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Microscopic description of the fission path with the Gogny interaction
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The Gogny D1M potential energy surfaces are used to extract the fission barrier of a large number of nuclei
and to study in a systematic way the evolution of the fission barrier height depending on the proton and neutron
numbers to deduce possible links with nuclear shell closures and are compared with evaluated nuclear data.
The least-action paths are also computed, using Dijkstra’s algorithm, and compared to the least-energy paths.
Spontaneous fission half-lives are also calculated and compared with experimental data.
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I. INTRODUCTION

The complexity of the fission process is well established,
since it involves a many-body problem for which the in-
teraction between nucleons is, in addition, not fully under-
stood. Furthermore, nucleons move in such a way that they
modify the system irreversibly and in depth, which raises
dynamical issues. Since its discovery, fission has always
been an active field of research regarding both its purely
theoretical challenge and its practical applications. For some
nuclear applications, such as energy production, nuclear waste
management, and stellar nucleosynthesis, fission plays a
key role. In particular, since the recent observation of the
gravitational-wave event GW170817 of binary neutron-star
mergers [1], the rapid neutron-capture process (or r-process)
of stellar nucleosynthesis is now believed to take place in
such an explosive neutron-rich environment. In this specific
r-process scenario, the number of free neutrons per seed
nucleus can reach a few hundred [2–4]. With such neutron
richness, heavy fissioning nuclei can be produced. For this
reason, at this astrophysical site, fission plays a fundamental
role, more particularly, by (i) recycling the matter during
neutron irradiation (or, if not, by allowing the possible produc-
tion of superheavy long-lived nuclei, if any); (ii) shaping the
r-abundance distribution in the 110 � A � 170 mass region at
the end of neutron irradiation; (iii) defining the residual produc-
tion of some specific heavy stable nuclei, more specifically Pb
and Bi, but also the long-lived cosmochronometers Th and U;
and (iv) heating the environment through the energy released
and consequently impacting the observed light curve of the
astronomical event [3,4].

Fission probabilities remain, however, extremely difficult to
predict and, consequently, the impact of the fission processes
on the r-process nucleosynthesis complex to ascertain. In
addition, it requires fission observables to be estimated for
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a few thousands nuclei, especially heavy exotic neutron-rich
nuclei that cannot be produced in the laboratory. For practical
applications, almost all existing calculations of the fission
observables, such as neutron-induced, spontaneous, and β-
delayed fission probabilities, rely on the multiple-humped
fission penetration model, where fission barriers are described
by inverted decoupled parabolas. Such approaches consider
all ingredients as free parameters in order to be able to achieve
more or less accurate fits to experimental cross sections [5].
Although such adjustments respond to the needs of some
nuclear applications, their predictive power remains poor
due to the large number of free parameters; these methods
cannot be used in applications requiring a purely theoretical
description of fission for experimentally unknown nuclei, such
as nuclear astrophysics. For this reason, the prediction of
fission probabilities is far from being satisfactory nowadays.
Recent studies aim at providing sounder descriptions of some
of the basic nuclear ingredients required to describe fission
cross sections [3,6–9]. These concern, in particular, fission
barriers (or, more generally, fission paths) and nuclear level
densities at fission saddle points, but also fission fragment
distribution, including the average number of emitted neutrons
[10–12].

Detailed fission paths can nowadays be determined on the
basis of the Hartree-Fock-Bogolyubov (HFB) model, which
has proven its ability to estimate the potential energy surface
(PES), and hence the static fission barrier heights and widths,
with a relatively high degree of accuracy [6,8,9,13]. In this
case, the static aspect of fission is treated via the least-energy
path (LEP), from which the fission barrier is deduced, while the
dynamical approach can be described through the least-action
path (LAP) taking into account the inertia tensor.

In the present paper, we aim at providing updated calcula-
tions of fission observables for a large number of even-even
nuclei in the framework of HFB calculations based on the
D1M Gogny interaction [7]. In Sec. II, the HFB calculation of
the PES is described, including corrections for effects beyond
mean field and for triaxial deformations. In Sec. III, we focus
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on the estimate of the least-energy fission path and study the
sensitivity of the fission path and fission barrier heights with
respect to different prescriptions for the beyond-mean-field
collective corrections. We also compare the fission barrier
heights deduced from the LEP to empirical data and carry
out a systematic study of the fission barrier heights for all
even-even nuclei from thorium (Z = 90) to darmstadtium
(Z = 110) lying between the valley of β stability and the
neutron dripline. In the second part of this article Sec. IV
concerns the least-action fission path, with specific attention
paid to the study of the inertia tensor and its impact on the
least-action path, as well as the algorithm used to perform
minimization of the action integral. In Sec. V, the least-energy
and least-action fission paths are compared and in Sec. VI
spontaneous fission lifetimes are estimated and compared with
available experimental data. A sensitivity analysis is performed
with respect to the impact of the treatment of the collective
corrections beyond mean field. Finally, conclusions are drawn
in Sec. VII.

II. POTENTIAL ENERGY SURFACE COMPUTATION

A. The Hartree-Fock-Bogoliubov method

The PES in the deformation space can be explored by
imposing constraints on the standard HFB variational proce-
dure [14–18] for a Hamiltonian Ĥ with respect to the various
spatial degrees of freedom Qi0 to be explored. In the present
work, we explore the axial quadrupole Q20 and octupole Q30

deformations only. The equations of motion are obtained by
minimizing a Routhian,

E = 〈� |Ĥ − λNN̂ − λZẐ −
∑

i

λiQ̂i |�〉, (1)

where |�〉 = |�(Q20,Q30)〉 is the corresponding wave func-
tion at a given quadrupole Q20 and octupole Q30 deformation
and the λ’s the Langrange multipliers for the various con-
straints, which can be expressed as

〈�(Q20,Q30) |N̂ |�(Q20,Q30)〉 = N, (2)

〈�(Q20,Q30) |Ẑ |�(Q20,Q30)〉 = Z, (3)

〈�(Q20,Q30) |Q̂i0 |�(Q20,Q30)〉 = Qi0, (4)

〈Q̂10〉 =
N+Z∑
i=1

〈zi〉 = 0. (5)

Equations (2) and (3) describe the constraints on the neutron N
and proton Z numbers, Eq. (4) (with i = 2, 3) the constraints
on the nuclear quadrupole Q20 and octupole Q30 deformation,
and Eq. (5) ensures that the center of mass of the system
is fixed at the origin of the coordinate system. The HFB
wave functions are expanded on a basis corresponding to the
union of two sets of deformed harmonic oscillator solutions
shifted along the z axis. Each set of solutions consists of
11 major oscillator shells. This choice of 11 major shells
leads to a “plateau condition.” Every deformation parameter
of this “two-center basis,” including the distance between the
two harmonic oscillator potentials, has been optimized for
each HFB calculation by minimizing the HFB energy. More
details can be found in Ref. [19]. A PES is represented on

the (Q20,Q30) plane, where the quadrupole deformation Q20

is related to nucleus elongation and octupole deformation
Q30 to mass (or left-right) asymmetry. All calculations in the
present study are performed with the Gogny D1M interaction
[7]. All details concerning HFB calculations with the Gogny
interaction including the basis expansion, convergence criteria,
and variational procedure can be found in Refs. [13,14,20], and
references therein. The final PES on the (Q20,Q30) plane is
constructed by correcting the mean-field energy EHFB for the
triaxial degree of freedom at small deformations and for the
collective correlation effects beyond mean field, as described
below.

B. Triaxial correction

It is well established that for small axial deformations,
triaxial shapes can be favored, leading to a gain in energy
of a few MeV with respect to the axial shape [13,21–24]. In
particular, triaxiality is known to lower the inner fission barrier
height by several MeV, so that the PES has to be corrected to
take into account triaxial effects at low deformation, typically
for 0 � Q20[b] � 100. For a given quadrupole deformation,
the triaxial correction �Etriax(Q20) is given by

�Etriax(Q20) = Etriax(Q20, 0) − min
{Q22}

(Etriax(Q20,Q22)) (6)

regardless of the octupole deformation. Triaxial calculations
are obtained from the same constrained HFB method as
Eq. (1) but with different constraints, i.e., quadrupole axial and
triaxial (Q20,Q22) nuclear deformations instead of quadrupole
and octupole (Q20,Q30) ones. More details can be found in
Refs. [13,23,25]. Note that some recent relativistic mean-field
studies even show that both nonaxial and reflection asym-
metric shapes need to be considered simultaneously for the
description of potential energy surfaces and, more particularly,
the outer fission barriers [26]. However, such a conclusion
has not yet been reached within the nonrelativistic mean-field
approach.

C. Corrections beyond mean field

For a proper description of the fission process, in addition
to the triaxial degree of freedom, correlations beyond the strict
mean-field approach need to be considered, in particular, those
stemming from high-amplitude collective motions [16,27].
The mean-field HFB energy at each quadrupole Q20 and
octupole Q30 deformation has to be corrected to account for
the collective correlations �EZPE appearing in the collective
Hamiltomian

Ĥcoll = − h̄2

2

∑
ij=2,3

∂

∂Qi0

1

Bij

∂

∂Qj0
+ EHFB − �EZPE, (7)

where Bij is the inertia tensor and �EZPE the zero-point energy
(ZPE) corrections. Only quadrupole collective coordinates
are taken into account in the ZPE term of the collective
Hamiltonian [Eq. (7)], describing the quadrupole component
of the rotation, quadrupole vibration (β andγ ), mode as defined
in Ref. [25], i.e.,

�EZPE = �Vvib + �Vrot (8)

=
∑

i,j=0,2

�Vij + �V−2−2 + �V−1−1 + �V11, (9)
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where

�Vij = Mij
−2

Mij
−3

, (10)

Mij
k =

∑
μν

(Eμ + Eν )k
∣∣qμν

i q
μν
j

∣∣, (11)

q
μν
i = 〈�q |ημηνQ̂2i |�q〉, (12)

η is the quasiparticle destruction operator, and Q̂2i the
quadrupole operator. Two methods to describe such correla-
tions have been adopted here, namely, the generator coordinate
method (GCM), optimizing in a variational approach the multi-
configurational mean-field states, and the cranking approxima-
tion to the adiabatic time-dependent Hartree-Fock (ATDHF)
approach in the limit of low velocities and high amplitudes.
More details about zero-point energy corrections and inertia
tensor derivation can be found in Refs. [14,18,25,27,28].

III. LEAST-ENERGY FISSION PATH

A. Flooding model

The method used to determine the LEP of a PES is inspired
by the flooding method developed in Ref. [29] used to extract
the saddle point connecting two wells. It consists of filling
a well until it overflows, this overflow point corresponding
to the saddle point. As a PES is a set of points distributed
over a regular (Q20,Q30) mesh, a step-by-step method is used.
Starting from the lowest well, known as the first “wet” point,
the “water level” E (or flooding level) is gradually increased
until it overflows over a saddle point. To determine precisely
the location (Q20,Q30) of a saddle point using a constant level
increment δE, however, requires a fine deformation grid as well
as a small energy increment and, hence, a significant computing
time. In order to optimize this computation time, the water - in-
crement is not taken as a constant but rather determined through
the so-called “dry” neighbors. The increment δE is thus equal

to the difference between the current water level and the lowest
point among all dry neighbors in the wet area. Doing so, this
point is automatically included in the wet area, which reaches
the level E + δE. If there is a point among the dry neighbors
below the water level (this point trivially becomes wet), it
implies that a saddle point has just been overflowed. This saddle
point is then the penultimate point included in the wet area.

A simple way to determine the LEP consists of computing it
iteratively, starting from the ground-state well. A saddle point
Sx is obtained by flooding the well Wx ; the next well Wx+1 is
located by the steepest descent from the newly obtained saddle
point. This procedure is repeated until the right part of the
PES corresponding to the fusion valley is reached. To prevent
from backtracking to a previously determined well Wx via a
saddle point recently found, Sx , the flooding is restricted to the
area such that Q20 is greater or equal to the Q20 of the new
well Wx+1. It is equivalent to building a “dam” along the Q30

deformation passing through the Wx+1 point before flooding
the corresponding well.

However, this iterative method fails in some cases due to
the presence of a shape isomer, an octupole one as illustrated
for 260

100Fm160 in Fig. 1. This shape isomer issue leads to a
discontinuous LEP and/or a pseudo saddle point. Starting from
the ground-state well W1 (see Fig. 1), the flooding procedure
detects the saddle point S1. This point connects the flooded
areas E < ES1 and E � ES1 , related to the first W1 and second
W2 wells, respectively. It should be noted that the E < ESi

area contains points before overflowing the well Wi , and the
E � ESi

area contains only new points beyond the saddle point
Si once Si has been overflowed. From W2, the iterative flooding
procedure cannot detect the saddle point S2 because it is located
in the forbidden area delimited by the “dam” built along the
Q30 deformation passing through the W2 (dotted gray line in
Fig. 1). Therefore, the next detected saddle point is the point
labeled X in Fig. 1. However, X is not a true saddle point
but a pseudo one created by the restriction of the flooding
area thanks to the dam. Consequently, the LEP finally obtained

FIG. 1. Illustration of the shape isomer issue, located at W2, when applying the flooding procedure to the PES of 260
100Fm160. Due to this shape

isomer, the iterative flooding method leads to an incorrect LEP (magenta squares) with a dead-end from S1 to W2 and a pseudo saddle point
X. The LEP obtained with the comprehensive BST approach (black squares) has no pseudo saddle point. The E < ES3 area is included in the
E � EX area because the well W3 is the latter area.
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FIG. 2. Illustration of the LEP determination by the BST method for 286
106Sg180. The search starts with the computation of the highest saddle

point of the LEP S00 (00 means that it is the first saddle-point search). After that, the LEP computation is reduced to two subproblems. Their
resolutions give S11 and S12; the first index corresponds to the first dichotomy, and the second to the number of the subproblem starting from
the ground state. Wbxx and Waxx are wells before and after the saddle point Sxx obtained by the steepest descent from the latter. The ground-state
well WGS is determined by the steepest descent from point (0,0). Inset: BST built during the saddle-point search.

for 260
100Fm160, due to the creation of this pseudo saddle point

connects (W1–S1–X–W3–S3) and a dead end: (S1–W2).
To avoid such drawbacks, a more comprehensive approach

is needed. This approach is based on a binary search of LEP
saddle points using the so-called binary search tree (BST) data
structure [30]. The first step of this algorithm, illustrated in
Fig. 2, is to find the saddle point which connects the ground
state WGS to the right part of the PES corresponding to the
fusion valley using the flooding method. This saddle point is

FIG. 3. LEP projected on the Q20 axis for (a) 236
92 U144 and

(b) 240
94 Pu146 with different corrections: no corrections, triaxial, and

triaxial + ZPE in the ATDHF framework and in the GCM framework
for collective corrections.

the highest saddle point S00 of the LEP which also defines
the primary (i.e., the highest) fission barrier. From this saddle
point, the well before Wb00 and after Wa00 the saddle point
S00 are determined by the steepest descent method, which also
determines the part of the LEP between Wb00 and Wa00 (green
part of the LEP in Fig. 2). From there on, the problem is divided
into two subproblems: on the one hand, to find the highest
saddle point S11 between WGS and Wb00 and, on the other hand,
to find the highest saddle point S12 between Wa00 and the fusion
valley. The resolution of these two subproblems gives the blue
parts of the LEP in Fig. 2. The BST (see also the inset in Fig. 2)
is completed by adding two new nodes related to S11 and S12,
each of them containing necessary information for the final
reconstruction of the LEP. The saddle-point search between
two wells is stopped when they correspond to the same point,
and the LEP is complete when all parts are connected. Its re-
construction is done through an in-order search [30] of the BST,
which gives the saddle points in good order, from the ground
state to the fusion valley. In the example in Fig. 2, this sequence
of saddle points is given by S21, S11, S22, S00, S23, S12.

B. Impact of the triaxial and collective corrections
on the fission path

As mentioned in Sec. II B, the triaxial energy correction
(HFB + triax) is known to impact the LEP, especially for
0 � Q20[b] � 100, and tends to decrease the height of the
inner fission barrier [9,13,23,24]. For 236

92 U144 and 240
94 Pu146,

the triaxial correction occurs around 40 � Q20[b] � 70 (see
Fig. 3). In the plutonium case [Fig. 3(b)], the inner one is
the fission barrier for raw PES but the triaxial correction
reduces the inner barrier such that the outer barrier becomes
the highest one. The impact of collective corrections depends
on the method used to compute them. The GCM correction
has a moderated impact on the fission path because it weakly
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FIG. 4. Comparison of D1M primary and secondary fission bar-
rier height in the ADTHF and GCM frameworks with the empirical
values [31] for 230−232Th, 232−238U, 238−244Pu, and 242−248Cu. The rms
of the primary fission barrier is equal to 0.52 MeV for the ATDHF
framework and 2 MeV for the GCM one. The rms of the secondary
fission barrier is equal to 0.45 MeV for the ATDHF framework and
1.94 MeV for the GCM one. For isobaric nuclei, one of the names is
displayed below its corresponding symbol.

varies with the Q20 constraint. In the uranium and plutonium
cases, the difference in the GCM correction between the one
at the fission barrier and the one in the ground state is less
than 0.2 MeV and acts like a global energy shift on the PES.
More precisely, it slightly increases the inner and outer fission
barrier height compared to the fission path without collective
correction. The ATDHF correction has a more important
impact on the PES topology, in particular, on the fission barrier
height. This correction increases with the Q20 constraint from
the ground state to the outer fission barrier. The difference is
around 2 MeV between the ground state and the fission barrier:
the ATDHF correction reduces the fission barrier height by
2 MeV.

C. Fission barriers of experimentally known nuclei

The fission barrier heights of particular interest in nuclear
applications can be extracted directly from the LEP, since they
correspond to the various saddle points with respect to the
ground-state 0+ level. More specifically, the fission barriers
are determined in a way similar to the so-called Method A in
Ref. [13], i.e.,

Ebarr = Esaddle
HFB − �Esaddle

triax − �Esaddle
ZPE − E0+ , (13)

where E0+ corresponds to the ground-state energy within the
five-dimensional collective Hamiltonian framework [7,13,25].
Each saddle point gives rise to a fission barrier, the highest (or
primary) barrier being crucial for the calculation of fission
probabilities.

FIG. 5. Color representation of the LEP for (a) U and (b) Fm
isotopes (b). Green stars represent the location of the highest barrier
along each LEP. The left panels represent the fission barrier height for
the whole isotopic chain with respect to the corresponding 0+ level.

In Fig. 4, we compare the primary barrier height of the
14 even-even nuclei for which empirical values have been
extracted from fission cross-section measurements [31]. Both
the ATDHF and the GCM approximation of the collective
correction energies have been considered in this comparison.
In the case of the ADTHF correction, an excellent agreement
is found with empirical data with the root-mean-square (rms)
deviation of 0.52 MeV. The agreement is particularly good for
232U, 234U, 236U, and 238Pu. The rms is 1.48 MeV higher in
the case of the GCM correction. This difference is due to the
variation of the ATDHF correction with the Q20 coordinate,
whereas the GCM one is almost constant as mentioned in
Sec. III B. For comparison, in the same data set, an rms
deviation of 0.75 MeV is obtained with the Skyrme-HFB
calculation based on the BSk14 force [6] as well as with the
finite-range liquid-drop model [32]. The lower rms deviation
of 0.35 MeV is obtained with the multidimensional constrained
relativistic mean-field model [26].

D. Large-scale calculation of fission barriers

We now calculate the primary fission barriers from the
LEP for all 500 even-even nuclei with 90 � Z � 110 lying
between the D1M proton and the neutron driplines. We show
in Fig. 5(a) the LEP of U isotopes. The vertical blue strip on
the left corresponds to the location of the 0+ ground state. The
arch pattern observed is due to shell effects, in particular, the
spherical (Q20 = 0) shell closure at N = 126 and N = 184. In
the U case, the quadrupole deformation at the primary fission
barrier is seen to increase significantly with N , from Q20 = 90
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FIG. 6. Height of D1M primary fission barriers compared with HFB14 ones [6] for all even-even nuclei with 90 � Z � 110 lying between
the D1M proton and the D1M neutron driplines.

b for 208U to Q20 = 270 b for 276U. The fission barrier heights
remain between 5 and 10 MeV for N ∈ [130, 170] [Fig. 5(a)]
but vary quite rapidly in the vicinity of a shell closure, reaching
a maximum of 17 MeV around the neutron shell closure at
N = 184 and of some 12 MeV around N = 126.

A similar pattern is found for the Fm isotopes [Fig. 5(b)],
with the ground-state 0+ level showing also an arch structure
linked to the N = 184 shell closure. The quadrupole defor-
mation of the primary barriers lies between 40 and 110 b and
is consequently less spread than in the U case. In particular,
the neutron shell closure does not impact significantly the
deformation of the fission barrier (around Q20 = 80–90 b) but,
rather, its height, which drops to a few MeV at N = 188, just
after neutron shell closure N = 184, where a local maximum
is reached (Fig. 5, lower left panel).

In both cases, the primary barrier height becomes negligible
for neutron-deficient nuclei close to the proton dripline. This
means that such nuclei are highly unstable against spontaneous
fission.

The fusion valley, which corresponds to the blue-pink
zone at large quadrupole deformations in Fig. 5, appears at
lower Q20 values for Fm isotopes in comparison with U
isotopes. Primary fission barriers are globally lower for Fm
isotopes.

We then compare in Fig. 6 our D1M primary barriers with
those obtained within the Skyrme HFB framework with the

BSk14 interaction (the so-called HFB-14 mass model) [6].
Globally, D1M barriers are higher than HFB14 ones, particu-
larly around N = 184. This is due to the stronger shell effect
(and lower effective mass) obtained with D1M in comparison
with BSk14. In some cases, the fission barrier drops to 0 when
the 0+ ground state is higher than the highest fission saddle
point; this is the case, for example, for 188

106Sg294, 188
108Hs296, or

188
110Ds298. These nuclei are unstable against spontaneous fission.

In Fig. 7, the height as well as the quadrupole and octupole
deformation of the D1M fission barriers for all calculated PES
is represented on the (N,Z) plane to highlight the proton and
neutron influence, through shell closure, on fission barriers.
The nucleus proton number has a weak impact on the fission
barrier height, the main effect being that the fission barrier
height decreases with the proton number. Contrary to the
proton number, the neutron number has a stronger impact. For
example, nuclei having around 188 neutrons have a low fission
barrier, equal to 0 in some cases for Z � 104. Nuclei with
Z � 98 and N ≈ 178 show a high fission barrier, reaching
more than 10 MeV.The proton dripline nuclei have no fission
barrier because the ground-state well is not deep enough to
have a bound 0+ state.

In Figs. 7(b) and 7(c), we illustrate the reduced quadrupole
deformation q̃20 = Q20/AR2

0 (where the radius parameter
R0 = 1.2A1/3 fm is adopted) and reduced octupole defor-
mation (or mass asymmetry) q̃30 = Q30/AR3

0 of the primary
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FIG. 7. Color representation in the (N, Z) plane of D1M fission
barrier properties: (a) barrier height, (b) reduced quadrupole defor-
mation q̃20, and (c) reduced octupole deformation q̃30.

fission barriers. No particular dependence of the quadrupole
elongation on the proton or neutron number is found except
that the elongation tends to increase as a function of N
(see also Fig. 5 for U and Fm isotopes). Concerning the
mass asymmetry, for most of the nuclei, the highest barriers
are left-right symmetric, i.e., q̃30 � 0, except for Z � 96
and 130 < N < 170 nuclei with q̃30 � 0.1 and a primary
(heighest) barrier corresponding to the outer one with a large
quadrupole deformation.

IV. LEAST-ACTION FISSION PATH

The LEP corresponds to a static approach without any
dynamical consideration, whereas the LAP takes into account
some dynamical aspects of the fission process, in particular, the
inertia evolution along a given path. In the case of spontaneous
fission, the shortest path is the one which maximizes the
probability of penetration through the barrier by the tunneling
effect. This probability P can be calculated in the semiclassical

WKB approximation [33,34],

P = 1

1 + e2S(E)/h̄
. (14)

To maximize the penetration probability, the action defined by
[33,34]

S =
∫ OTP

ITP

√
2μ(x)(V (x) − E)dx (15)

has to be minimized. In Eq. (15), V (x) is the potential energy
of the system, μ(x) the effective inertia, E the total energy of
the system (which depends on its excitation energy), and x the
curvilinear coordinate of the LAP (x = 0 corresponding to the
ground state); ITP stands for the inner turning point close to
the ground-state well, and OTP for the outer turning point
located in the right part of the PES (high Q20). When not
mentioned, the excitation energy of the system corresponds to
the energy of the 0+ ground state, the same one used in Eq. (13),
which is obtained by solving the five-dimensional collective
Bohr Hamiltonian [7]. The dynamical aspect is contained in
the effective inertia μ(x) at a given point (Q20,Q30) of the
PES, which depends on the Q20 and Q30 deformations but also
on the direction of the path at this point. The LAP corresponds
to the path for which spontaneous fission is the most likely,
i.e., the action is minimal.

The effective inertia μ(x) is the projection of the inertia
tensor Bij along the path considered and can be expressed as
[8,9,33–35]

μ(x) =
∑

ij=2,3

Bij (Q20,Q30)
dQ20

dx

dQ30

dx
. (16)

For a path on the (Q20,Q30) plane, the tensor components
B22, B23, and B33 associated with the quadrupole and octupole
modes need to be determined. The different tensor components
are calculated with the GCM and ATDHF method using
the cranking approximation [8,9,18,25,36]. A comparison
between ATDHF and GCM inertia tensors is discussed in
Sec. IV B.

A. Minimization of the action

Dijkstra’s algorithm [37] is used to compute the LAP. This
algorithm, based on graph data structure, finds the shortest
path between a starting point, i.e., the source of the graph, and
every other point (or nodes) in the graph. A tree data structure
containing the shortest paths between the starting point and
all points in the graph is built by progressively exploring
the graph. Thanks to this progressive exploration, Dijkstra’s
algorithm gives the exact solution and does not need a final
point, contrary to the dynamic-programming method or Ritz
method used in Ref. [33]. However, it is possible to define a
stop condition to avoid calculating unnecessary paths. When
this stop condition is reached, the shortest path is obtained by
backtracking from this point to the starting point using tree
data structure. In the case of LAP computation, the starting
point is the ground state of the nuclei, the graph corresponds
to the PES in the deformation plane, and the stop condition is
when an outer turning point is reached, i.e., the scission or outer
turning line of the PES, defined as V − E = 0. The distance
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FIG. 8. Evolution of the tree data structure, represented by white arrows, during the LAP computation of 236U for an initial excitation
energy E∗ = E0+ . Black lines represent isoenergies of the PES, and the color scale is the action of the path between the ground state and
the various points of the PES. The LAP is shown byh black squares. The scission line is not represented here. The LAP from ground state to
(Q20[b],Q30[b3/2]) = (164, 0) is represented by red plus symbols, while the LAP from ground state to (166,0) is depicted by the magenta x’s.

between a given point (Q20,i ,Q30,i ) and a neighboring point
(Q20,i+1,Q30,i+1) is defined by

dS = √
2μ(Q20,i ,Q30,i ,Q20,i+1,Q30,i+1)

×√
V (Q20,i ,Q30,i ) − Edx, (17)

where the effective inertia μ(Q20,i ,Q30,i ,Q20,i+1,Q30,i+1)
depends on the location of the point (Q20,i ,Q30,i ) and the
direction of the point (Q20,i+1,Q30,i+1) relative to the point
(Q20,i ,Q30,i ). It should be mentioned that the areas E > V ,
like shape isomers, can be explored but they do not contribute
to the action [Eq. (15)] since there is no tunnel effect in this
region. For this reason, in the vicinity of a well, the distance
between two neighboring points [Eq. (17)] can be set to 0 and
the Q20 direction is favored. During the exploration procedure
of the LAP, only the unexplored neighbors of a given point
are considered. The resulting exploration tree is represented in
Fig. 8.

In some cases, two neighboring points can be reached
through different paths even if the actions of both LAPs are
almost equal. Such an example is illustrated in Fig. 8, where
the (Q20[b],Q30[b3/2]) = (164, 0) and (166,0) deformations
can be reached by two different paths for Q20 > 90 b, the first
one following the Q20 axis and the second one passing through
the saddle point at (120,11).

B. Impact of the inertia tensor on the fission path

The collective corrections calculated using either the
ATDHF or the GCM framework affect not only the energy
along the fission path but also the inertia tensor. For con-
sistency, these two quantities are computed within the same

framework. The case of 236U is considered to study the impact
of the ATDHF and GCM frameworks on the LAP (Fig. 9). It is
not possible to know a priori whether the action along the LAP
will be lower in the ATDHF or the GCM framework because
the LAPs projected on the (Q20,Q30) plane, i.e., Q30(Q20),
are similar [Fig. 9(a)]. The energy E(Q20) and inertia μ(Q20)
contributions to the action and the LAP can play a different role
and behave differently depending on the framework adopted.
As shown in Figs. 9(a) and 9(b), a higher energy contribution
with the GCM corrections can be compensated by a lower
inertia, with respect to the ATDHF framework. However, the
shape of the E(Q20) and μ(Q20) functions is seen not to be
drastically affected by the framework used. The two distances
differ only for Q20 > 220 b, where dSGCM > dSATD due to the
weaker collective correction in the GCM framework. The final
action of the ATDHF LAP is equal to 63.6h̄, while the GCM
LAP is equal to 66.7h̄, slightly higher than the ATDHF one
[Fig. 9(c)].

To complete this study, the 236U LAP is also computed with
the semiempirical (SEMP) constant, and widely used, effective
inertia, defined as [38]

μSEMP
ε = 0.054A5/3 [h̄2 MeV−1], (18)

together with the ATDHF collective energy correction. Note
that Eq. (18) is obtained using the nuclear deformation pa-
rameter ε, whereas in the present study, the deformation is
parametrized by the quadrupole Q20 deformation. A change of
variable is thus needed to obtain the constant effective inertia
μSEMP

Q20
within the Q20 coordinate framework. The relationship

between nuclear deformation ε and quadrupole deformation
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FIG. 9. (a)236U LAP calculated for E∗ = E0+ and different iner-
tia, namely, ATD, GCM, and SEMP. (b) Effective inertia along the
LAP. (c) Distance dS between two neighboring deformation points
of the LAP. We have SATD = 63.3h̄, SGCM = 66.7h̄, and SSEMP =
122.6h̄. The black curve in (a) is hidden by the red one.

Q20 is given to first leading term by [39]

ε = 5

4AR2
0

Q20. (19)

Using Eqs. (16), (18), and (19), the expression of μSEMP
Q20

reads

μSEMP
Q20

= 0.04069A−5/3 [h̄2 MeV−1 fm−4]. (20)

As shown in Fig. 9, the SEMP inertia is significantly higher
than in the GCM or ATDHF framework, leading inevitably to
higher action along the fission path. The resulting SEMP action
for a constant inertia LAP amounts to 122.6h̄, which is very
different from the ATDHF or GCM one.

V. COMPARISON BETWEEN LEP AND LAP

The LEP and LAP for 226Th and 238U are compared in
Figs. 10 and 11, respectively. These two cases, previously
studied in Ref. [17], show different behaviors of the LAP with
respect to the LEP.

The 226Th LAP is found to be significantly different from
its LEP (Fig. 10). The fission barrier of the LAP is higher by
about 4 MeV than the LEP barrier, the action, however, being
lower due to the effect of the inertia tensor. More specifically,
for 120 < Q20 [b] < 200 deformations, the inertia along the

FIG. 10. (a) Energy E(Q20) (left y-axis scale) and mass asymetry
Q30(Q20) (right y-axis scale) of the LEP and LAP of 226Th calculated
with E∗ = E0+ = 2.7 MeV. (b) ATDHF inertia along the LEP and
LAP.

LAP is twice as small relative to that along the LEP, though
the energy along the LAP is about 1.5 times higher on average.
As the action between two neighboring points dS depends on
the product between the inertia μ(x) and V − E [see Eq. (17)],
the LAP differs from the LEP. The 226Th LAP is globally less
asymmetric than its LEP, mainly for Q20 > 110 b, whereas
the LEP becomes more and more asymmetric with increasing
Q20 due to the presence of a well at (Q20[b],Q30[b3/2]) =
(146, 22) after the saddle point located at (108,15). The

FIG. 11. (a) Energy E(Q20) (left y-axis scale) and mass asymetry
Q30(Q20) (right y-axis scale) of the LEP and LAP of 238U calculated
with E∗ = E0+ = 3.3 MeV. (b) ATDHF inertia along the LEP and
LAP.
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asymmetry of the LAP remains constant between Q20 = 112 b
and Q20 = 196 b even if the potential energy is higher along
this part of the LAP compared to the LEP within the same
Q20 range because an increase in Q30 at a given point is less
favorable from an inertia point of view. Indeed, according to
(16), the inertia along the Q20 direction is equal to

μQ20 (x) = B22

(
dQ20

dx

)2

, (21)

whereas along the Q20 + Q30 direction, it reads

μQ20+Q30 (x) = B22

(
dQ20

dx

)2

+ 2B23
dQ20

dx

dQ30

dx

+B33

(
dQ30

dx

)2

. (22)

SinceμQ20+Q30 > μQ20 forQ30 < 10 b3/2 in the 226Th and 238U
cases, the Q20 direction is favored with respect to the Q20 +
Q30 direction as long as Q30 < 10 b3/2. This effect can be
counterbalanced by a large energy decrease, like the presence
of a deep valley, enabling exploration of the Q30 > 10 b3/2

region, where the Q20 + Q30 direction is more favorable than
the Q20 one.

Contrary to the 226Th case, the 238U LAP is almost identical
to its LEP (Fig. 11). The inertias along the LAP and LEP are
also almost identical. This is due to the presence of a deep
and narrow valley after the saddle point (Q20[b],Q30[b3/2]) =
(124, 13). It is the energetic component of the action [Eq. (15)]
which drives the LAP, whereas in the 226Th case, the LAP
results from a compromise between the potential energy and
the inertia because the valley after the saddle point is not deep
enough.

By increasing the excitation energy while keeping the same
starting deformation point for the LAP, i.e., the ground state,
the balance between the potential energy and the inertia can be
modified. This is illustrated for the 226Th case in Fig. 12. Areas
without the tunneling effect, i.e., V < E, do not contribute to
the action [Eq. (15)]. There is an excitation energy threshold
at which the LAP changes from the low-energy (E∗ = E0+)
regime found in the spontaneous fission LAP to the high-
energy regime where the LAP becomes close to the LEP. This
transition energy is found around 5.1 MeV as illustrated in
Fig. 12. There is, however, no sudden modification of the
action, which goes from 52.1h̄ for E∗ = 5.1 MeV to 51.1h̄ for
E∗ = 5.2 MeV. More generally, the LAP’s action decreases
linearly and smoothly with increasing excitation energies, as
shown in Fig. 13. The LAP tends to the LEP for an excitation
energy E∗ = Ebarr,LEP corresponding to the highest saddle
point of the LEP, since at this energy, there is no more tunneling
effect during the fission process and the action drops to zero.

VI. SPONTANEOUS FISSION LIFETIMES

The spontaneous fission half-life can be obtained from the
WKB formalism [40] as

T sf
1/2[s] = 2.86 × 10−21(1 + e2S(E∗ )/h̄), (23)

where S is the action along the LAP computed with an
excitation energy equal to the energy of the 0+ ground-state

FIG. 12. (a) Energy, (b) mass asymetry Q30, and (c) inertia
of 226Th LEP and LAP calculated with E∗ = E0+ = 2.4, 5.1, and
5.2 MeV.

level, since nuclei are expected to fission spontaneously from
their fundamental 0+ level, as mentioned in Sec. IV. The
resulting half-lives are computed with the ATDHF and GCM
LAPs and compared with experimental data in Fig. 14. Exper-
imental half-lives are fairly well reproduced with the ATDHF
LAP, though systematically overestimated. GCM LAPs tend
to overestimate the half-lives even more. The short half-lives
(typicallyT sf

1/2 � 1 y) for nuclei withZ � 100 are satisfactorily
estimated. It is well known that fission half-lives are extremely
sensitive to the adopted excitation energy E∗. To test this
sensitivity, half-lives are also computed assuming that the
excitation energy of the 0+ level is underestimated by 0.5 MeV,

FIG. 13. LAP’s action of 226Th depending on the excitation
energy, from E0+ to the fission barrier height of the LEP Ebarr,LEP.
The arrow at 5 MeV refers to the transition of the LAP between an
akin to spontaneous fission LAP to an akin to LEP.
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FIG. 14. Spontaneous fission half-lives T sf
1/2 obtained for 232−238U,

240Pu, 248Cm, 250−256Fm, 252−256No, 256−260Rf, 258−262Sg, and 264Hs as
a function of the fissibility parameter Z2/A with E∗ = E0+ and E∗ =
E0+ + 0.5 MeV. Results were obtained with either the ATDHF or the
GCM correction. Theoretical results are compared with experimental
data [41].

i.e., E∗ = E0+ + 0.5 MeV. The corresponding predictions are
shown in Fig. 14. Half-lives vary by two to three orders of
magnitude for heavy nuclei and up to five orders of magnitude
for U isotopes.

VII. CONCLUSION

The LEP and LAP have been obtained for a large number
of nuclei using the Gogny D1M PES, where triaxial and
collective corrections are included. LEPs were computed with
an improved flooding method using a binary search tree data
structure to avoid drawbacks of the iterative method when there
is a shape isomer. The fission barriers deduced from the LEP are
in good agreement with evaluated data. Our systematic study
of the fission barrier has confirmed that nuclear shell structures
have an impact on the fission barrier height but no impact on
the location of the highest saddle point along the LEP. Close
to the N = 184 neutron shell closure, the fission barrier height
increases. To calculate spontaneous fission lifetimes in the
WKB approximation, the actions of the LAP are needed. They
have been computed with Dijkstra’s minimization algorithm. A
comparative study between 226Th and 238U shows that the LEP
and LAP are similar or very different depending on the PES
landscape and, more particularly, on the depth of the valleys.
A transition in LAP shape was observed for 226Th, but without
any impact on the action evolution with the excitation energy,
which decreases linearly. The spontaneous fission lifetimes
are fairly well reproduced using the ATDHF framework but
their predictions are very sensitive to the excitation energy of
the fissioning nucleus. It is planned to extend our LEP and
LAP calculations systematically to odd nuclei, which will be
challenging due to quasiparticle level blocking issues.
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