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Global superscaling analysis of quasielastic electron scattering with relativistic effective mass
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We present a global analysis of the inclusive quasielastic electron scattering data with a superscaling approach
with relativistic effective mass. The SuSAM* model exploits the approximation of factorization of the scaling
function f ∗(ψ∗) out of the cross section under quasifree conditions. Our approach is based on the relativistic
mean field theory of nuclear matter where a relativistic effective mass for the nucleon encodes the dynamics of
nucleons moving in presence of scalar and vector potentials. Both the scaling variable ψ∗ and the single nucleon
cross sections include the effective mass as a parameter to be fitted to the data alongside the Fermi momentum kF .
Several methods to extract the scaling function and its uncertainty from the data are proposed and compared. The
model predictions for the quasielastic cross section and the theoretical error bands are presented and discussed
for nuclei along the periodic table from A = 2 to A = 238: 2H, 3H, 3He, 4He, 12C, 6Li, 9Be, 24Mg, 59Ni, 89Y,
119Sn, 181Ta, 186W, 197Au, 16O, 27Al, 40Ca, 48Ca, 56Fe, 208Pb, and 238U. We find that more than 9 000 of the total ≈
20 000 data fall within the quasielastic theoretical bands. Predictions for 48Ti and 40Ar are also provided for the
kinematics of interest to neutrino experiments.
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I. INTRODUCTION

Inclusive electron scattering is a powerful tool to study
the quasielastic response of nuclei, which arises in the region
of energy-momentum transfer (ω, q ), dominated by direct
knockout of bound nucleons. These reactions have experienced
a revival due to the recent neutrino oscillation experiments,
which need precise modeling of neutrino scattering from nuclei
at intermediate energies [1–5]. The recent measurements of CC
neutrino and antineutrino cross sections [6–12] have allowed
to test the current models as applied to neutrino scattering.
Systematic differences between the theoretical predictions of
the neutrino and antineutrino data from different groups have
been found [13–21]. Work is in progress to conciliate the
models, trying to find the origin of their differences and to
reduce the systematic errors.

However, in the neutrino experiments the incident energy
cannot be fixed, and the measurements are cross-section
averages weighted by some known neutrino flux. Therefore,
the detailed differences between models of the quasielastic
response of nuclei should be further investigated through
the corresponding predictions for (e, e′) data. Despite the
progress achieved with nuclear models based on first prin-
ciples [22], the nuclear shell model [23], or the spectral
function theory [24,25], the high energies and momenta for
the kinematics of interest q ≈ 1 GeV/c require important
relativistic corrections [26,27] that are not easy to implement
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in models of finite nuclei. Other fundamental requirements like
gauge invariance or off-shell extrapolations of the currents can
also generate theoretical ambiguities and discrepancies in the
results. Moreover, reaction mechanisms modifying the impulse
approximation, such as final-state interactions, short-range
correlations, meson-exchange currents, pion emission, and
inelastic excitations, make it difficult to construct a sensible
model providing a complete description of the whole set of
(e, e′) data at the full range of kinematics.

Relativity not only plays a role in the kinematics and in
the current operator, but also in the dynamics. In a fully
relativistic mean field model [28] the scalar and vector rela-
tivistic potentials enlarge the lower components of the (Dirac)
nucleon wave functions in the medium [29], and this produces a
notable enhancement of the transverse response function. This
genuine relativistic dynamical effect does not appear in semi-
relativistic approximations based in two-components (Pauli)
spinors [27]. Thus, the so-called enhancement of the transverse
response [15,30] cannot be attributed fully to multinucleon
processes with meson-exchange currents but also, and signifi-
cantly, to relativity. This shows that the separation of 1p-1h and
2p-2h channels in inclusive scattering is in fact ambiguous and
model-dependent. Another example of ambiguity due to the
medium in the channel expansion appears is the � peak, which
usually is attributed to pion emission with an intermediate �

resonance, but the � is dressed in the medium and part of its
width is produced by decay into the 2p-1h channel [31–33]
without pions.

Scaling studies are promising phenomenological alterna-
tives to study the nuclear response [34]. In the superscaling
approach (SuSA) [35–38] the longitudinal response function
is divided by a single-nucleon structure function and plotted
against a scaling variable ψ ′, which is proportional to the

2469-9985/2018/98(2)/024627(23) 024627-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.98.024627&domain=pdf&date_stamp=2018-08-28
https://doi.org/10.1103/PhysRevC.98.024627


J. E. AMARO et al. PHYSICAL REVIEW C 98, 024627 (2018)

minimum initial momentum of the nucleons ejected by given
momentum and energy transfer (q, ω). The scaling variable ψ ′
is made dimensionless by using units of the Fermi momentum
kF and takes into account the separation energy by subtraction
of a parameter εB to the energy transfer ω. The data, scaled
in this way for different kinematics and nuclear species, are
found to collapse into a universal longitudinal scaling function
fL(ψ ′). The corresponding transverse scaling function fT (ψ ′)
could not be directly extracted from the data because the
transverse response in contaminated from non-quasielastic
processes explicitly breaking scaling such as pion emission and
multinucleon emission originated mainly by meson exchange
currents. In the SuSA approach it was assumed that fT =
fL [38] and this allowed to construct a simple model to predict
neutrino cross sections from the (e, e′) data.

Even with the appropriate relativistic corrections in the
kinematics and currents [27] most of the nuclear models
give fT � fL in the impulse approximation. Therefore, these
models—SuSA included—cannot describe the (e, e′) data
without additional transverse enhancement mechanisms. How-
ever, including relativity in the dynamics one naturally finds
an enhancement fT > fL, going into the right direction for the
conciliation with data. This is the case of the relativistic mean
field (RMF) model of finite nuclei [28], which is based on the
Dirac-Hartree theory of Ref. [39].

The key ingredient to perform the upgrade SuSA-v2 [40]
was to include nuclear effects theoretically-inspired by the
RMF. SuSA-v2 uses an enhanced transverse scaling function
fT different from fL. The new transverse scaling function was
fitted to (e, e′) cross-section data in a model including also
2p-2h MEC and inelastic contributions [41]. An additional
dependence of fT (ψ ′) on the momentum transfer q was needed
to reproduce the data. Therefore, the SuSA-v2 results violate
scaling, although the model keeps the word “scaling” by
tradition.

In recent work we have revisited the scaling approach by
introducing a new scaling function f ∗(ψ∗) including dynam-
ical relativistic effects [42–44] through the introduction of an
effective mass into its definition. The resulting superscaling
approach with relativistic effective mass (SuSAM*) model
describes a large amount of the electron data lying inside a
phenomenological quasielastic band, and it has been extended
recently to the neutrino and antineutrino sector [45] with
success and a fair agreement with the data. SuSAM* was first
developed from the set of 12C data [42,43] and later applied to
other nuclei in Ref. [44].

The novel point of view of SuSAM* stems from the
observation that a large subset of (e, e′) data collapse into
a thick band, which can be parameterized as a QE central
value f ∗(ψ∗) plus or minus a theoretical uncertainty. This
phenomenological QE scaling band emerges as the set of se-
lected data which can be considered approximately quasielastic
except for interaction effects which break scaling just by a
little amount. The success to describe the cross-section data
with only one scaling function is due to the proved good
properties of the relativistic mean field, which already includes
by construction the transverse response enhancement [46–
48]. Moreover, the new phenomenological scaling function
approximately encloses the universal scaling function of the

relativistic Fermi gas,

fRFG(ψ∗) = 3
4 (1 − ψ∗2)θ (1 − ψ∗2). (1)

This is so because the mean field theory of nuclear matter
already provides a reasonable description of the quasielastic
response function [46–48]. The phenomenological SuSAM*
scaling function differs from this parabolic shape and it can
be parameterized as a sum of two Gaussians. An additional
advantage of the SuSAM* is that it keeps gauge invariance. The
original SuSA violates this fundamental symmetry because it
introduces an energy shift to account for separation energy, and
hence initial and final states have a different mass, presumably
modifying the vertex function. In our case the energy shift
is accounted for by the effective mass, typically of M∗ =
m∗

M/mN ≈ 0.8 for medium-size nuclei.
The goal of the present work is twofold. First, to perform

a global simultaneous fit of the SuSAM* parameters to all the
available data on the (e, e′) database compiled in Refs. [49–
51]. Second, to present in a comprehensive way the model
description of the cross section for all the nuclei included in the
fit. We also analyze in more detail several nuclei and compare
the various prescriptions used to extract the scaling function.
Finally, we examine the predictions of our model to new (e, e′)
measurements for the nuclei 48Ti [52] and 40Ar, at present of
interest for current neutrino experiments.

The scheme of the paper is as follows. In Sec. II we present
the formalism for the (e, e′) cross section. In Sec. III we present
the results for the SuSAM* scaling function. In Sec. IV we
present the predictions for the cross sections of the different
nuclei. In Sec. V we draw our conclusions.

II. FORMALISM

Here we summarize, for completeness and to fix our nota-
tion, the general formalism of quasielastic electron scattering
and the relativistic mean field model of nuclear matter [42].
We assume that an incident electron transfers momentum q
and energy ω to the nucleus, scattering to an angle θ . The
four-momentum transfer is denoted as Q2 = ω2 − q2 < 0.
The quasielastic cross section is written in the plane wave
Born approximation with one-photon-exchange in terms of the
longitudinal and transverse response functions as

dσ

d�′dε′ = σMott (vLRL + vT RT ). (2)

Here, σMott is the Mott cross section, and the kinematic factors
vL, vT are defined by

vL = Q4

q4
, (3)

vT = tan2 θ

2
− Q2

2q2
. (4)

Finally, RL(q, ω) and RT (q, ω) are the nuclear longitudinal
and transverse response functions, respectively. The L and T
responses are computed starting with the RMF in nuclear mat-
ter [53]. We consider one-particle one-hole (1p-1h) excitations
in the nuclear medium produced by one-body electromagnetic
current operator, such that the initial and final nucleons have
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TABLE I. Parameters of the central value of the phenomenological scaling function, f ∗(ψ∗), and those of the lower and upper boundaries
(min and max, respectively) of the bands. Band A correspond to the 12C fit of Ref. [43], Band B correspond to the 12-nuclei fit of Ref. [44],
and band C is the global fit performed in this work.

a1 a2 a3 b1 b2 b3 c1 c2

Central − 0.0465 0.469 0.633 0.707 1.073 0.202 — —
Band A Min − 0.0270 0.442 0.598 0.967 0.705 0.149 — —

Max − 0.0779 0.561 0.760 0.965 1.279 0.200 — —

Central − 0.1335 0.4319 1.3885 0.5741 0.6539 0.6083 0.3405 2.2947
Band B Min 0.3075 0.6898 0.4115 − 0.0647 0.3145 0.3267 − 0.8362 0.0295

Max − 7.0719 2.4644 38.58 − 7.0724 2.4595 38.58 − 0.2613 0.2410

Central − 0.0537 0.5051 0.6055 0.7258 1.0102 0.2306 − 0.9765 0.1716
Band C Min − 0.0435 0.4245 0.4940 0.5129 0.7360 0.2346 − 0.8549 0.0337

Max − 0.1192 0.4955 1.1504 0.7001 1.0939 0.3992 − 1.0058 1.9235

the same effective mass m∗
N . Thus, the initial nucleon has

energy E = √
p2 + m∗

N
2 in the mean field, with p below

the Fermi momentum, p < kF . The final momentum of the
nucleon is p′ = p + q, and its corresponding energy is E′ =√

p′2 + m∗
N

2. Pauli blocking implies p′ > kF .
The nuclear response functions can be written in the

factorized form,

RK = rKf ∗(ψ∗), (5)

for K = L, T . Here, rL and rT are the single-nucleon con-
tributions to the response functions, averaged over the Fermi
motion given below. f ∗(ψ∗) is the scaling function, given by

Eq. (1). It depends only on the scaling variable ψ∗, which is
defined as follows.

First, it is convenient to introduce the dimensionless
variables

λ = ω/2m∗
N, (6)

κ = q/2m∗
N, (7)

τ = κ2 − λ2, (8)

ηF = kF /m∗
N, (9)

ξF =
√

1 + η2
F − 1, (10)

εF =
√

1 + η2
F . (11)

TABLE II. Values of the parameters M∗ and kF (in MeV/c) obtained from the different fits to the scaling band, the total number of data
Ntot , the number NQE of quasielastic points, and the χ 2 divided by the number N ′

QE of quasielastic points (with −1 < ψ∗ < 1 in the case of 2H
and 3He).

Visual fit No. points fit χ 2 fit Global fit No. points

Nucleus kF [MeV/c] M∗ kF M∗ kF M∗ kF M∗ NQE Ntot χ 2/N ′
QE

2H 80 1.00 88 0.99 82 1.00 81 0.99 426 2135 0.372
3H 120 0.97 142 0.99 136 0.98 126 0.97 139 540 0.414
3He 140 0.95 147 0.96 130 0.98 130 0.96 794 2472 0.565
4He 160 0.90 180 0.89 180 0.86 159 0.87 803 2718 0.699
6Li 165 0.80 — — 175 0.77 164 0.80 23 165 0.18
9Be 185 0.80 — — 202 0.85 184 0.80 16 390 0.07
12C 225 0.80 226 0.82 217 0.80 212 0.83 660 2883 0.697
16O 230 0.80 259 0.84 250 0.79 228 0.80 48 126 0.999
24Mg 235 0.75 — — 238 0.65 235 0.75 23 34 0.313
27Al 236 0.80 258 0.78 249 0.80 233 0.80 75 628 0.499
40Ca 240 0.73 250 0.73 236 0.71 229 0.74 616 1339 0.76
48Ca 247 0.73 242 0.75 237 0.71 230 0.75 728 1227 0.672
56Fe 238 0.70 240 0.79 241 0.70 240 0.72 485 2429 1.20
59Ni 235 0.67 — — 238 0.65 234 0.68 27 37 0.09
89Y 235 0.65 — — 224 0.64 233 0.65 27 37 0.17
119Sn 235 0.65 — — 232 0.64 236 0.66 24 34 0.204
181Ta 235 0.65 — — 232 0.64 236 0.66 24 33 0.115
186W 230 0.77 — — 226 0.76 231 0.80 45 184 0.6
197Au 240 0.75 — — 238 0.78 235 0.74 30 96 0.237
208Pb 237 0.65 239 0.64 233 0.56 232 0.63 818 1714 1.223
238U 259 0.65 219 0.59 219 0.51 255 0.65 193 420 1.74
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FIG. 1. Phenomenological scaling function bands compared to
the (e, e′) data scaled with the best parameters of the global fit and
selected with the density criterion. The corresponding scaling function
band C (in pink) is compared to the band B of Ref. [44] (in green).
The data are selected from Refs. [49–51].

Note that in the SuSA formalism these variables are defined
dividing by the nucleon mass mN instead of m∗

N [34].
Then, one computes the minimum energy for the initial

nucleon that is allowed to absorb the energy and momentum
transfer (q, ω). From energy and momentum conservation, in
units of m∗

N it is given by

ε0 = Max

{
κ

√
1 + 1

τ
− λ, εF − 2λ

}
. (12)

We can finally write the definition of the scaling variable as

ψ∗ =
√

ε0 − 1

εF − 1
sgn(λ − τ ). (13)

The sign convention is such that ψ∗ is negative to the left of
the quasielastic peak (defined by λ = τ ) and positive on the
right side.

The nucleonic contributions to the responses are

rK = ξF

m∗
Nη3

F κ

(
ZU

p
K + NUn

K

)
(14)

for Z protons and N neutrons. The single-nucleon response
functions longitudinal and transverse, UL,UT are computed
from the matrix elements of the electromagnetic current
operator.

In this work we use the CC2 prescription of the electromag-
netic current operator [54]

J
μ
s ′s = us ′ (p′)

[
F1γ

μ + F2iσ
μν Qν

2mN

]
us (p), (15)

where Fi are the Pauli form factors of the nucleon, and the
spinors contain the effective mass instead of the bare nucleon
mass. Therefore, the above matrix element differs from the
bare nucleon result with m∗

N = mN . As a consequence the
electric and magnetic form factors are modified in the medium
according to [42,53]

G∗
E = F1 − τ

m∗
N

mN

F2, (16)

G∗
M = F1 + m∗

N

mN

F2. (17)
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FIG. 2. Color maps of the number, N , of QE data inside the phenomenological band divided by Nmax, as a function of the effective mass
M∗ and Fermi momentum kF for different nuclei. The σ -ω model of Ref. [47] is shown as comparison.
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FIG. 3. Color maps of the χ 2 of the QE data with the phenomenological band, divided by χ2
min, as a function of the effective mass M∗ and

Fermi momentum kF for different nuclei. The region with χ 2 above 10% of the minimum is shown in white. The region with χ2 below 10% of
the minimum is fitted by a ellipse. The σ -ω model of Ref. [47] is shown as comparison.

For the free Dirac and Pauli form factors, F1 and F2, we use
the Galster parametrization [55].

Using the above definitions, the single-nucleon response
functions are given by

UL = κ2

τ

[
(G∗

E )2 + (G∗
E )2 + τ (G∗

M )2

1 + τ
�

]
, (18)

UT = 2τ (G∗
M )2 + (G∗

E )2 + τ (G∗
M )2

1 + τ
�. (19)

Here we use the quantity � defined by

� = τ

κ2
ξF (1 − ψ∗2)

[
κ

√
1 + 1

τ
+ ξF

3
(1 − ψ∗2)

]
. (20)

This is usually a small correction around the QE peak −1 <
ψ∗ < 1, because it is proportional to the small quantity ξF .

III. THE SUSAM* APPROACH

In the SuSAM* approach the cross section is computed
by using Eqs. (2) and (5) but replacing the RFG scaling
function by a phenomenological one f ∗(ψ∗) extracted from
the experimental data.

This can be done in several ways with a careful analysis of
the scaling properties of (e, e′) cross-section data. We carried
out such analyses in Refs. [42–44].

In this work we extend those studies starting with ≈20 000
experimental (e, e′) cross-section data for 21 nuclei: 2H, 3H,
3He, 4He, 12C, 6Li, 9Be, 24Mg, 59Ni, 89Y, 119Sn, 181Ta, 186W,
197Au, 16O, 27Al, 40Ca, 48Ca, 56Fe, 208Pb, and 238U. For every
datum we compute the corresponding experimental scaling

function f ∗
exp by dividing the experimental cross section by

the single nucleon function introduced in the last section:

f ∗
exp =

(
dσ

d�′dε′
)

exp

σMott (vLrL + vT rT )
. (21)

From the experimental kinematics we also compute the corre-
sponding value of the scaling variable ψ∗. When we plot f ∗
versus ψ∗ one observes that a subset of data are concentrated
around a band, but the scaling is not perfect. One then tries to
change the values of the parameters M∗ and kF up to find the
best scaling possible.

The analysis has been developed in several stages that we
describe next. For completeness, we summarize with some

TABLE III. Parameters of the 10% confidence ellipses of the χ2 fits.

Nuclei (kF )c M∗
c a b θ

2H 82.5 0.994 0.006 0.02 105
3H 136 0.98 0.016 0.014 145
3He 125.5 0.988 0.010 0.038 90
4He 180 0.86 0.031 0.021 20
12C 218 0.8 0.027 0.044 90
16O 252 0.79 0.034 0.063 90
27Al 249.5 0.795 0.029 0.05 95
40Ca 237.5 0.71 0.034 0.057 90
48Ca 238 0.71 0.032 0.05 90
56Fe 242 0.705 0.061 0.031 0
208Pb 233 0.56 0.035 0.062 90
238U 221 0.52 0.027 0.064 90
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FIG. 4. Correlation plot of the χ 2 values versus the number of points inside the band Nband for different values of kF and M∗ around the
region where χ 2 is minimum and Nband reaches its maximum, for six nuclei.

details what we did in the past works [42–44], while we will
explain in depth those aspects of the fits that were not accounted
for previously. The goals of this section are:

(1) to show the self consistency of the extraction of the
scaling function,

(2) to check that the different methods produce similar
results for the SuSAM* parameters, and

(3) to perform a global fit of the parameters and scaling
function simultaneously.

A. The scaling function

We started with the 12C data, by tuning the parameters
M∗ and kF until one finds the best scaling possible. This was
reached in Ref. [42] for M∗ = 0.8 and kF = 225 MeV/c. By
applying a density criterion, a data cloud around the RFG
scaling function was selected. According with the criterion
we selected those scaled data surrounded by more than 25
data inside a circle of radius r = 0.1 in the f ∗(ψ∗) graph.
These selected data defined a “QE” region as a thick band
which we parameterized as a combination of two Gaussian
functions [43]:

f ∗(ψ∗) = a3e
−(ψ∗−a1 )2/(2a2

2 ) + b3e
−(ψ∗−b1 )2/(2b2

2 ). (22)

The parameters of this band A are given in Table I.
Starting with band A we applied in Ref. [44] several

methods to obtain the relativistic effective mass and the Fermi
momentum of all the nuclei from the periodic table, for which
(e, e′) data existed in our data base, taken from Refs. [49,50].
With these values of (kF ,M∗) parameters we verified that all

these nuclei approximately scale similarly to the 12C ones.
These parameters are shown in columns 2–7 of Table II. For
this work we have revised the analysis of Ref. [44] for the
nuclei 2H and 3He, which have been updated in Table II.

The procedure required to obtain first kF and M∗ for
all the nuclei from a visual fit (columns 2–3 of Table II),
providing a good qualitative scaling of the experimental data.
With these parameters we scaled the data for the twelve main
nuclei of the data base. Then, we proceeded to a more precise
determination of the phenomenological scaling function by
discarding those kinematics where the energy transfer at the
QE peak is lower than ≈80–100 MeV, and also those of high
energy were the QE peak is indistinguishable due to inelastic
dominance.

With this set of data a density criterion was newly applied,
obtaining a new SuSAM* phenomenological band. In Ref. [44]
that scaling band was parameterized as the sum of two Gaus-
sians, modified to improve the low energy region by applying
a Fermi function:

f ∗(ψ∗) = a3e
−(ψ∗−a1 )2/(2a2

2 ) + b3e
−(ψ∗−b1 )2/(2b2

2 )

1 + e
− ψ∗−c1

c2

. (23)

The parameters of this scaling function are given in Table I.
They are labeled as “band B.” We provide the parameters of the
lower (min) and upper (max) limits of the boundary, defining
the uncertainty band. The central parameters correspond to the
best fit to the selected data. Band B is shown as the green band
in Fig. 1. This is compared to the band C that is obtained in
the global fit explained below. Both bands are similar around
the quasielastic region, and therefore they are interchangeable
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in cross-section calculations. Band B is the one used in the
SuSAM* model of the next section to compute the QE cross
sections of nuclei.

Note that the scaling band shown in Fig. 1 is well de-
fined only in the quasielastic region −1 < ψ∗ < 1, while we
cannot describe in detail the left tail of the cross section,
corresponding to ψ∗ < −1, and related to higher momentum
components produced mainly by nucleon-nucleon short range
correlations [56,57], which break M∗-scaling. A detailed
study of this region is beyond of the scope of the present
work.

B. The parameters kF and M∗

We recall that band B was obtained in the last subsection
from the scaling of data using a visual fit of the parameters kF

and M∗. For consistency it is pertinent to recompute those
parameters with a more quantitative procedure, which we
describe next. This will allow us also to obtain in return
an estimate of their uncertainties. We can proceed in two
different ways, which ultimately produce similar results for
the parameters. The first is to maximize the number of points
inside band B. The resulting parameters are given in columns
4 and 5 of Table II. The second method is to minimize a χ2

function computed from the distances of the data to the center
of the band for each nucleus, divided by the total error, taking
into account the band width,

χ2 =
N ′

QE∑
i=1

(f ∗(ψ∗
i )exp − f ∗(ψ∗

i )central)2

(�f ∗(ψ∗
i )exp)2 + (�f ∗(ψ∗

i )th )2
, (24)

where we have added in quadrature in the denominator the
experimental and theoretical errors. The parameters resulting
from minimization of this χ2 are given in columns 6 and 7 of
Table II.

Note that the number of points N ′
QE = NQE included in the

sum has been selected by leaving only the points that are clearly
around the QE peak. These numbers of points are presented
in the tenth column of Table II, together with the total number
of points before the selection, which are shown in the eleventh
column of the same table. The same data set used in the χ2

minimization has been used in the maximization of the number
of points inside the band. However, in the case of the nuclei 2H
and 3He, revised in the present work, we have to include in the
χ2 only those points with −1 < ψ∗ < 1 to obtain reasonable
results. Therefore, for these two nuclei N ′

QE < NQE. For nine of
the nuclei the number of experimental data is not large enough
to obtain a reasonable fit, and those are hence not appearing in
columns 4 and 5 of Table II.

The values of the parameters kF and M∗ obtained by these
quantitative fits are similar between them and are also similar to
the ones used in the visual fit from which band B was obtained.
The agreement between the parameters obtained with different
fits faithfully points to the steadiness and robustness of the
present scaling approach for this purpose.

Besides, these methods allow us to compute estimations
of the theoretical errors in the parameters. The procedure is
illustrated in the color maps of Figs. 2 and 3 for six selected
nuclei.
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FIG. 5. Top panel: Data used in the global fit of the superscaling
function. The fit is made by maximizing the number of data inside a
band centered around a sample scaling function of width 0.1. In black
the 4754 points falling inside the band after the fit. The central function
(in red-dashed lines) is the sum of two Gaussians (shown in the figure
in dashed and double-dashed lines) modified by a Fermi function (we
show the denominator of the Fermi function in dash-double dotted
line). Middle panel: Global set of (e, e′) data scaled with the best
parameters after the global fit. The scaling function appears as a dark
shadow. Data are from Refs. [49–51]. Bottom panel: the same data
compared to the parameterized band C.

In Fig. 2 we show the number of data inside band B divided
by the maximum, Nband/Nmax as a function of M∗ and kF .
We show the cloud where Nband/Nmax changes between 0.9
and 1. This means that changing the parameters around the
position of the maximum inside the cloud the number of data
that get out of band B is less than 10% of the maximum Nmax.
Note that for some nuclei there is more than one maximum. In
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FIG. 6. Inclusive (e, e′) cross-section data for 2H for selected kinematics compared to the SuSAM* model as a function of energy transfer.
Data are from Refs. [49–51].

that case we display in Table II the values closer to the σ − ω
theory of the Walecka model [47], also shown in the figure.
Note that maximizing the number of points inside the band is
a discretized procedure and as consequence the shapes of the

clouds deviate from a regular elliptic shape and this does not
allow to parametrize the error in a systematic way.

The χ2 minimization method shown in Fig. 3 is more
appropriate to this end. In the figure we show the cloud
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FIG. 7. Inclusive (e, e′) cross-section data for 3H for selected kinematics compared to the SuSAM* model as a function of energy transfer.
Data are from Refs. [49–51].

in parameter space where the χ2 values divided by the
minimum χ2

min are in the range 1.0–1.1. The resulting 10%
change clouds are more elliptic shaped and smaller than the
clouds of Fig. 2. With these plots we are able to parametrize
the cloud shapes using ellipses with three constants,
a, b, θ :

kF (s) = (kF )c + 300MeV/c[a cos θ sin(s) + b sin θ cos(s)],

(25)

M∗(s) = M∗
c − a sin θ sin(s) + b cos θ cos(s), (26)

where s is the parameter of the ellipse. The ellipse parameters
encode the errors in kF ,M∗(10% confidence interval) and they
are given in Table III. Note that the centers of the ellipses are
not exactly at the minimum χ2 position because we are just
interested in a rough estimation of the error and therefore we
compute the ellipses with a finite variation of 10% in the χ2

value.
Notice that the maximum of the number of points inside the

band does not coincide with the minimum of χ2. This is so
because a set of points inside the band can occupy different
positions resulting in different values of the χ2. Thus, the
value of χ2 is not directly related to Nband, although some
correlations can be found between these two functions. The
correlations between Nband and χ2 depend on the particular
nucleus, and the selected set of quasielastic data entering in the
fit. This correlation is shown in Fig. 4 for six of the nuclei. In
the figure we display the values of χ2 versus Nband for different
values of kF , M∗ around the extreme regions shown in Figs. 2
and 3. The correlation between χ2 and Nband is stronger when

Nband increases and χ2 decreases. But we clearly observe that
the maxima of Nband do not minimize χ2, but they are close
to do it.

C. The global fit

One of the goals of the present paper is to validate the
universality of the scaling function by investigating the self
consistency of the extraction method by an alternative way.
To guarantee that the procedure is independent on a particular
nuclear species, we have developed a global approach where
the scaling function is not given a priori. Instead we fit
at the same time all the parameters of the model, including
the scaling function f ∗(ψ∗), and the Fermi momentum and
effective mass of all the nuclei simultaneously. This global fit
maximizes the number of QE data points, f ∗

exp(ψ∗), falling
inside a band around a scaling function, which we parametrize
as a modified combination of Gaussians with eight parameters,
as given in Eq. (23). We apply the downhill simplex method
with fifty parameters (the Fermi momenta and effective mass
of 21 nuclei, M∗, kF , plus the eight parameters of the scaling
function). The “scaling” band used in the fit has a constant
width. It is defined by the limits f ∗(ψ∗) ± 0.1, i.e., for each
datum, and for each set of parameters we accept the datum
inside the band if |f ∗(ψ∗)exp − f ∗(ψ∗)| < 0.1. We start with
“good” initial parameters obtained in one of the previous
separate fits. The result of this fit is shown in the top panel
of Fig. 5. The values of kF and M∗ are given in columns 8 and
9 of Table II. The parameters of the scaling function are given
in Table I as the central part of band C.
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FIG. 8. Inclusive (e, e′) cross-section data for 3He for selected kinematics compared to the SuSAM* model as a function of energy transfer.
Data are from Refs. [49–51].

This global fit only allows to obtain the central part of the
scaling function but not the width of the band, which for the
fit purposes has been fixed to a reasonable value chosen as
±0.1, because in the previous analyses we have seen that this

is the observed order of magnitude. To finish the extraction of
the phenomenological band we therefore apply again a density
criterion to select the true QE data to all the QE data scaled with
the global parameters. We then obtain the set of true “scaling”
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FIG. 9. Inclusive (e, e′) cross-section data for 4He for selected kinematics compared to the SuSAM* model as a function of energy transfer.
Data are from Refs. [49–51].

QE data shown in Fig. 1. There are 4230 points in that figure,
which are a 70% of all the points entering in the fit. These
points clearly define a band which is again parameterized in

the same way as before as in Eq. (23) and the parameters are
given in Table I as band C. This band is shown in pink in Fig. 1.
We can see that the result of this global fit is very similar
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FIG. 10. Inclusive (e, e′) cross-section data for 12C for selected kinematics compared to the SuSAM* model as a function of energy transfer.
Data are from Refs. [49–51].

to band B obtained by partial fits. These results enforce the
self consistency hypothesis and the universality of the scaling
function obtained.

To gain a perspective of the quality of the results we show
in the middle panel of Fig. 5 all the data points (not only the

QE ones) for all the nuclei scaled with the parameters of the
global fit. Clearly a large fraction of data collapse into a dark
shadow which resembles to our previously determined bands.
In the bottom panel of Fig. 5 the same points are compared to
the global scaling function and band C. In fact, the number of
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FIG. 11. Inclusive (e, e′) cross-section data for nine different nuclei for different kinematics compared to the SuSAM* model as a function
of energy transfer. Data are from Refs. [49–51].

points that collapse inside band C in Fig. 5 is more than 9 000
of the total ≈20 000 data.

IV. CROSS-SECTION RESULTS

In this section we use the phenomenological scaling func-
tion of Eq. (23) and the parameters corresponding to band
B of Table I, to compute the (e, e′) cross section, using the
Fermi momenta and effective masses of columns 6 and 7
of Table II. The SuSAM* model predicts a central cross
section inside a theoretical uncertainty band. The width of the
cross-section band is related to the width of our parameterized
scaling function for band B. Note that in the cross section the
absolute value of the band width depends on the kinematics
and on the nuclear species. This is because the cross section

is obtained from the scaling function by multiplication by a
kinematic-dependent function. Our cross-section results are
here compared to experimental data for the 21 nuclei included
in our fit. This comparison with the SuSAM* model has only
been done before for the case of 12C [43] and 16O [45]. We
also make comparisons with the new data for 48Ti and 12C
performed in a recent experiment at JLab [52] and provide
predictions for the 40Ar nucleus corresponding to the kinemat-
ics of interest for the JLab experiment, that plans to extract the
Argon spectral function.

The present results have also been studied by using bands A
and C and parameters kF ,M∗ from the different fits described
in the last section. The global behavior of the result and the
conclusions of this work are roughly preserved by using any
of the three parameterized scaling functions and bands.

024627-13



J. E. AMARO et al. PHYSICAL REVIEW C 98, 024627 (2018)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0  70  140  210  280  350

d2 σ/
dω

dΩ
  [

nb
/M

eV
]

ω [MeV]

ε=2020 MeV, θ =15.022o

 0

 5

 10

 15

 20

 25

 30

 0  90  180  270  360  450

ω [MeV]

ε=2020 MeV, θ =20.016o

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0  280  560  840  1120  1400

ω [MeV]

ε=7257 MeV, θ =8o

FIG. 12. Inclusive (e, e′) cross-section data for 27Al for selected kinematics compared to the SuSAM* model as a function of energy transfer.
Data are from Refs. [49–51].

In Figs. 6–17 we show the predictions of our model for
the (e, e′) cross section compared to selected experimental
data for each nucleus in the database, from 2H to 238U. The
global description is quite acceptable given the simplicity of
the SuSAM* model. A large subset of data fall inside the
uncertainty band. In fact, most of the data used to perform
the fit are inside our prediction bands by construction. The
data that lie outside our prediction bands are typically those
in the inelastic or deep region and those corresponding to
low momentum transfer, and therefore breaking ψ∗-scaling
because they fall outside the quasielastic region defined in
Fig. 1. Alternatively, intermediate energy QE data falling
outside our bands may indicate the existence of nuclear effects
beyond the impulse approximation such as meson-exchange
currents (MEC) or breaking the factorization approximation,
like strong final state interactions.

In what follows we discuss in some detail the cross-section
description for every single nucleus considered in our study.

A. The nucleus 2H

The lighter nucleus considered in the fit corresponds to 2H,
shown in Fig. 6. We use the χ2 fit values from Table II for
the Fermi momentum, kF = 82 MeV/c, and effective mass
M∗ = 1. The fact that the SuSAM*—based on the Fermi gas
equations—reproduces a large fraction of deuterium data could
seem shocking. But what our results reflect is that the deuterium
quasielastic cross section is compatible with a momentum
distribution of moderate extension, kF ≈ 82 MeV/c. This
behavior dominates around the quasielastic region −1 < ψ∗ <
1, while we in general subestimate the left tail of the cross
section, corresponding to ψ∗ < −1, and is related to PN short
range correlations.

B. The nuclei 3H and 3He

The A = 3 light nuclei analyzed, 3H and 3He, are shown
in Figs. 7 and 8, respectively. They are even better described
than 2H, with slightly different Fermi momenta, kF = 136
and 130 MeV/c for H and He, respectively. The effective
mass takes the same value M∗ = 0.98 for both nuclei. The
value of the Fermi momentum differ from the other fits, see

Table II, ranging between 120 and 140 MeV/c. All these
values of kF give qualitatively similar predictions for the cross
section, because the cross-section dependence on kF is mild in
a small momentum interval. The dependence on M∗ is found
to be stronger. However, note that the differences between the
adjusted parameters for these nuclei can also be related to the
different number of experimental data, which is much larger
for the case of 3He than for 3H.

C. The nucleus 4He

The 4He nucleus is the nucleus with more quasielastic data
in the database and is one with the better scaling properties. Se-
lected cross-section predictions are shown in Fig. 9, computed
with kF = 180 MeV/c and M∗ = 0.86, although equally good
results can be obtained with kF = 160 MeV/c and M∗ = 0.9.
Comparing with the cases A = 2, 3 we clearly see that the
Fermi momentum increases with A, and the effective mass de-
creases with A. The QE cross-section description is quite good
for many kinematics. It is remarkable that, given its simplicity,
for intermediate energy the SuSAM* model seems to be as
good as the more recent ab initio calculations [58] with rela-
tivistic corrections. In our view, this is so because the main dy-
namical ingredients of the QE processes are embedded into our
model via the connection between relativity and effective mass.

D. The nucleus 12C

Results for 12C are shown in Fig. 10. We use kF =
217 MeV/c and M∗ = 0.8. Note that the SuSAM* model
was first introduced in Ref. [43], where a comparison with
all 12C data was provided using band A of Table I and kF =
225 MeV/c. This value of the Fermi momentum was obtained
with a visual fit. In this work we have upgraded this description
using band B, which incorporates a better description for low
energy. But in general both descriptions are globally of the
same quality around the QE peak. This nucleus is, together
with 4He, one of the better described nuclei taking into account
the high number of data existing in the data base, ≈2800 each
of them.
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FIG. 13. Inclusive (e, e′) cross-section data for 40Ca for selected kinematics compared to the SuSAM* model as a function of energy
transfer. Data are from Refs. [49–51].

E. The nuclei 6Li, 9Be, 24Mg, 59Ni, 89Y, 119Sn, 181Ta,
186W, and 197Au

For these nuclei there are only a few set of kinematics
available in the database, usually ≈20–40 QE data points only.
Therefore, it is not possible to determine the parameters with
high precision by maximizing the number of points inside the
band, because there are many arrangements of the data points
compatible with the theoretical band. For this same reason the
χ2 fit to each nuclei usually provides a good description of the
experimental data for intermediate energy kinematics, where
the scaling approach works better. This is shown in Fig. 11
with the parameters kF and M∗ taken from columns 6 and 7
of Table II. The QE data from Li to Au all fall with our band

and are in general well described by the central value, with the
exception of Mg and Au, which are slightly underestimated
and overestimated at the peak position, respectively.

F. The nucleus 16O

There are only a limited number of kinematics available for
16O. However, they are enough for performing all the fits, with a
good global description of data. We obtain kF = 250 MeV/c in
the χ2 fit and M∗ = 0.79. In the global and visual fit the Fermi
momentum is more similar to that of 12C. The comparison of
band B with the experimental (e, e′) cross section was shown
in Fig. 1 of Ref. [45], where the SuSAM* parameters were
first extracted for this nucleus, to apply the SuSAM* model
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FIG. 14. Inclusive (e, e′) cross-section data for 48Ca for selected kinematics compared to the SuSAM* model as a function of energy
transfer. Data are from Refs. [49–51].

to neutrino scattering on water, of interest for the recent T2K
experiment [12]. More experimental kinematics for the (e, e′)
reaction on 16O would be needed to reduce the uncertainty of
the SuSAM* parameters.

G. The nucleus 27Al

A number of ≈100 QE-like data are available for 27Al in
the data base. We show three kinematic sets in Fig. 12. This
allows to extract kF = 249 MeV/c and M∗ = 0.8 in the χ2

fit. Even with so limited number of data, it is also possible
to extract these values by maximizing the number of points
inside the band, obtaining similar values kF = 258 MeV/c and
M∗ = 0.78. In the global fit the Fermi momentum is slightly
reduced to 233 MeV/c, similar to the visual fit value.

H. The nuclei 40Ca and 48Ca

More abundant sets of data are available for the calcium
isotopes 40Ca and 48Ca, with very similar values of Fermi
momenta kF ≈ 236 MeV/c in the χ2 fit and M∗ = 0.8. In
general, these nuclei are well described by the SuSAM* band
for intermediate energies as shown in the selected kinematics of
Figs. 13 and 14. The number of points inside the cross-section
bands amount to 616 and 728, for slightly larger values of kF =
250 and 242 MeV/c, respectively, and M∗ = 0.73 and 0.75.

I. The nucleus 56Fe

Iron is an important case of study for some of the neutrino
oscillation ongoing or planned experiments. In addition, this
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FIG. 15. Inclusive (e, e′) cross-section data for 56Fe for selected kinematics compared to the SuSAM* model as a function of energy transfer.
Data are from Refs. [49–51].

is another nice example with abundant electron scattering
experimental data for intermediate energy and this allows a
precise determination of kF ≈ 240 MeV/c and M∗ ≈ 0.7.
Cross-section results for this nucleus are shown in Fig. 15.
A fair description of the data is obtained for incident energies
ε < 2 GeV.

J. The nucleus 208Pb

For heavy nuclei the SuSAM* description is still possible
even if the model is based on the factorization of a single
nucleon cross section, which is expected to be violated by a
strong final-state interaction (FSI) on nuclei such as 208Pb,

shown in Fig. 16. An indication is that the value of χ2/NQE,
given in the last column of Table II, is bigger than one
for all the heavy nuclei with abundant number of data. In
particular, for lead, χ2/NQE = 1.223. This fit provides a Fermi
momentum kF = 233 MeV/c, similar to the values obtained
for other medium/light nuclei, and effective mass M∗ = 0.56.
The other fits performed give rather similar numbers for these
parameters. We have tried to include Coulomb corrections
for this nucleus in terms of an effective momentum, but the
results actually worsen. Additional effects beyond the impulse
approximation, mainly meson exchange currents, are expected
to be especially important for this nucleus and should be
investigated in more depth in the future.
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FIG. 16. Inclusive (e, e′) cross-section data for 208Pb for selected kinematics compared to the SuSAM* model as a function of energy
transfer. Data are from Refs. [49–51].
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FIG. 17. Inclusive (e, e′) cross-section data for 238U for selected kinematics compared to the SuSAM* model as a function of energy transfer.
Data are from Refs. [49–51].
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K. The nucleus 238U

Results for the heaviest nucleus analyzed, 238U, are shown
in Fig. 17. Even if the number of existent QE data is not so big
as for lead, the description of this nucleus is the worst of all the
nuclei analyzed. The χ2/NQE = 1.74 is the largest appearing
in the last column of Table II, and the Fermi momentum ob-
tained in the fit is surprisingly low kF = 219 MeV/c, compared
to lighter nuclei. Moreover in the global fit a very different
value is obtained kF = 255 MeV/c, closer to the expected
value of nuclear matter. This again indicates that for heavy
nuclei strong effects breaking the impulse approximation and
the superscaling hypothesis should play an important role in
the QE regime.

L. M∗ uncertainty

In the previous results we have assumed that the effective
mass is a constant parameter, which is determined by the
position of the QE peak. While our parametrization of the scal-
ing function in general describes well the position of the QE
peak, we observe deviations for some kinematics. In fact, it
is observed that for large Q2 the QE peaks shows a shift
to high energy. This is observed in particular, for 4He when
ω > 300 MeV. One could try to improve the description by
using a different “optimal” effective mass for each kinematics.
In Fig. 18 we show this “optimal” effective mass computed for
eight nuclei for each experimental kinematic set. Each set is
defined by fixed incident electron energy and scattering angle.
This effective mass is plotted as a function of ω at the QE
peak. The optimal effective mass has been computed from the
maximum of the experimental cross section by imposing the
quasielastic condition

ω = |Q2|
2m∗

N

, (27)

from where

M∗ = 1

mN

( |Q2|
2ω

)
max

. (28)

This allows us to estimate a theoretical uncertainty in the
effective mass obtained from the SuSAM* bands by this
method, shown as the blue circles defining the borders of
the green uncertainty band in Fig. 18. The circles in Fig. 18
have been obtained for each experimental kinematics from our
cross-section prediction by the method displayed for example
in Fig. 19 for a kinematics in 48Ca. The method we used
is as follows. We first draw the horizontal segment crossing
the maximum of the central cross section. Then, we compute
the two points Pu and Pd at the upper border of the band.
These points are an estimation of the minimum and maximum
ω position of the theoretical QE peak allowed by our band.
From these two ωu and ωd we compute the up, M∗

u , and down,
M∗

d , values of the effective mass by Eq. (28). This gives us
the two values of the “optimal” effective mass shown in the
bottom panel of Fig. 19, each one at a different ω position,
ωu and ωd , respectively. Repeating this procedure for each
experimental kinematics, we have obtained the blue circles
in Fig. 18. Finally, to obtain the green bands defining our
estimation of the effective mass uncertainty by this procedure,
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the effective mass allowed by the band.

we fit the borders of the band to the resulting points using the
parametrization,

M∗
u,d = Au,d

ω
+ Bu,d . (29)

An estimation of the uncertainty in M∗ can be obtained for
ω → ∞ as

�M∗ = Bu − Bd

2
. (30)

The values of the parameters Au,d , Bu,d , and �M∗ are given
in Table IV. Their values amount roughly to ≈0.1 except for
deuterium. The uncertainties in the effective mass are larger
for heavier nuclei.

M. Predictions for 48Ti and 40Ar

In Ref. [52] the first measurement of the 48Ti(e, e′) cross
section at Jefferson Lab was reported. The beam energy is
E = 2.222 GeV and electron scattering angle θ = 15.541◦

over a broad range of energy transfer. The purpose of this exper-
iment was to obtain accurate quasielastic cross-section data for
the nuclei Ti (Z = 22) and Ar (N = 22) to extract information
needed for the neutrino experiments. In the electron scattering
experiment the cross section of 12C for the same kinematics was
also measured for calibration. These data are compared with
the SuSAM* model in Fig. 20. In the upper panels we show
our predictions using the parameter values from the previous
fit, i.e., kF ≈ 217 MeV/c for A = 12 and kF ≈ 240 MeV/c
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TABLE IV. Parameters of the effective mass bands for different
nuclei. The up and down coefficients are shown in columns 2 to 5.
The theoretical errors �M∗ of column 6 correspond to the ω → ∞
limit.

Nucleus Au (MeV) Bu Ad (MeV) Bd �M∗

2H 15.984 1.024 − 11.655 0.965 0.03
3H 9.377 1.07 − 8.94 0.888 0.09
3He 11.06 1.045 − 9.85 0.9 0.07
4He 13.133 0.967 − 14.202 0.777 0.1
12C 15.236 0.925 − 15.562 0.700 0.11
27Al 23.636 0.989 − 15.044 0.735 0.13
40Ca 18.241 0.816 − 6.374 0.556 0.13
48Ca 18.618 0.815 − 7.247 0.563 0.13
56Fe 19.57 0.828 − 12.014 0.598 0.12
208Pb 14.952 0.693 − 5.495 0.448 0.12
238U 15.316 0.618 − 6.479 0.418 0.1

for A = 48, and M∗ = 0.8 for both nuclei. We observe that
our central prediction is slightly shifted towards high energy
transfer with respect to the data for both nuclei. This means that
for this particular kinematics a higher value for the effective
mass is favored. In fact, the 12C data are better described using
M∗ = 0.9, and 48Ti needs M∗ = 0.85 (see lower panels of
Fig. 20). This is related again to the fact that the RMF model
with a constant effective mass starts to fail for high momentum
transfer, favoring an energy dependence of the effective mass,
as mentioned in the previous subsection. The values of Fermi

momenta are similar to those used in the analysis performed
in Ref. [52] for this kinematics.

To finish we show in the last column of Fig. 20 our
predictions for the 40Ar(e, e′) quasielastic cross section for
the same kinematics, of interest for the new experiments being
performed at JLab [52,59,60]. For argon we show our band
prediction for kF = 240 MeV/c and for two possible values of
the effective mass for this kinematics, M∗ = 0.8 and 0.85. The
knowledge of the experimental cross section for this kinematics
would be useful in our formalism to extract the precise value
of the effective mass, needed to describe the neutrino cross
section for the same kinematics. Note that, in the previous
experiment on Ar [61,62], the momentum transfer is too low
for a reasonable simultaneous extraction of the effective mass
and the Fermi momentum with our formalism.

V. CONCLUSIONS

In this paper we have analyzed the world data of inclusive
quasielastic electron scattering within the SuSAM* model.
This is an alternative scaling approach based on the relativis-
tic mean-field model of nuclear matter instead of the more
usual noninteracting relativistic Fermi gas. The new scaling
variable ψ∗ thus incorporates dynamical ingredients through
the relativistic effective mass M∗, which emerges from the
scalar and vector potentials in the Walecka model. We have
applied several methods to obtain a phenomenological scaling
function f ∗(ψ∗) from the inclusive (e, e′) reaction data. Our
procedure is to start from a scaling function extracted from
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experiment [52], compared to the SuSAM* model as a function of energy transfer.
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12C data as initial guess and use it to extract the effective mass
and Fermi momentum of the remaining nuclei. In this work we
have checked that this method is consistent with performing a
global fit of the scaling function and all the parameters kF ,M∗
over the full database for 21 nuclei.

Thus, superscaling has been shown to be valid for a large
body of the (e, e′) data, because the experimental scaling
function f ∗(ψ∗) collapses into a thick band that here has been
parameterized with combinations of simple Gaussian func-
tions. This unique function allows to describe the intermediate
energy QE cross section for light to heavy nuclei, from 2H
to 238U, with tabulated values of kF and M∗. Our fit has also
allowed us to estimate the error in the extracted parameters
�kF ≈ 10 MeV/c and �M∗ ≈ 0.1.

Three similar parametrizations, A, B, C, of the phenomeno-
logical scaling function f ∗(ψ∗) and uncertainty band have
been tabulated. With these we have presented a systematic
analysis of the predicted QE cross sections and uncertainties
compared to the data. We observe that the uncertainty band
thickness depends on the kinematics. More than 9 000 data
of the total 20 000 data are found to be “quasielastic” as they
fall inside the uncertainty band. The present results have been
shown using band B, but they have also been studied by using
bands A and C and parameters kF ,M∗ from the different
fits. The global results and the conclusions of this work are
preserved against these alternative parameterizations.

Our model provides one of the best global descriptions
of QE data with a single nuclear model. The success is due
not only because its parameters have been obtained by fitting
the inclusive cross section directly. One crucial reason for the
good results is because our model contains by construction the
enhancement of the transverse components of the electromag-
netic current. This is due to the dynamical enhancement of the
lower components of the Dirac spinors by effect of the relativis-
tic effective mass in nuclei, which is lighter than in free space.

Note that this enhancement of the transverse response is not
observed in the nuclear isoscalar magnetic moments because
there is a cancellation with the RPA corrections in the σ -ω
model for low energy and momentum transfers [63]. These
RPA-type vertex corrections were found to reduce the form
factors for q < 1 fm−1 � 200 MeV/c, but gave rise to an

enhancement for larger q [64]. This is consistent with the
assumed fact that the RPA corrections are small for high q.
Since our description of the (e, e′) reaction is focused for
large q � 2kF at the QE peak, defined by ω = |Q2|/2m∗

N , the
quasifree processes are dominant and collective excitations are
expected to play a minor role.

Our model only requires the assumptions of gauge in-
variance, relativity, and scaling, which determines the values
of the relativistic effective mass and the Fermi momentum.
The model is blind to the sorts of nuclear effects involved
in the quasielastic interaction, which are encoded into the
scaling function f ∗(ψ∗) and its uncertainty band. Whatever
nuclear effect which breaks the impulse approximation or the
factorization of the cross section on which scaling is based, is
included only on the average. These may include MEC and FSI
as more direct candidates, but also short-range correlations,
which should be more important for negative values of the
scaling variable ψ∗ < −1, out of the range of the fit made
here. These very same effects probably give rise to many of
the experimental data falling outside our bands. In future work
we expect to reduce the band thickness adding to the scaling
model a contribution from MEC in the 2p-2h channel, which
explicitly accounts for specific scaling violations.

Our scaling function parametrization also provides a sim-
ple test for theoretical studies, which should fall inside the
SuSAM* uncertainty band. The universality of the scaling
function allows this model to be extended to provide tight
constraints in quasielastic neutrino scattering for a wide variety
of targets. In particular, we have provided predictions for
the (e, e′) cross section of Argon, of interest to current and
upcoming neutrino experiments.
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