α -decay half-lives of superheavy nuclei from a modified generalized liquid-drop model

K. P. Santhosh,^{1,*} C. Nithya,¹ H. Hassanabadi,² and Dashty T. Akrawy^{3,4}

¹School of Pure and Applied Physics, Kannur University, Swami Anandatheertha Campus, Payyanur 670327, Kerala, India

²Faculty of Physics, Shahrood University of Technology, Shahrood 009823, Iran

³Akre computer Institute, Ministry of education, Kurdistan 42004, Iraq

⁴Becquerel Institute for Radiation Research and Measurements, Erbil, Kurdistan 44001, Iraq

(Received 4 July 2018; published 28 August 2018)

The α -decay half-lives of superheavy nuclei are studied using the generalized liquid-drop model (GLDM) with 1977 nuclear proximity potential proposed by Blocki *et al.* [Ann. Phys. (NY) **105**, 427 (1977)]. The result obtained with the present formalism is compared with the experimental half-lives and half-lives using GLDM. The standard deviation of the present approach is found to be 0.34, which is less than that of GLDM of Royer (0.56). The study is extended to predict the α half-lives of some of the unknown isotopes in superheavy region. We hope that the predictions on the α -decay half-lives using the present formalism may be helpful in future investigations in this field.

DOI: 10.1103/PhysRevC.98.024625

I. INTRODUCTION

Superheavy nuclei and their decay properties are one of the main topics of interest among the nuclear physicists. The search for superheavy nuclei was begun in the late 1960s with the prediction of magic island or island of stability [1–5]. Elements with Z > 104, which exist solely due to the shell effects, are referred to as superheavy elements. Two types of fusion reactions, the cold fusion reaction [6] and the hot fusion reaction [7] are used for the synthesis of superheavy elements.

 α -decay and spontaneous fission are the main decay modes of most of the experimentally observed superheavy nuclei. So, the studies on α and spontaneous fission half-lives received much attention in this field. Different theoretical models have been put forward for studying the different aspects of these decay modes [8–16].

The generalized liquid-drop model (GLDM) developed by Royer in 1984 is one among the various theoretical models which are widely used for decay studies [17–22]. The GLDM consists of conventional liquid-drop model with the inclusion of nuclear proximity energy and quasi-molecular shape. GLDM can be used successfully to describe the nuclear fusion, fission, cluster decay, α -decay, and proton emission process.

In the present paper, the GLDM of Royer [23] has been modified by incorporating the nuclear proximity potential proposed by Blocki *et al.* [24,25]. Proximity 77 is found to be more effective in describing the α -decay than the other versions of proximity potentials [26,27]. α -decay half-lives of all the experimentally synthesized superheavy nuclei have been reproduced using the present method. Predictions on the α half-lives of some of the unknown superheavy nuclei are also performed. The paper is organized as follows. The theoretical model used for the study is presented in Sec. II. The results and discussions are included in Sec. III. Section IV gives the summary of the entire work.

II. GENERALIZED LIQUID-DROP MODEL WITH 1977 PROXIMITY POTENTIAL

In GLDM, for a deformed nucleus, the macroscopic energy is defined as

$$E = E_V + E_S + E_C + E_R + E_P.$$
 (1)

Here the terms E_V , E_S , E_C , E_R , and E_P represent the volume, surface, Coulomb, rotational, and proximity energy terms, respectively.

For the prescission region the volume, surface, and Coulomb energies in MeV are given by

$$E_V = -15.494(1 - 1.8I^2)A,$$
(2)

$$E_{S} = 17.9439(1 - 2.6I^{2})A^{2/3}(S/4\pi R_{0}^{2}), \qquad (3)$$

$$E_C = 0.6e^2 (Z^2/R_0) \times 0.5 \int (V(\theta)/V_0) \times (R(\theta)/R_0)^3 \sin \theta \, d\theta.$$
(4)

Here *I* is the relative neutron excess and *S* the surface of the deformed nucleus, $V(\theta)$ is the electrostatic potential at the surface and V_0 the surface potential of the sphere.

For the post-scission region,

$$E_V = -15.494 [(1 - 1.8I_1^2)A_1 + (1 - 1.8I_2^2)A_2], \quad (5)$$

$$E_{s} = 17.9439 \left[\left(1 - 2.6I_{1}^{2} \right) A_{1}^{2/3} + \left(1 - 2.6I_{2}^{2} \right) A_{2}^{2/3} \right],$$
(6)

$$E_C = \frac{0.6e^2 Z_1^2}{R_1} + \frac{0.6e^2 Z_2^2}{R_2} + \frac{e^2 Z_1 Z_2}{r}.$$
 (7)

^{*}drkpsanthosh@gmail.com

Here A_i , Z_i , R_i , and I_i are the masses, charges, radii, and relative neutron excess of the fragments, r is the distance between the centers of the fragments.

The nuclear proximity potential E_P is given by Blocki *et al.* [24] as

$$E_p(z) = 4\pi\gamma b \left[\frac{C_1 C_2}{(C_1 + C_2)} \right] \Phi\left(\frac{z}{b}\right),\tag{8}$$

with the nuclear surface tension coefficient,

$$\gamma = 0.9517[1 - 1.7826(N - Z)^2/A^2] \text{ MeV/fm}^2, (9)$$

where *N*, *Z*, and *A* represent neutron, proton, and mass number of parent nucleus, respectively, Φ represents the universal proximity potential [25] given as

$$\Phi(\varepsilon) = -4.41e^{-\varepsilon/0.7176}, \text{ for } \varepsilon > 1.9475,$$
(10)

$$\Phi(\varepsilon) = -1.7817 + 0.9270\varepsilon + 0.01696\varepsilon^2 - 0.05148\varepsilon^3,$$

for $0 \le \varepsilon \le 1.9475,$ (11)

with $\varepsilon = z/b$, where the width (diffuseness) of the nuclear surface $b \approx 1$ fm and Süsmann central radii C_i of fragments related to sharp radii R_i as

$$C_i = R_i - \left(\frac{b^2}{R_i}\right). \tag{12}$$

For R_i we use semiempirical formula in terms of mass number A_i as [24]

$$R_i = 1.28A_i^{1/3} - 0.76 + 0.8A_i^{-1/3}.$$
 (13)

The barrier penetrability P is calculated with the action integral

$$P = \exp\left\{-\frac{2}{\hbar}\int_{R_{\rm in}}^{R_{\rm out}}\sqrt{2B(r)[E(r) - E({\rm sphere})]}dr\right\}, (14)$$

where $R_{in} = R_1 + R_2$, $B(r) = \mu$ and $R_{out} = e^2 Z_1 Z_2 / Q$. R_1 , R_2 are the radius of the daughter nuclei and emitted α particle, respectively, and μ the reduced mass and Q the released energy.

The partial half-life is related to the decay constant $\boldsymbol{\lambda}$ by

$$T_{1/2} = \left(\frac{\ln 2}{\lambda}\right) = \left(\frac{\ln 2}{\nu P}\right). \tag{15}$$

The assault frequency ν has been taken as 10^{20} s^{-1} .

III. RESULTS AND DISCUSSION

The α -decay half-lives of superheavy nuclei are investigated with modified GLDM. The GLDM proposed by Royer is proved to be very successful for describing the half-lives of various decay modes [17–22]. In the present paper, the GLDM proposed by Royer, which considers the proximity function with parameterization of Feldmeir *et al.* [28] have been modified by using the proximity 77 proposed by Blocki *et al.* [24].

It was found that by incorporating the proximity potential of Blocki *et al.* [24] in GLDM, the formula can be improved well. The half-lives of all the experimentally synthesized superheavy nuclei are reproduced with good accuracy using the present method. Table I gives the comparison of experimental half-lives and half-lives predicted with the present method for various superheavy nuclei. The half-lives using GLDM [22] are also given. The experimental Q values and half-lives are taken from Oganessian *et al.* [29,30]. From the table it is evident that the present method can reproduce the experimental α half-lives of superheavy nuclei fairly well. The standard deviation of the

TABLE I. The comparison of α -decay half-lives using present method with experimental half-lives [29,30] and half-lives predicted by GLDM [22].

Z	Α	Ν	Q Value (MeV)	$T_{1/2}^{\mathrm{Expt}}$	$T_{1/2}^{\text{Present}}$	$T_{1/2}^{\text{GLDM}}$ [22]	
118	294	176	11.81 ± 0.06	$1.8^{+75}_{-1.3}$ ms	$0.45^{+0.17}_{-0.12}\mathrm{ms}$	$0.15^{+0.05}_{-0.04}\mathrm{ms}$	
116	293	177	10.67 ± 0.06	$53^{+62}_{-19}\mathrm{ms}$	$71^{+32}_{-22}\mathrm{ms}$	$22.81^{+10.22}_{-7.06}\mathrm{ms}$	
116	292	176	10.80 ± 0.07	$18^{+16}_{-6}\mathrm{ms}$	$33^{+18}_{-12}\mathrm{ms}$	$10.45^{+5.65}_{-3.45}\mathrm{ms}$	
116	291	175	10.89 ± 0.07	$6.3^{+11.6}_{-2.5}\mathrm{ms}$	$20^{+11}_{-7}\mathrm{ms}$	$6.35^{+3.15}_{-2.08}\mathrm{ms}$	
116	290	174	11.00 ± 0.08	$15^{+26}_{-6}\mathrm{ms}$	$11^{+7}_{-4}\mathrm{ms}$	$3.47^{+1.99}_{-1.26}\mathrm{ms}$	
114	289	175	9.96 ± 0.06	$2.7^{+1.4}_{-0.7} m s$	$1.62^{+0.81}_{-0.53}\mathrm{ms}$	$0.52^{+0.25}_{-0.17}\mathrm{s}$	
114	288	174	10.09 ± 0.07	$0.8^{+0.32}_{-0.18}\mathrm{s}$	$0.71^{+0.42}_{-0.26} \mathrm{s}$	$0.22^{+0.12}_{-0.08}\mathrm{s}$	
114	287	173	10.16 ± 0.06	$0.51^{+0.18}_{-0.10}\mathrm{s}$	$0.46^{+0.23}_{-0.15}$ s	$0.16^{+0.08}_{-0.05} \mathrm{s}$	
114	286	172	10.35 ± 0.06	$0.16^{+0.07}_{-0.03} \mathrm{s}$	$0.14^{+0.07}_{-0.04}\mathrm{s}$	$0.05^{+0.02}_{-0.02}\mathrm{s}$	
112	285	173	9.29 ± 0.06	34^{+17}_{-9} s	$40^{+21.83}_{-14.43}\mathrm{s}$	$13.22^{+7.25}_{-4.64}\mathrm{s}$	
112	283	171	9.67 ± 0.06	$4.0^{+1.3}_{-0.7}$ s	$2.85^{+1.48}_{-0.96}\mathrm{s}$	$0.95^{+0.48}_{-0.32}\mathrm{s}$	
110	279	169	9.84 ± 0.06	$0.18^{+0.05}_{-0.03} \mathrm{s}$	$0.20^{+0.10}_{-0.06}$ s	$0.08^{+0.04}_{-0.02} \mathrm{s}$	
108	275	167	9.44 ± 0.07	$0.15^{+0.27}_{-0.06}\mathrm{s}$	$0.67^{+0.43}_{-0.25}\mathrm{s}$	$0.27^{+0.16}_{-0.10}\mathrm{s}$	
106	271	165	8.65 ± 0.08	$2.4^{+4.3}_{-1.0}$ min	$0.75^{+0.66}_{-0.34} \mathrm{~min}$	$0.33^{+0.28}_{-0.16}$ min	

TABLE II. The comparison of α -decay half-lives using present method with the experimental half-lives [31].

TABLE III.	Predictions on α half-lives of superheavy nuclei that
are not yet synt	hesized.

 Z	Α	N	Q Value (MeV)	$T_{1/2}^{\mathrm{Expt}}$	$T_{1/2}^{\text{Present}}$	Z	Α	N	Q Value (MeV)	$\log_{10}[T_{1/2}(s)]$
118	294	176	11.82 ± 0.06	$0.69^{+0.64}_{-0.22}\mathrm{ms}$	$0.43^{+0.16}_{-0.12}\mathrm{ms}$	106	257	151	9.655	-1.207
117	294	177	11.18 ± 0.04	51^{+38}_{16} ms	$0.71^{+0.18}_{-0.15}$ ms	106	268	162	8.140	3.513
117	203	176	11.32 ± 0.05	22^{+8} ms	$0.33^{+0.11}$ ms	107	262	155	10.311	-2.726
117	202	170	11.52 ± 0.05	22_{-4} ms	$5.55_{-0.08}$ ms	107	203	150	10.250	-2.001
116	293	1//	10.71 ± 0.02	57_{-17} ms	$56_{-6.5}$ ms	108	262	155	10.935	-4.066
116	292	176	10.78 ± 0.02	$13^{+7}_{-4}\mathrm{ms}$	$38^{+4.9}_{-4.3}$ ms	100	266	157	11.311	-4.566
116	291	175	10.89 ± 0.07	19^{+17}_{-6} ms	$20^{+11}_{-7}\mathrm{ms}$	109	267	158	11.077	-4.040
116	290	174	11.00 ± 0.07	$8.3^{+3.5}_{-1.9}$ ms	$11^{+5.7}_{-3.7}$ ms	110	265	155	12.290	-6.343
115	290	175	10.41 ± 0.04	650^{+490} ms	$185^{+53.9}$ ms	110	266	156	12.187	-6.150
115	220	174	10.11 ± 0.01	220^{+120} ms	$103_{-40.9}$ ms	111	272	161	11.274	-3.943
115	289	1/4	10.49 ± 0.03	550_{-80}^{-80} IIIS	$117_{-31.6}$ IIIS	111	274	105	11.299	-4.030
115	288	173	10.65 ± 0.01	174_{-18}^{+22} ms	$45^{+2.9}_{-2.6}\mathrm{ms}$	112	279	167	11.435	-4.117
115	287	172	10.76 ± 0.05	$37^{+44}_{-13}\mathrm{ms}$	$24^{+8.6}_{-6.1}\mathrm{ms}$	113	279	166	12.150	-5.386
114	289	175	9.98 ± 0.02	$1.9^{+0.7}_{-0.4}$ s	$1.4^{+0.2}_{-0.2}$ s	113	281	168	11.300	-3.515
114	288	174	10.07 ± 0.03	$0.66^{+0.14}_{-0.10}$ s	$0.81^{+0.18}_{-0.14}$ s	114	283	169	10.896	-2.232
114	287	173	10.17 ± 0.02	$0.48^{+0.14}$ s	$0.44^{+0.06}$ s	114	284	170	10.592	-1.461
114	207	175	10.17 ± 0.02	$0.48_{-0.09}$ s	$0.44_{-0.06}$ s	115	286	171	10.552	-1.050
114	286	172	10.35 ± 0.04	$0.12_{-0.02}^{+0.04}$ s	$0.14_{-0.03}^{+0.04}$ s	115	292 287	177	9.960	0.514
114	285	171	10.56 ± 0.05	$0.15^{+0.14}_{-0.05}$ s	$0.04^{+0.01}_{-0.01}$ s	116	288	172	11.300	-2.702
113	286	173	9.79 ± 0.05	$9.5^{+6.3}_{-2.7}$ s	$2.5^{+1.1}_{-0.7}\mathrm{s}$	117	290	173	11.865	-3.716
113	285	172	10.01 ± 0.04	$4.2^{+1.4}_{-0.8}$ s	$0.6^{+0.19}_{-0.14}$ s	117	292	175	11.780	-3.555
113	284	171	10.12 ± 0.01	$0.97^{+0.12}$ s	$0.31^{+0.02}$ s	118	291	173	12.447	-4.708
112	207	170	10.12 ± 0.01	75+136	$6.51_{-0.02}$ s	118	292	174	12.268	-4.339
113	283	170	10.38 ± 0.01	75_{-30}^{+30} ms	$61_{-4.0}$ ms	119	296	177	12.505	-4.615
113	282	169	10.78 ± 0.08	73^{+134}_{-29} ms	$5.6^{+3.4}_{-2.1}$ ms	119	297	178	12.455	-4.525
112	285	173	9.32 ± 0.02	$28^{+9}_{-6}\mathrm{s}$	32^{+5}_{-4} s	120	300	180	13.351	-6.109
112	283	171	9.66 ± 0.02	$4.2^{+1.1}_{-0.7}$ s	$3.1^{+0.4}_{-0.4}$ s	121	304	183	13.313	-5.815
112	281	169	10.45 ± 0.04	$0.13^{+0.12}_{-0.04}$ s	$0.02^{+0.005}_{-0.005}$ s	121	306	185	13.846	-6.861
111	282	171	9.16 ± 0.03	100^{+70} s	10^{+13} s	122	301	179	14.292	-7.314
111	202	171	9.10 ± 0.05	100_{-30} s	49_{-9} s	122	306	184	13.839	-6.572
111	281	170	9.41 ± 0.05	17_{-3}^{+0} s	$8_{-2.2}^{+3.2}$ s	123	310	187	14.540	- 7.624
111	280	169	10.15 ± 0.01	$4.2^{+0.6}_{-0.4}$ s	$0.06^{+0.003}_{-0.004}$ s	123	307	183	12.932	-4.390
111	279	168	10.53 ± 0.16	$90^{+170}_{-40}\mathrm{ms}$	$5.9^{+9.7}_{-3.6}\mathrm{ms}$	124	312	188	13.894	-6.218
111	278	167	10.85 ± 0.08	$4.2^{+7.5}_{-1.7}$ ms	$0.94^{+14.03}_{-0.34}$ ms	125	316	191	13.761	-5.751
110	281	171	885 ± 0.03	$12 7^{+4.0}$ s	227^{+60} s	125	318	193	13.374	-5.021
110	270	160	0.05 ± 0.03	$0.21^{+0.04}$	227_{-47}^{-47} 3	126	313	187	15.406	-8.344
110	219	109	9.83 ± 0.02	$0.21_{-0.04}$ s	$0.19_{-0.02}$ s	126	320	194	13.229	-4.471
110	277	167	10.71 ± 0.04	$4.1^{+3.7}_{-1.3}$ ms	$1.0^{+0.29}_{-0.20}$ ms	127	320	193	13.796	-5.325 -4.234
109	278	169	9.58 ± 0.03	$4.5^{+3.5}_{-1.3}$ s	$0.53^{+0.12}_{-0.10}\mathrm{s}$	127	319	195	14 590	-6 523
109	276	167	10.10 ± 0.01	$0.52^{+0.10}_{-0.10}\mathrm{s}$	$0.02^{+0.001}_{-0.001}$ s	128	320	192	14.312	-6.031
109	275	166	10.48 ± 0.01	20^{+24}_{-7} ms	$1.9^{+0.18}_{-0.11}$ ms	129	326	197	14.051	-5.360
108	275	167	9.45 ± 0.02	$0.20^{+0.18}$ s	$0.63^{+0.09}$ s	129	327	198	14.091	-5.452
100	275	167).45 ± 0.02	$0.20_{-0.06}$ s	$0.03_{-0.08}$ s	130	324	194	14.488	-5.880
108	213	165	9.67 ± 0.04	$0.76_{-0.24}$ s	$0.15_{-0.03}$ s	130	325	195	14.362	-5.661
107	274	167	8.94 ± 0.03	44^{+34}_{-13} s	$10^{+5.4}_{-1.4}$ s	131	336	203	13.880	-4.397 -4.270
107	272	165	9.21 ± 0.01	$10.6^{+1.6}_{-1.1}\mathrm{s}$	$1.6^{+0.15}_{-0.10}$ s	132	331	199	15.252	-6.827
107	271	164	9.42 ± 0.07	$1.5^{+2.8}_{-0.6}$ s	$0.39^{+0.24}_{-0.15}$ s	132	332	200	15.082	-6.546
107	270	163	9.06 ± 0.08	61^{+292}_{-28} s	$5.2^{+4.2}$ s	133	329	196	10.046	6.068
106	271	165	8.67 ± 0.09	$1.6^{+1.5}$ min	$0.65^{+0.56}$ min	133	330	197	10.253	5.361
100	2/1	105	0.07 ± 0.08	$1.0_{-0.5}$ mm	$0.03_{-0.30}$ mm	134	333	199	10.591	4.578
106	269	163	8.63 ± 0.06	$3.1^{+5.7}_{-1.1}$ min	$0.95_{-0.35}^{+0.36}$ min	134	554	200	10.498	4.855

present approach is found to be 0.34, whereas while using the GLDM of Royer, the standard deviation is 0.56.

Since we obtained a better matching with the experimental results, we have predicted the half-lives of all the experimentally synthesized superheavy nuclei using the present method. Table II gives the comparison of predicted half-lives of superheavy nuclei with experimental results. The experimental Q values and half-lives are taken from Oganessian *et al.* [31]. The matching between experimental and theoretical results suggest the applicability of GLDM with the proximity potential of Blocki *et al.* [24] in predicting the α -decay half-lives of superheavy nuclei. In the present work we would like to mention that all the calculations have been performed without considering the rotational contribution.

As we are successful in reproducing the α half-lives of experimentally synthesized superheavy nuclei, we extended our calculations to predict the half-lives of some unknown isotopes in superheavy region. These predictions are given in Table III. The Q values given in column 4 are calculated using the equation

$$Q = \Delta M_p - (\Delta M_\alpha + \Delta M_d) + k \left(Z_p^{\varepsilon} - Z_d^{\varepsilon} \right).$$
(16)

Here ΔM_p , ΔM_d , and ΔM_α represent the mass excess of the parent, daughter, and the α particle, respectively. The

PHYSICAL REVIEW C 98, 024625 (2018)

electron screening effect on the energy of α particle is included by adding the term $k(Z_p^{\varepsilon} - Z_d^{\varepsilon})$ in Eq. (16). The term kZ^{ε} is the total binding energy of Z electrons in the atom. Here k = 8.7 eVand $\varepsilon = 2.517$ for nuclei with $Z \ge 60$ and k = 13.6 eV and $\varepsilon = 2.408$ for nuclei with Z < 60 [32,33]. The mass excess values of the nuclei are taken from the WS4 mass table [34]. Recently, Wang *et al.* [35] have studied the α -decay half-lives of SHN with $Z \ge 100$ using 20 mass models and 18 empirical formulas and found that the WS4 mass model [34] is the most accurate one to reproduce the experimental Q values.

Since the α half-lives of all these isotopes are within the experimental limits, these isotopes may be predicted to be detected in laboratories via α -decay.

IV. CONCLUSIONS

The GLDM proposed by Royer *et al.* have been modified by incorporating the proximity potential proposed by Blocki *et al.* The α -decay half-lives of all the experimentally identified superheavy nuclei are evaluated with the present formalism. The results are compared with the experimental half-lives and half-lives proposed by Royer. Predictions on half-lives are also performed for some of the isotopes of superheavy nuclei, which are not synthesized yet. We hope that our predictions on the α half-lives of superheavy nuclei will be helpful in future experimental investigations in this field.

- A. Sobiczewski, F. A. Gareev, and B. N. Kalinkin, Phys. Lett. B 22, 500 (1966).
- [2] H. Meldner, Ark. Fys. 36, 593 (1967).
- [3] S. G. Nilsson, C. F. Tsang, A. Sobiczewski, Z. Szymański, S. Wycech, C. Gustafson, I.-L. Lamm, P. Möller, and B. Nilsson, Nucl. Phys. A 131, 1 (1969).
- [4] W. D. Myers and W. J. Swiatecki, Ark. Fys. 36, 343 (1967).
- [5] U. Mosel and W. Greiner, Z. Phys. 222, 261 (1969).
- [6] S. Hofmann and G. Münzenberg, Rev. Mod. Phys. 72, 733 (2000).
- [7] Yu. Ts. Oganessian, J. Phys. G: Nucl. Part. Phys. 34, R165 (2007).
- [8] D. N. Poenaru, M Ivaşcu, and A. Săndulescu, J. Phys. G: Nucl. Phys. 5, L169 (1979).
- [9] B. Buck, A. C. Merchant, and S. M. Perez, Phys. Rev. C 45, 2247 (1992).
- [10] H. F. Zhang and G. Royer, Phys. Rev. C 76, 047304 (2007).
- [11] C. Qi, F. R. Xu, R. J. Liotta, and R. Wyss, Phys. Rev. Lett. 103, 072501 (2009).
- [12] V. E. Viola Jr. and G. T. Seaborg, J. Inorg. Nucl. Chem. 28, 741 (1966).
- [13] W. J. Swiatecki, Phys. Rev. 100, 937 (1955).
- [14] C. Xu and Z. Ren, Phys. Rev. C 71, 014309 (2005).
- [15] R. Smolánczuk, J. Skalski, and A. Sobiczewski, Phys. Rev. C 52, 1871 (1995).
- [16] K. P. Santhosh and C. Nithya, Phys. Rev. C 94, 054621 (2016).
- [17] G. Royer and B. Remaud, J. Phys. G: Nucl. Part. Phys. 10, 1057 (1984).
- [18] G. Royer and B. Remaud, Nucl. Phys. A 444, 477 (1985).
- [19] G. Royer, K. Zbiri, and C. Bonilla, Nucl. Phys. A 730, 355 (2004).

- [20] G. Royer and R. Moustabchir, Nucl. Phys. A 683, 182 (2001).
- [21] X. J. Bao, H. F. Zhang, B. S. Hu, G. Royer, and J. Q. Li, J. Phys. G: Nucl. Part. Phys. **39**, 095103 (2012).
- [22] H. Zhang, W. Zuo, J. Li, and G. Royer, Phys. Rev. C 74, 017304 (2006).
- [23] G. Royer, J. Phys. G: Nucl. Part. Phys. 26, 1149 (2000).
- [24] J. Blocki, J. Randrup, W. J. Swiatecki, and C. F. Tsang, Ann. Phys. (NY) 105, 427 (1977).
- [25] J. Blocki and W. J. Swiatecki, Ann. Phys. (NY) 132, 53 (1981).
- [26] Y. J. Yao, G. L. Zhang, W. W. Qu, and J. Q. Qian, Eur. Phys. J. A 51, 122 (2015).
- [27] O. N. Ghodsi and A. Daei-Ataollah, Phys. Rev. C 93, 024612 (2016).
- [28] H. Feldmeier, in Proceedings of the 12th Summer School on Nuclear Physics (Mikolajki, Poland, 1979).
- [29] Yu. Ts. Oganessian, V. K. Utyonkov, Yu. V. Lobanov, F. Sh. Abdullin, A. N. Polyakov, I. V. Shirokovsky, Yu. S. Tsyganov, G. G. Gulbekian, S. L. Bogomolov, B. N. Gikal, A. N. Mezentsev, S. Iliev, V. G. Subbotin, A. M. Sukhov, A. A. Voinov, G. V. Buklanov, K. Subotic, V. I. Zagrebaev, M. G. Itkis, J. B. Patin, K. J. Moody, J. F. Wild, M. A. Stoyer, N. J. Stoyer, D. A. Shaughnessy, J. M. Kenneally, P. A. Wilk, R. W. Lougheed, R. I. Il'kaev, and S. P. Vesnovskii, Phys. Rev. C 70, 064609 (2004).
- [30] Yu. Ts. Oganessian, V. K. Utyonkov, Yu. V. Lobanov, F. Sh. Abdullin, A. N. Polyakov, I. V. Shirokovsky, Yu. S. Tsyganov, G. G. Gulbekian, S. L. Bogomolov, B. N. Gikal, A. N. Mezentsev, S. Iliev, V. G. Subbotin, A. M. Sukhov, A. A. Voinov, G. V. Buklanov, K. Subotic, V. I. Zagrebaev, M. G. Itkis, J. B. Patin, K. J. Moody, J. F. Wild, M. A. Stoyer, N. J. Stoyer, D. A. Shaughnessy, J. M. Kenneally, P. A. Wilk, R. W. Lougheed,

R. I. Il'kaev, and S. P. Vesnovskii, Phys. Rev. C 71, 029902(E) (2005).

- [31] Yu. Ts. Oganessian, A. Sobiczewski, and G. M. Ter-Akopian, Phys. Scr. 92, 023003 (2017).
- [32] V. Yu. Denisov and A. A. Khudenko, Phys. Rev. C 79, 054614 (2009).
- [33] K. N. Huang, M. Aoyagi, M. H. Chen, B. Crasemann, and H. Mark, At. Data Nucl. Data Tables 18, 243 (1976).
- [34] N. Wang, M. Liu, X. Z. Wu, and J. Meng, Phys. Lett. B 734, 215 (2014).
- [35] Y. Z. Wang, S J. Wang, Z. Y. Hou, and J. Z. Gu, Phys. Rev. C 92, 064301 (2015).