resulting transverse-momentum spectra and elliptic-flow
coefficients are shown in Fig. 16 for two different freeze-out
criteria, Knfr = 2.5 and 4. If the cross section is large, i.e.,

σ = 20 mb, a large part of the freeze-out is determined by
the numerical condition Ntest = 5. For this reason, there is
practically no effect of Knfr on the final results in this case.
The elliptic flow is well described up to kT ∼ 1.0 GeV, and
particle spectra even up to higher values of kT . The average kT

of the particles is around 0.58 GeV, and the kT -integrated v2

is well described as well; see Fig. 18.
If the cross section is reduced to σ = 10 mb, the physical

freeze-out condition is starting to affect the elliptic flow, while
the spectrum is still insensitive to the choice of Knfr. With
a smaller cross section the final spectrum is harder, and the
average kT in this case is around 0.63 GeV. We can still
reproduce both the low-kT v2(kT ) and the kT -integrated v2

by choosing the decoupling condition appropriately.
It turns out that if we further reduce the cross section to

σ = 5 mb, we can choose the freeze-out condition to reproduce
either the low-kT part of v2(kT ), or the kT -integrated v2, but
not both simultaneously. This is already indicating a significant
failure of the simple freeze-out description that is based on
the 14-moment approximation Eq. (14). This situation is most
prominent for larger momenta kT � 1.5 GeV, where v2(kT )
shows a strong unphysical decrease in the fluid-dynamical
calculation.

We now investigate the possibility that the v2 calculated
from BAMPS results from the so-called escape mechanism
[61], where some azimuthal anisotropy is induced by particles
which have not interacted at all on their way out of the
produced matter. Particles moving outwards have a smaller

FIG. 13. The πxx profiles scaled by energy density e for σ = 20, 10, and 5 mb and an nBC Glauber initial density profile.
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FIG. 14. The ratio of longitudinal over transverse pressure PL/PT for σ = 20, 10, and 5 mb and an nBC Glauber initial density profile.

probability to interact than particles which would first have to
pass through the center zone. Thus a shadowing effect takes
place, translating the spatial asymmetry into an asymmetry in
momentum space. In the partonic calculations, it is easy to track
the number of collisions. In the setup given here, the overall
probability that a particle leaves the medium without any
interaction drops from approximately 50% for σ = 1 mb down
to 6% for σ = 10 mb. For larger values of the cross section, the
probability of no interaction is negligible. In the cross-section
interval used here, the average number of interactions of the
particles increases linearly from 0.7 to 7.3.

In the fluid-dynamical picture the above mentioned escape
mechanism is not properly accounted for, as there is no explicit
treatment of interacting particles. In order to prove that the
mismatch between kinetic and fluid-dynamical results for the
flow is not induced by the escape mechanism, we show in
Fig. 17 v2 as a function of kT for different (small) values of the
cross section, where we distinguish between particles which
have undergone some interactions and those which escape
without any collision. As can be seen, for σ < 5 mb, these
two particle classes have the same v2. For larger cross sections,
the v2 of particles suffering interactions becomes larger than
that of the noninteracting particles. Nevertheless, the relative
importance of the latter particles decreases with increasing
cross section. Thus the overall result for v2 is that of the
interacting particles. Moreover, we have checked that for small
cross sections there is no significant bias from which spatial
region the noninteracting particles are emitted. Only if the cross

section is large, these particles are coming mainly from the
edge of the system, but as mentioned above, in this case their
contribution to the total v2 is also small.

In addition, one realizes that there is no difference between
the low- and high-kT ranges. Thus the noninteracting particles
cannot be the source for any mismatch between the kinetic
and the fluid-dynamical results for v2 at high kT . Nevertheless,
for future studies of flow in smaller systems as in p + A or
even p + p collisions, the escape mechanism assumes a more
prominent role, in the sense that one carefully has to study
the question how the mean free path compares to the length
scales of the total system and also to the scale of fluctuations.
We further note that we obtain sizeable v2 values even if the
number of collisions per particle is less than one (σ = 1 mb).
This is in line with the earlier studies of Refs. [62,63].

We can further analyze the freeze-out prescription in the
fluid-dynamical calculations by considering several different
freeze-out criteria. To this end we show in Fig. 18 the
kT -integrated v2 as a function of the cross section for
constant-Knudsen number, constant-mean free path, and
constant-temperature freeze-out. In principle, if the freeze-out
prescription corresponds to the real freeze-out mechanism in
the BAMPS solution of the Boltzmann equation, we should be
able to describe the BAMPS results for all values of the cross
section where the fluid-dynamical limit is still valid. As one
can see from the figure, both the constant-Knudsen number
and the constant-mean free path freeze-out criteria give the
correct behavior of the σ dependence of the kT -integrated

FIG. 15. Momentum-space eccentricity as function of time, for σ = 20, 10, and 5 mb and nBC initial conditions.
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FIG. 16. Transverse-momentum spectra (top panel) for a Glauber initial profile (“nBC”) and σ = 20, 10, and 5 mb. The freeze-out criteria
Knfr = 2.5 (left) and 4 (right) are compared with each other. The corresponding v2 results are shown in the bottom panels. Solid lines represent
fluid-dynamics results, while the dashed lines show BAMPS solutions.

FIG. 17. The v2 values as function of kT for different cross
sections. Solid lines show the results for particles which have not
undergone any interaction, while the dashed lines shows the values
for all other particles. The order of the curves from top to bottom is
the same as in the legend.

v2 for sufficiently large cross sections. Only when σ drops
below 5 mb we do observe that fluid dynamics starts to fail to
reproduce the BAMPS results.

Here the constant-Knudsen number freeze-out can be
thought of as the limit where freeze-out happens locally when
fluid dynamics ceases to be a valid approximation to the
evolution. The constant–mean free path freeze-out can in turn
be thought of as a global condition: freeze-out happens when
the particles become truly free, i.e., when the mean free path
becomes of the order of the overall size of the system. Both of
them are physical freeze-out conditions in the sense that they
depend on the microscopic cross section. However, a constant-
temperature freeze-out does not correspond to any physical
freeze-out mechanism, and as we can see in Fig. 18, it also
fails to reproduce the σ dependence of the kT -integrated v2.
The fact that we have a finite v2 for small cross sections for the
fluid-dynamical calculation can be understood as follows. For
these small cross sections, the constant-temperature freeze-out
then happens at much later times than the constant-Knudsen
number freeze-out. At these large times, the produced elliptic
flow is large.

Our main results are summarized in Fig. 19, where we show
the average inverse Reynolds number,

√|πμνπμν |/p0, on the
freeze-out boundary, and the average initial Knudsen number
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FIG. 18. kT -integrated elliptic flow v2 for nBC initial conditions as a function of the cross section varying from σ = 20 to 1 mb. The
fluid-dynamical results are calculated with different decoupling conditions: constant Knudsen number (left), constant mean free path (middle),
and constant temperature (right). The corresponding constants are shown in the legend. Solid lines represent fluid-dynamical results, while the
dashed lines show BAMPS solutions.

Kn, the magnitude of the δfk contribution to v2, and the relative
difference of v2 between the fluid-dynamical and BAMPS
calculations as a function of cross section. The freeze-out
condition is Knfr = 2.5. The average inverse Reynolds number
on the freeze-out surface is calculated by weighting it with
the entropy flux s�μuμ through the surface, in order to give
those regions more weight from where most of the particles are
emerging. Similarly, the initial Knudsen number is calculated
as an average over the transverse plane at τ = τ0 by weighting
it with the entropy density s(τ, x, y).

Figure 19 shows that the initial Knudsen number increases
rapidly with decreasing cross section, and exceeds one between
σ = 10 and 5 mb. This coincides with a similar sharp increase
in the relative difference between the fluid-dynamical and

FIG. 19. Average inverse Reynolds number on the freeze-out
surface, average initial Knudsen number, relative magnitude of δfk

in v2, and relative difference of v2 from fluid-dynamical and BAMPS
calculations.

BAMPS calculations, indicating that the strict validity of fluid
dynamics extends to Kn ∼ 1. On the other hand, there is still
a significant amount of v2 generated between Kn = 1.5 and
2.5, as seen in Fig. 18. This shows that Kn ∼ 1 is not a limit
where the system decouples into free particles, but in order to
describe the dynamics of this type of events, the Kn = 1–2
phase needs still to be sufficiently well described by fluid
dynamics. With σ = 5 mb, most of the v2 is generated during
this phase, and fluid dynamics can still give the correct v2

within 20%.
Figure 19 shows how the average inverse Reynolds number

on the freeze-out boundary increases with decreasing cross
section. As a consequence also the relative contribution of
δfk corrections to v2 increases as well. The region where the
discrepancies between fluid dynamics and BAMPS start to
appear, i.e., σ = 5 to 10 mb, is also a region where δfk starts
to contribute more than 50% to the elliptic flow. In our current
setup it is not straightforward to study the applicability of fluid
dynamics separately as a function of R−1 and Kn. However,
one can see from the figure that Kn and R−1 are independent
dynamical quantities: the Knudsen number stays constant at the
surface, but the Reynolds number varies with the cross section.

VII. CONCLUSIONS

In this work we addressed the question of the range of
applicability of dissipative fluid dynamics to small systems
like those generated in p + p and p + A collisions. To this
end, we solved the Boltzmann equation, using the microscopic
transport model BAMPS, for systems of massless particles
with boost invariance in longitudinal direction and differ-
ent initial density distributions in the transverse plane. The
different scenarios included azimuthally symmetric Gaussian
distributions with large (3 fm) and small (1 fm) widths, and
also an asymmetric distribution given by a thickness function
provided by two overlapping Woods-Saxon distributions. The
evolution started in thermal and chemical equilibrium and
was calculated for various values of the isotropic elastic cross
section from 20 mb down to 1 mb. For the same initializations,
also the Israel-Stewart type of dissipative fluid-dynamical
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calculations, derived in the 14-moment approximation, were
performed.

The ratio of microscopic over macroscopic length or time
scales, the Knudsen number, is a critical measure for the
validity of a fluid-dynamical treatment. By varying the system
size and the interaction cross sections in the way described
above, regions in space-time are probed where the Knudsen
number ranges from values below 1 up to values well above 1.

For a comparison between results from the microscopic and
the fluid-dynamical treatment, one has to consider the region
of space-time where such a comparison is really meaningful.
Technical reasons and computer-memory limitations within
the BAMPS approach restrict this region, because some nu-
merical “freeze-out” is implicitly implemented by the choice
of the test-particle ansatz.

Comparing energy densities and fluid velocities, practically
no differences can be seen between the two approaches, even
for small values of the cross section, even where Knudsen
numbers are large. The components of the shear-stress tensor
turn out to be somewhat more sensitive to the Knudsen number.
But also for small systems with small cross sections, these
profiles are still very similar.

In the case of azimuthally asymmetric initializations, ad-
ditional quantities can be studied. The so-called momentum-
space eccentricity εp shows also a relatively small dependence
on the Knudsen number, but already there more significant
deviations for a small cross section σ � 5 mb can be seen.
Overall, the situation is that if we consider only the evolution
of fluid-dynamical quantities, i.e., those appearing in T μν and
Nμ, fluid dynamics is in an excellent agreement with the
BAMPS calculations, even in the regions where the Knudsen
number is much larger than 1. More sizable differences occur
in regions where Kn � 2–4.

A much more sensitive quantity is the transverse-
momentum spectrum, and in particular the elliptic-flow co-
efficient v2. For these observables, the situation becomes more
complicated, as the freeze-out has to be implemented sepa-
rately in fluid dynamics, taking also the numerical freeze-out
in the BAMPS calculation into account. The implementation
requires additional modeling since the space-time evolution of
the macroscopic fields (T μν and Nμ) needs to be converted
back to the microscopic degrees of freedom. In this work, this
conversion was done within the 14-moment approximation to
the local momentum distribution function.

The azimuthally averaged transverse-momentum spectra
show very little sensitivity on the decoupling conditions, and
a good agreement between the two approaches is found.
The main characteristics of the kT spectra is the average
kT , which is generated quite early in the evolution. For the
system considered here (massless particles), further evolution
practically does not affect the average kT .

Elliptic flow, on the other hand, is strongly influenced by the
decoupling condition. By using a constant-Knudsen number
decoupling criterion, Knfr ∼ 2.5, we could well describe the
BAMPS v2 for large cross sections, and observed a gradual
breakdown of the fluid-dynamical description when the cross
section was decreased. A clear sign of the failure of the fluid-
dynamical approach is that, when the cross section was chosen
too small, we could no longer find a decoupling condition

that would simultaneously describe the kT -integrated v2 and
the low-kT part of the kT differential v2(kT ). Furthermore,
by varying the cross section the initial Knudsen number
varies as well. Thus we could infer that the strict validity
of fluid dynamics extends up to Kn ∼ 1, but also observed
that a significant amount of v2 can still be generated in the
phase where Kn ∼ 1–2. Overall agreement with BAMPS still
remained good, if this Kn ∼ 1–2 phase was sufficiently short
compared to the whole evolution.

We also calculated the average inverse Reynolds numbers
on the decoupling surface, and observed that they also increase
with decreasing cross section, and consequently the δfk con-
tribution to the elliptic flow grows larger, being of order 50%
when the fluid-dynamical description was starting to break
down. In our setup presented here, it was not straightforward
to study the influence of the Reynolds number and Knudsen
numbers separately. The influence of the Reynolds number on
the applicability of fluid dynamics could be tested by using
nonequilibrium initial conditions, but this is left for future
work.

Obviously, the applicability of fluid dynamics depends on
what kind of quantities we wish to calculate: for the average
kT , and the space-time evolution of T μν the agreement was
extending well beyond Kn ∼ 1, but for elliptic flow Kn ∼ 1–2
was the limit. In the future, we plan to extend this study by
considering more complicated and realistic initial conditions
for A + A and p + A collisions that account for event-by-event
fluctuations of the initial densities. This would give access
to higher harmonics beyond the elliptic-flow coefficient and
offer the possibility to explore the question of whether the
escape mechanism for smaller systems might indeed play a
role for these harmonic-flow observables [61]. In order to
improve the statistics, the reduction of the Boltzmann solver
from (3 + 1) to (2 + 1) dimensions is necessary. In addition, we
want to emphasize that we will also investigate fluid-dynamical
theories beyond the simple 14-moment approximation, in
order to systematically probe the applicability of different
approximations.
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