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We study the local structure of the vorticity field and the � polarization in Au+Au collisions in the energy
range

√
sNN = 7.7–200 GeV and Pb+Pb collisions at

√
sNN = 2760 GeV using a multiphase transport model.

We focus on the vorticity field arising from the nonuniform expansion of the fireball, which gives the circular
structure of the transverse vorticity ω⊥ = (ωx,ωy) around the z direction as well as the quadrupole pattern of the
longitudinal vorticity ωz in the transverse plane. As a consequence, the three components of the polarization vector
P = (Px,Py,Pz) for � hyperons show harmonic behaviors as sgn(Y ) sin φp , −sgn(Y ) cos φp , and − sin(2φp),
where φp and Y are the azimuthal angle and rapidity in momentum space. These patterns of the local � polarization
are expected to be tested in future experiments.

DOI: 10.1103/PhysRevC.98.024905

I. INTRODUCTION

In noncentral heavy-ion collisions, huge orbital angular
momenta and vorticity fields are produced in strongly coupled
quark gluon plasma (sQGP). They can lead to the hadron
polarization and spin alignment through spin-orbit couplings
[1–5] or spin-vorticity couplings [6–9], see Refs. [10–12] for
recent reviews. The vorticity-related effects also include some
chiral transport phenomena such as the chiral vortical effect
[13] and the chiral vortical wave [14] as well as a change of
the QCD phase diagram [15–18].

The study of the global polarization was initially motivated
by the fact that a huge orbital angular momentum (OAM)
is produced in noncentral heavy-ion collisions as shown in
Fig. 1(a). Although such an OAM does not make the sQGP
rotating as a rigid body, it can manifest itself as an initial
longitudinal shear flow ∂xvz > 0 in the fireball as shown in
Fig. 1(b). Then a vorticity field is generated and points to
the direction of the global OAM (−y direction) in average
and leads to the global polarization of hadrons along the same
direction.

Recently, the global polarization of � hyperons in rela-
tivistic heavy-ion collisions has been measured by the STAR
Collaboration [19] through their weak decays. The average
vorticity of the sQGP has been extracted to be of order
ω ∼ 1021 s−1, the highest that has ever been found in nature.
One feature of the global polarization is that it decreases
with collision energies in the range of 7.7–200 GeV [19].
Several different models have been used to calculate the
vorticity-induced global polarization of � hyperons, including
hydrodynamics [20,21], a multiphase transport (AMPT) model
with an assumption of local thermodynamical equilibrium
[22,23], AMPT model with the chiral kinetic equation [24],
and the quark-gluon-string model (QGSM) with anomalous
mechanism [25]. The results of these models show the same
energy dependence for the global � polarization, which agree
with experimental data. For other studies on vorticity fields or
polarizations, see Refs. [26–39].

In a previous paper by some of us [22], we pointed out that
the global polarization is related to the fireball’s tilted shape in
the reaction plane. Due to the faster longitudinal expansion at
higher energies, the fireball or the matter distribution shows a
less tilted shape in midrapidity, and thus the net vorticity and
the global polarization are almost vanishing. Such an energy
dependence of the tilted shape can also be seen by the rapidity
slope of the directed flow dv1/dη [11].

The global polarization is an average effect over the whole
volume of the fireball within the detector’s acceptance, so it
reflects the global or net vorticity, which is along the global
OAM. However, the local vorticity field has much richer
information than the global one. In the numerical simulations
[22,23,31–35], it is observed that ωy shows a quadrupole
pattern in the reaction plane (xz plane): ωy is negative and
positive in the regions xz > 0 and xz < 0, respectively. This
novel structure is mainly due to the fact that the transverse
velocity |vx | decreases with rapidity or ∂|vx |/∂|z| < 0 [33]. In
addition to the pattern of ωy , a similar quadrupole structure
of ωz also exists in the transverse plane [11,40,41] since the
transverse velocity v⊥ = (vx,vy) is not exactly along the radial
direction er due to the fireball’s elliptic shape in the transverse
plane.

In this paper, we give a systematic analysis of the patterns
of the fluid velocity and vorticity in the fireball produced
in heavy-ion collisions. We find that all components, ωx ,
ωy , and ωz, have quadrupole patterns in the yz, xz, and xy
plane, respectively. These quadrupole patterns all arise from
the fireball expansion not related to the OAM. In order to
probe the quadrupole pattern of the vorticity field, one can
separate the whole momentum space into different regions and
measure the average � polarization in each region separately.
Through the numerical simulation with the AMPT model, we
find that the quadrupole patterns of vorticity fields can lead to
a sizable local � polarization and are expected to be measured
in future experiments.

This paper is organized as follows. We first give a brief
introduction to the polarization induced by vorticity in Sec. II.
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FIG. 1. Illustration of noncentral heavy-ion collisions in (a) the
transverse plane and (b) the reaction plane. Two nuclei at (x =
±b/2, y = 0) move along ±z direction, respectively. The global
OAM and the net vorticity is along −y direction.

Then we discuss in Sec. III how the fluid velocity and vorticity
are distributed in the fireball. The local vorticity structure
can be probed by the local � polarization. In Sec. IV, we
present the numerical results for the local � polarization by
the AMPT model. The purpose of our numerical calculation is
to give some typical features of the local � polarization, which
can be used to probe the local vorticity distribution in future
experiments. A summary of results is given in the final section.

II. BASICS ON VORTICITY, SPIN, AND POLARIZATION

In this section, we give a brief introduction to the polar-
ization induced by vorticity in a hydrodynamical system. In a
nonrelativistic fluid, the vorticity can be used to characterize
the local rotation of the fluid,

ω = 1
2∇ × v, (1)

where v is the fluid velocity as a function of space-time.
Particles with spin degrees of freedom in the vortical fluid
are expected to be polarized in alignment with the vorticity. In
local thermodynamical equilibrium, the ensemble average of
the spin vector for the spin-1/2 particle is given by S = tr(ρŜ),
where Ŝ = σ/2 is the spin operator with σ being Pauli matrices
and ρ ∼ exp(̂S · ω/T ) is the spin density matrix with the
temperature T . One can obtain S as

S = 1

2
tanh

(
ω

T

)
ω̂ � ω

4T
, (2)

where ω̂ = ω/|ω| is the direction of ω. The polarization vector
for the spin-1/2 particle is defined as

P ≡ 2S = tanh

(
ω

T

)
ω̂ � ω

2T
, (3)

where the factor 2 is introduced to normalize the polarization
magnitude to unity.

Since the high-energy heavy-ion collision is a relativistic
system, the above equations should be generalized to the
relativistic ones. As argued in Refs. [6,7], the quantity that is
related to the polarization is the thermal vorticity tensor �μν

defined by

�μν = 1
2 (∂νβμ − ∂μβν), (4)

where βμ = uμ/T with uμ = γ (1,v) being the fluid four-
velocity and γ = 1/

√
1 − v2 the Lorentz factor. The vor-

ticity tensor �μν can be decomposed into two groups of
components as

� T = (�0x,�0y,�0z) = 1

2

[
∇

( γ

T

)
+ ∂t

(γ v
T

)]
, (5)

� S = (�yz,�zx,�xy) = 1

2
∇

(γ v
T

)
. (6)

In the Boltzmann limit and linear order of �μν , the spin vector
is given by [22]

S(x,p) = 1

4m
(Ep� S + p × � T ). (7)

where Ep, p, and m are the energy, momentum, and mass of the
particle. In the numerical simulations, S in Eq. (7) is usually
calculated in the center of mass frame of A+A collisions, while
in experiments the polarization is measured in the �’s rest
frame by the angular distribution of the proton in �’s weak
decay. To obtain the spin vector S∗ in the �’s rest frame from S
in the calculational frame, one uses the Lorentz transformation

S∗ = S − p · S
Ep(m + Ep)

p. (8)

In this case, the � polarization vector is given by

P = 2S∗, (9)

corresponding to the nonrelativistic one in Eq. (3).
Both Eqs. (2), (3) and their relativistic generalizations,

Eqs. (7)–(9), relate the polarization to the vorticity field where
and when a particle such as� is formed at one space-time point.
Therefore the local structure of the vorticity can be probed by
measuring the local � polarization. This is the general idea we
will follow throughout this study.

III. FLUID VELOCITY AND VORTICITY FIELDS
AND POLARIZATION DISTRIBUTIONS

We now discuss the fluid velocity and vorticity fields. In
order to give an intuitive picture, our discussion is based on
Eqs. (1)–(3) using nonrelativistic fields v and ω, while the
numerical calculations for polarizations in the next section are
based on relativistic quantities in Eqs. (4)–(9) instead. The
nonrelativistic polarization defined by Eqs. (1)–(3) should have
the same feature as the relativistic one by Eqs. (4)–(9).

Throughout this paper, we use the coordinate system shown
in Fig. 1, where two nuclei at (x = ±b/2, y = 0) in the
transverse plane move along the ±z direction, respectively, and
the global OAM J is along the −y direction. Due to the OAM
of the fireball, a net vorticity field is expected to form whose
direction is pointing to the OAM in average. In the following
we formally denote such a net vorticity as 〈ωy〉, where 〈〉 means
the average over space weighted by the matter density. This net
vorticity leads to a global polarization PG along the direction
of the OAM.

Apart from the net vorticity originated from the OAM,
vorticity can also be generated from the fireball’s nonuniform
expansion as illustrated by Fig. 2, whose pattern is very
different from the net vorticity (along −y direction). For
simplicity, let us consider an isotropic transverse velocity field
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FIG. 2. (a) Schematic illustration of the quadrupole pattern of ωy

generated from ∂zv⊥ in the reaction plane, where the vorticity is along
the −y direction (⊗) in the xz > 0 quadrants and the y direction (�)
in the xz < 0 quadrants. (b) A three-dimensional view of the circular
structure of the transverse vorticity ω⊥ = (ωx,ωy).

v⊥ = (vx,vy) in the following form

v⊥ = v⊥(r,z)er , (10)

where r and z are the transverse radius and the longitudinal
coordinate, and er is the unit vector along the radial direction in
the transverse plane. Then from Eq. (1), the transverse vorticity
filed ω⊥ = (ωx,ωy) is given by

ω⊥ = 1
2∂zv⊥(r,z)eφ, (11)

where eφ = (− sin φ, cos φ,0) is the unit vector along the
azimuthal direction with φ being the azimuthal angle with
respect to the x axis. If the fluid is the Bjorken-type with the
longitudinal boost invariance that v⊥ is independent of z, then
ω⊥ is zero. However, in realistic collisions the longitudinal
boost invariance is violated since the matter is not uniformly
distributed in space, which can give rise to a nonzero vorticity.
Note that the energy or matter is mostly deposited at z = 0, the
pressure-driven transverse velocity v⊥ should be the largest at
z = 0 and decrease with |z| as shown in Fig. 2(a). Then with
the gradients ∂v⊥/∂|z| < 0, one can see that ω⊥ in Eq. (11)
has a circular structure: ω⊥ is along −eφ (clockwise) and eφ

(counterclockwise) in the z > 0 and z < 0 regions respectively
as shown in Fig. 2(b). In terms of the components ωx and ωy ,
they have the quadrupole structures: ωx > 0 (ωx < 0) in the
yz > 0 (yz < 0) quadrants and ωy > 0 (ωy < 0) in the xz < 0
(xz > 0) quadrants.

We show the quadrupole or circular pattern of the transverse
vorticity obtained in numerical calculations with the AMPT
model in Figs. 3 and 4, which correspond to the illustrations
in Figs. 2(a) and 2(b), respectively.

Figure 3 shows the y component of the vorticity in the xηs

plane at y = 0, where ηs = (1/2) log[(t + z)/(t − z)] is the
space-time rapidity. Here the vorticity field is shown at the time
t = 5 fm/c in 20–30 % central Au+Au collisions at

√
sNN =

7.7 and 200 GeV. We see thatωy at 200 GeV has a nearly prefect
quadrupole structure: ωy is an odd function of both x and ηs .
This pattern is consistent with what we expect in Fig. 2(a).
As for 7.7 GeV, ωy is not an odd function. In particular,
we see that ωy < 0 in the central region x � ηs � 0. Such
a deviation from the odd function comes from the fireball’s
tilted geometry in the reaction plane in noncentral collisions
as shown in Fig. 1(b). We can regard the pattern of ωy as a sum

FIG. 3. The vorticity component ωy in the reaction plane (xηs

plane at y = 0) at time t = 5 fm/c in 20–30 % central Au+Au
collisions at

√
sNN = 7.7 (left) and 200 GeV (right). The black dashed

lines represent the contour where ωy = 0.

of two different vorticity patterns: the net vorticity generated
from the fireball’s tilted shape and the quadrupole one from the
fireball’s nonuniform expansion. The net vorticity pattern has
an obvious energy dependence. At 200 GeV, the contribution
from the net vorticity is very small since the fireball is less tilted
in midrapidity at higher energy due to its faster longitudinal
expansion [22,42]. In contrast the quadrupole vorticity has the
same magnitude at 7.7 and 200 GeV. See Refs. [22,23,31–35]
for other calculations of the quadrupole structure of ωy .

Figure 4 shows the distribution of ω⊥ = (ωx,ωy) as func-
tions of x and y at two values of space-time rapidity ηs = −1
and 1. Here the vorticity field is shown at the time t = 5 fm/c
in 20–30 % central Au+Au collisions at

√
sNN = 200 GeV for

instance. We see that ω⊥ has a circular structure with opposite
orientations in the ηs > 0 and ηs < 0 regions. This pattern is
consistent with what we expect in Fig. 2(b). The behavior that
the magnitude of ω⊥ increases with the transverse radius r can
be understood by the increase of v⊥(r,z) with r . The circular
pattern of ω⊥ has also been observed in Ref. [27].

Besides the transverse component ω⊥, the longitudinal
component ωz also has a nonvanishing local distribution. Due
to the anisotropic flow, v⊥ in noncentral collisions is not along

FIG. 4. The distribution of the transverse vorticity ω⊥ = (ωx,ωy)
in the transverse plane at longitudinal positions ηs = −1 (left) and
ηs = 1 (right) at time t = 5 fm/c in 20–30 % central Au+Au
collisions at

√
sNN = 200 GeV. The color represents the value of the

component ωy .
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TABLE I. The sources and � polarization effects of different vorticity patterns.

Vorticity pattern Source Effect on � polarization

net vorticity 〈ωy〉 < 0 global OAM or fireball’s tilted shape global polarization P G
y

circular structure of ω⊥ longitudinal dependence of transverse velocity local polarization, see Px and Py in Eq. (12)
quadrupole structure of ωz anisotropic transverse velocity (elliptic flow) local polarization, see Pz in Eq. (12)

the radial direction er , this gives rise to the inequality of ∂xvy

and ∂yvx , and then a nonvanishing ωz with the quadrupole
pattern in the transverse plane: ωz are along the opposite
directions in the regions sin(2φ) > 0 and sin(2φ) < 0 [11,40].

In experiments, one can measure the local � polarization
to probe the quadrupole or circular pattern of the vorticity
field. Due to the collective expansion of the fireball, the space
information of the vorticity field can be reflected by the local �
polarization as functions of φp and Y , where φp is the azimuthal
angle of �’s momentum with respect to the reaction plane
and Y = (1/2) log[(Ep + pz)/(Ep − pz)] is the momentum
rapidity. From the circular structure of the transverse vorticity
ω⊥ in Eq. (11) and the quadrupole pattern of the longitudinal
vorticity ωz, to the leading order of the Fourier decomposition,
we expect that the polarization vector P = (Px,Py,Pz) for the
� hyperon has the following harmonic behavior:

Px(φp,Y ) = Fxsgn(Y ) sin φp,

Py(φp,Y ) = −Fysgn(Y ) cos φp, (12)

Pz(φp,Y ) = −Fz sin(2φp),

where Fx , Fy , and Fz are the Fourier coefficients, which are
all positive, and sgn(Y ) denotes the sign of Y coming from the
opposite circular orientations of ω⊥ at ηs > 0 and ηs < 0 as
shown in Fig. 2(b) and Fig. 4.

In summary of this section, there are three different vorticity
patterns as listed in Table I. They are the net vorticity 〈ωy〉 from
the fireball’s tilted shape in the reaction plane, the circular
transverse vorticity ω⊥ from the longitudinal dependence of
the transverse velocity, and the quadrupole structure of ωz

from the anisotropic transverse velocity. These three vorticity
patterns can lead to the global polarization P G

y , the circular
polarization (Px,Py) in the transverse directions and the local
polarizationPz in the longitudinal direction, respectively. Since
the three vorticity patterns are from different sources, their
effects on � polarization could have different energy and
centrality behaviors, which are studied in the next section.

IV. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we show the numerical results of the local
� polarization using the string-melting version of the AMPT
model [43] as the event generator. In this model, the collision
participants are converted to partons, which are allowed to
interact by two-body elastic scatterings. In this partonic phase
the collective flow velocity and vorticity are generated, and
we calculate the thermal vorticity �μν in Eq. (4) by the same
coarse-grain method as in Ref. [22]. At the end of the partonic
phase, the � hyperons are produced by a coalescence mecha-
nism. Then their polarizations are calculated with Eqs. (7)–(9)

with the values of �μν at the space-time point at which the �
hyperons are produced.

We run simulations of Au+Au collisions at energies√
sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, 200 GeV and

also Pb+Pb collisions at 2760 GeV. For each collision energy,
5 × 105 events are generated with varying impact parameter b
limited to the range 0–25 fm. These events are classified into
different centrality bins 0–10 %, 10–20 %, . . . according to the
charged particle multiplicities. For each collision energy and

FIG. 5. The average polarizations 〈Pxsgn(Y )〉, 〈Pysgn(Y )〉, and
〈Pz〉 for the � hyperons with different signs of sin φp , cos φp , and
sin(2φp) as functions of collision energies in the range 7.7–200 GeV
in 0–20 % (triangle) and 20–50 % (circle) central Au+Au collisions.
The black dot-dashed line shown in the middle panel refers to the
global polarization of � hyperons in the centrality bin 20–50 % in
midrapidity region |Y | < 1.
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FIG. 6. The average polarizations 〈Pxsgn(Y )〉, 〈Pysgn(Y )〉, and 〈Pz〉 for � as functions of azimuthal angle φp in 20–50 % central Au+Au
collisions at 200 GeV (left) and Pb+Pb collisions at 2760 GeV (right).

centrality, we calculate the polarizations of all the � hyperons
in the rapidity region |Y | < 1.

To probe the vorticity structure, we group all � hyperons
into several bins by their azimuthal angle φp and the sign of
Y . Then we calculate the average of the polarization vector for
� in each bin. The result P(φp,Y ) is obtained as a function of
φp and Y . To test Eq. (12), we define the following quantities:

〈Pxsgn(Y )〉 = Px(φp,Y > 0) − Px(φp,Y < 0)

2
,

〈Pysgn(Y )〉 = Py(φp,Y > 0) − Py(φp,Y < 0)

2
,

〈Pz〉 = Pz(φp,Y > 0) + Pz(φp,Y < 0)

2
. (13)

Here the averages in the first two lines are taken with weight
sgn(Y ). In this way, the global polarization PG along −y
direction in both Y > 0 and Y < 0 region is removed, but
the circular polarizations Px and Py in Eq. (12) survive. Then
using Eq. (13), we can focus on the effects from the circular or
quadrupole patterns of the local vorticity. Note that the three
quantities in Eq. (13) are functions of φp only.

Figure 5 shows the results of 〈Pxsgn(Y )〉, 〈Pysgn(Y )〉, and
〈Pz〉 for the � hyperons in different regions of φp as functions
of collision energies in the range 7.7–200 GeV in 0–20 % and
20–50 % central Au+Au collisions. Here the azimuthal angle is
divided into different regions by the signs of sin φp, cos φp, and
sin(2φp) for the calculations of Px , Py , and Pz, respectively. We
can see that 〈Pxsgn(Y )〉 is positive (negative) in region sin φp >
0 (<0) and 〈Pysgn(Y )〉 is negative (positive) in region cos φp >
0 (<0), which are consistent with the circular structure of the
transverse vorticity. Also we see 〈Pz〉 is negative (positive) in
region sin(2φp) > 0 (<0), which is also consistent with the
quadrupole pattern of ωz in the transverse plane.

For comparison, we also show the global polarization PG

of � by the black dot-dashed line in the middle panel of
Fig. 5. The global polarization PG is the effect from the net

vorticity 〈ωy〉. It is calculated by taking an average over all �
hyperons without dividing them into bins by φp and Y . From
the reflection symmetry of the fireball, one can prove that
only the P G

y component (along the OAM) is nonvanishing. As
discussed in Sec. III, the global polarization P G

y and the net
vorticity 〈ωy〉 are originated from the fireball’s tilted shape in
the reaction plane. Since the fireball is less tilted in midrapidity
at higher energies, the global polarization P G

y decreases with
the collision energy. However, the circular polarization
observables 〈Pxsgn(Y )〉 and 〈Pysgn(Y )〉 are not sensitive to
the collision energy, which is due to that the circular vorticity
pattern has the same magnitude at different collision energies
as evidenced in Fig. 3. The local polarization effect along the
longitudinal direction 〈Pz〉 also has a flat energy behavior.
This may be related to that hadron’s elliptic flow does not
significantly change with the collision energy [44].

Figure 6 shows the results of 〈Pxsgn(Y )〉, 〈Pysgn(Y )〉, and
〈Pz〉 for the � hyperons as functions of azimuthal angle
φp in 20–50 % central Au+Au collisions at 200 GeV and
Pb+Pb collisions at 2760 GeV, where the whole range of φp is
divided into 24 bins. We can see that the shapes of 〈Pxsgn(Y )〉,
〈Pysgn(Y )〉, and 〈Pz〉 are in analogy to sin φp, − cos φp, and
− sin(2φp), respectively, as described by Eq. (12). The features
of three quantities at two collision energies are quite similar.
We have also checked that the harmonic behaviors also exist
at energies 7.7–62.4 GeV. We note that our result for 〈Pz〉 is
consistent with the viscous hydrodynamic simulations [40],
while 〈Pxsgn(Y )〉 and 〈Pysgn(Y )〉 are not calculated in that
reference. It is worthwhile to point out that although the global
polarization components P G

x and P G
z are zero due to the

symmetry and P G
y is almost vanishing at

√
sNN = 200 GeV

[45] and 2760 GeV [46] due to the reason given in the
above paragraph, the local polarization observables 〈PxsgnY 〉,
〈PysgnY 〉, and 〈Pz〉 are all nonvanishing. We also see in Fig. 5
that the magnitude of 〈PysgnY 〉 is larger than that of P G

y .
Therefore the local polarization effects are sizable and worthy
to be tested in future experiments.
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FIG. 7. The Fourier coefficients in Eq. (14) as functions of the
centrality at 200 GeV for Au+Au collisions (top) and 2760 GeV for
Pb+Pb collisions (bottom).

The Fourier coefficients Fx , Fy , and Fz in Eq. (12) can
be extracted from the magnitude of the harmonic behavior in
Fig. 6,

Fx = 2〈Pxsgn(Y ) sin φp〉,
Fy = −2〈Pysgn(Y ) cos φp〉,
Fz = −2〈Pz sin(2φp)〉, (14)

where the averages are taken over 24 bins of the azimuthal
angle. The results are shown in Fig. 7 as functions of the
centrality at

√
sNN = 200 GeV for Au+Au and at 2760 GeV

for Pb+Pb collisions. The features of these coefficients are
quite similar at two energies. We see that Fx and Fy are at the
same magnitude, but there is a difference between them, which
increases with the centrality. This is because the transverse
vorticity loop in noncentral collisions should be in an elliptic
shape, which deviates from a prefect circle. We also see that in

the most central collisions Fx and Fy are nonvanishing, while
Fz is almost zero. This difference can be understood by the
fact that Fz arises from the elliptic flow, which does not exist
in central collisions while Fx and Fy are generated from the
violation of the longitudinal boost invariance, which exists in
both central and noncentral collisions.

V. SUMMARY

We give a systematic analysis on the vorticity structure and
the distribution of � polarization in heavy-ion collisions. We
find that there are two contributions to the vorticity field: one
is from the OAM along the −y direction giving the global
polarization; another is from the nonuniform expansion of the
fireball, which leads to a circular structure for the transverse
vorticity ω⊥ and a quadrupole pattern for the longitudinal
vorticity ωz in the transverse plane. The space distribution of
the vorticity field can be probed by the local � polarization
as a function of the azimuthal angle φp and the rapidity Y
in momentum space, which is expected to have harmonic
behaviors as in Eq. (12).

For the numerical calculation of the local � polarization,
we use the string-melting version of the AMPT model. We
run the simulations of Au+Au collisions at energies

√
sNN =

7.7–200 GeV and Pb+Pb collisions at 2760 GeV. We divide all
� hyperons into several bins by their azimuthal angle φp and
the sign of Y . Then we calculate the average of the polarization
vector for � in each bin. The results show that 〈Pxsgn(Y )〉,
〈Pysgn(Y )〉, and 〈Pz〉 have the harmonic behaviors of sin φp,
− cos φp, and − sin(2φp), respectively, which are consistent
to the circular or quadrupole structure of the vorticity field
as we expect from the nonuniform collective expansion of the
fireball. These patterns in the local � polarization are expected
to be tested in future experiments.
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