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Impact of alternative transmission coefficient parametrizations on Hauser-Feshbach theory
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We investigate different formulations of the transmission coefficient Tc, including the form implied by
Moldauer’s “sum rule for resonance reactions” [P. A. Moldauer, Phys. Rev. Lett. 19, 1047 (1967)], the SPRT
method [G. Noguere et al., EPJ Web Conf. 146, 02036 (2017)] and the Moldauer-Simonius form [M. Simonius,
Phys. Lett. B 52, 279 (1974); P. A. Moldauer, Phys. Rev. 157, 907 (1967)]. Within these different formulations,
we compute the neutron transmission coefficients in the resolved and unresolved resonance regions, allowing a
direct comparison with the transmission coefficients computed using an optical model potential. For nuclei for
which there are no measured resonances, these approaches allow one to predict the average neutron resonance
parameters directly from the optical model and level densities. Some of the approaches are valid in both the
strong and weak coupling limits (i.e., any value of the average width and mean level spacing). Finally, both the
Moldauer-Simonius and Moldauer’s sum rule forms approaches suggest that superradiance, that is, the quantum
chaotic enhancement of certain channels, may be a common phenomena in nuclear collisions. Our results suggest
why superradiance has been previously overlooked. We apply our approach to neutron reactions on the closed
shell 90Zr nucleus and the midshell 197Au nucleus.

DOI: 10.1103/PhysRevC.98.024616

I. INTRODUCTION

For neutron-induced reactions below 20 MeV incident
energy, the unresolved resonance region (URR) connects the
fast neutron range with the resolved resonance region (RRR).
The URR is problematic since the resonances in this region
are not resolvable experimentally, yet the fluctuations in the
neutron cross sections play a discernible and technologically
important role: the URR in a typical nucleus is in the 100
keV–2 MeV window, where fission spectra peak. The URR
also represents the transition between theoretical approaches.
In the RRR, R-matrix theory is used to describe the shape and
correlations between resolved resonances in angle-differential
cross sections. In the fast region, Hauser-Feshbach theory, with
the width fluctuation correction (WFC), is used to accurately
describe the cross sections.

Given our lack of knowledge of resonance positions and
widths in the URR, we can only determine the average
resonance spacing D, the average channel widths �c and the
number of degrees of freedom νc for each channel. Here a
channel denotes the two incoming and/or outgoing particles
and all the quantum numbers needed to specify their state
(for our purposes only the orbital angular momentum L and
total angular momentum J ). As the cross section fluctuates
strongly in the URR, at best we can describe the probability
distribution of the cross section in terms of D,�c, and νc. As a
first step toward determining the full probability distribution,
we focus on the energy-averaged cross sections in the URR.
The Gaussian orthogonal ensemble (GOE) triple integral result

*dbrown@bnl.gov
†gnobre@bnl.gov

of Verbaarschot, Weidenmüller, and Zirnbauer [1] is believed
to provide an exact solution for the energy-averaged cross
section. Unfortunately, this result is both difficult to interpret
physically and numerically expensive to use in practice so
it is not appropriate for gaining insight into the physics of
compound nuclear reactions. The Hauser-Feshbach equation
with Moldauer’s width fluctuation correction (WFC) [2] is
known to be both easier to use and simpler to interpret [3].
Moldauer’s WFC was derived in the weak coupling limit
(xc = π�c/D � 1), but it is regularly used outside its region
of validity.

To move beyond the weak coupling limit, it is necessary
to understand the connection between the transmission coeffi-
cients Tc used at higher energies and D,�c, and νc used in the
URR. In this paper, we will investigate three parametrizations
of Tc, the SPRT method [4], Moldauer’s “optical model” form,
which we call the Moldauer-Simonius form [5,6], and the
result that is implied by Moldauer’s “sum rule for resonance
reactions” [7]. We will also investigate the weak coupling limits
of all three forms.

Any prescription that connects the average resonance
widths �̄c and level spacings D to transmission coefficients Tc

allows for a unified framework that connects the RRR, URR,
and fast regions. As the optical model provides a predictive
theory for the transmission coefficients one could in principle
extract the average neutron resonance width for nuclei off the
valley of stability using an extrapolated level density. That said,
both of Moldauer’s results appear to be have been ignored
because both predict a singularity in the compound nuclear
cross section as one approaches the strong coupling limit
�̄c/D � 1. Below we argue that this singularity is not reached
in practice. More interestingly, this singularity appears to be
a manifestation of superradiance [8], namely, the quantum
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chaotic enhancement of certain channels. We present reasons
why superradiance may have been overlooked in the past.

We are not the first ones to consider using Hauser-Feshbach
theory with the WFC to characterize the average cross section
in the URR. This is the basis of the 238U evaluation of
Fröhner [9,10] and the later evaluations of Sirakov et al. [11]. It
is also the basis for the SPRT method in Ref. [12], the MC2-II
method described in the Appendix D.2 of the ENDF Formats
Manual [13], and built into the SESH evaluation code by
Fröhner [14]. In all these approaches, the weak coupling limit
form of the transmission coefficients is implicitly assumed.

The outline of this paper is as follows. In Sec. II, we begin by
introducing compound nuclear reaction cross sections, laying
the ground work for the transmission coefficient. In Sec. III,
we describe the different transmission coefficient formulations.
We continue by exploring the transmission coefficients in
Sec. III D and their impact on the compound nuclear cross
sections in Sec. III E. We apply these results to 90Zr and 197Au
in Secs. IV and V, respectively, and find that we can describe
the neutron transmission coefficients at all relevant energies.
We also compute the compound reaction cross sections and
demonstrate that the superradiant form of the cross section
does not introduce any unwanted changes to the calculated
cross sections. In Sec. VI we conclude with a brief statement
of the implications of our observations.

II. THEORETICAL BACKGROUND

The (n, x) reaction cross section is found in many sources
and textbooks, such as Refs. [15,16], and is given as

σ(n,x) =
∑
J�

∑
a∈n, J�

b∈x, J�

σab. (1)

Here we have decomposed the terms by total angular momen-
tum and parity (J�) and by the remaining quantum numbers
grouped together collectively as a channel index (denoted by
the lettersa, b, c, . . .), including the orbital angular momentum
L. The per-channel reaction cross section can be written in
terms of the scattering matrix S as

σab = π

k2
a

ga|δab − Sab|2. (2)

The statistical factor gc = (2Jc + 1)/[(ic + 1)(2Ic + 1)] and
ic and Ic are the intrinsic spins of the projectile and target,
respectively. With this, the total cross section for incident
neutrons is

σ(n,tot) =
∑
(n,x)

σ(n,x) ≡
∑
J�

∑
a∈n,J�

σa. (3)

Here the total channel cross section σa can be written in terms
of the scattering matrix S as

σc = 2π

k2
c

gc{1 − �Scc}. (4)

One can also compute the angle differential cross section
for two-body final-state reactions using the Blatt-Biedenharn
formalism [15,17], but for simplicity we will not do that here.

We now write the energy-averaged S matrix as Scc′ =
〈Scc′ 〉 + Sfl

cc′ , i.e., as the sum of a smooth background scattering
matrix 〈Scc′ 〉 and a fluctuating term Sfl

cc′ with 〈Sfl
cc′ 〉 = 0. The

energy-averaged 〈f 〉 of a function f (E) is the usual

〈f 〉 ≡ �E

π

∫ ∞

−∞
dE′ f (E′)

(E − E′)2 + (�E)2

= f (E + i�E). (5)

This energy-averaging scheme is only appropriate if f has no
poles with 
E > 0 and f is bounded as a function of energy as
|E| → ∞. With this, Eq. (5) can be performed as a complex
contour integration where the contour is a semicircle in the
upper half-plane that only surrounds the pole at E + i�E.

Separating the scattering matrix into smooth and fluctuating
parts allows us to write the total channel cross section as

〈σc〉 = 2π

k2
c

gc{1 − �〈Scc〉}, (6)

and the channel-channel cross section as

〈σab〉 = π

k2
a

ga|δab − 〈Sab〉|2 + π

k2
a

ga

〈∣∣Sfl
ab

∣∣2〉
. (7)

The first term on the right-hand side of Eq. (7) is conventionally
defined as the direct cross section σ dir

ab and the second term as
the compound nuclear cross section σ cn

ab .
Up to a normalization factor, the compound nuclear term is

usually written as the well-known Hauser-Feshbach formula
with the width fluctuation correction [2,18]

〈∣∣Sfl
ab

∣∣2〉 = 〈|Sab|2〉 − |〈Sab〉|2 ≈ 1

D

�a�b∑
c �c

Wab(�), (8)

where Wab(�) is the width fluctuation correction (WFC) and
is a function of the average widths of all relevant channels. For
economy of notation, we have condensed this dependence into
a vector of widths. Defining the absorption cross section for
channel a as σ abs

a = π ga�a/Dk2
a
, we write

σ cn
ab = σ abs

a

�b∑
c �c

Wab(�). (9)

The WFC was originally derived by Dresner [19] and by
Lane and Lynn [20] under the assumption that resonances
are widely spaced so interference effects between resonances
can be ignored, essentially making the mean level spacing D
much larger than the average widths �̄. The cross sections then
simplify to a form equivalent to the single-level Breit-Wigner
approximation [15,20]. Under these conditions, one assumes
that the resonance widths �c follow a χ2 distribution with νc

degrees of freedom, arriving at

Wab(�) =
(

1 + δab

2

νa

)

×
∫ ∞

0
dx

∏
c

(
1 + 2�c

νc

∑
i �i

x

)−δac−δbc−νc/2

.

(10)

Improvements to Dresner’s and Lane and Lynn’s origi-
nal result, such as Moldauer’s approach [2], are based on
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phenomenological fits of transmission coefficient dependent
νc(Tc ) using numerical simulations.

The Hauser-Feshbach formula with the WFC as given in
most textbooks [16,21] is written in terms of the transmission
coefficient Tc = 1 − |〈Scc〉|2. Noting that in the weak coupling
limit Tc ≈ 2π�c/D, one usually replaces

�b∑
c �c

→ Tb∑
c Tc

(11)

in Eq. (9) and Eq. (10), giving the more traditional

σ cn
ab ≈ σ abs

a

Tb∑
c Tc

Wab( T ), (12)

where σ abs
a ≈ gaTa/2k2

a
. In Sec. III E, we will argue that this

conventional form is incomplete and must be modified, giving
rise to a form that predicts superradiance.

III. TRANSMISSION COEFFICIENTS

We now investigate alternate formulations of the transmis-
sion coefficients and explore their implications as they are
the key to relating the transmission coefficient to the average
widths and level spacings. We will explore three separate
transmission coefficient models and their weak coupling limits.

A. SPRT method

Our first approach is based on the SPRT method, which
we now outline. The SPRT method has been championed by
Noguere et al. [4,12] precisely because it provides a direct
connection between R-matrix parameters and the transmission
coefficient. As the method is based on work from Moldauer
[22], we outline his arguments.

It is clear from Eqs. (6) and (7) that we must consider
the energy-averaged S matrix, even though it does not appear
directly in the final Hauser-Feshbach equation with WFC. The
S matrix can be written in terms of the R matrix through

Scc′ = e−i(φc+φc′ )P 1/2
c {[1 − RL0]−1[1 − RL0∗]}cc′P

−1/2
c′ .

(13)

Here the components of the R matrix are given by

Rcc′ =
∑

λ

γλcγλc′

Eλ − E
. (14)

Where γλc = √
2Pc�λc are the reduced widths and Eλ are the

pole energies. The other parameters in Eq. (13) are the hard-
sphere phase-shift φc and the hard-sphere penetrability Pc. The
matrix L0 is related to the penetrability, the hard-sphere shift
factor Sc, and the R-matrix boundary parameters Bc through

L0
cc′ ≡ (Sc + iPc − Bc )δcc′ . (15)

Moldauer replaces the R matrix with the energy-averaged
R matrix on an interval �E,

〈Scc′ 〉 ≈ e−i(φc+φc′ )P 1/2
c

×{[1 − 〈R〉L0]−1[1 − 〈R〉L0∗]}cc′P
−1/2
c′ . (16)

Moldauer then shows that the energy-averaged R matrix is
related to the pole strength sc and the distant level parameter

R∞
c through

〈R〉cc = iπsc + R∞
c . (17)

The distant level parameter is the Hilbert transform of the pole
strength

R∞
c = PV

∫ ∞

−∞
dE′ sc(E′)

E′ − E
(18)

and the pole strength is

sc =
∑

λ γ 2
λc

�E
(19)

on the averaging interval �E. The sum in Eq. (19) can be
approximated as an ensemble average as described in the
Appendix. Using Eq. (A5) from the Appendix,

sc ≈ �c

2DPc

. (20)

With these, and the conventional definition of the transmis-
sion coefficient Tc = 1 − |〈Sc〉|2, we have

T SPRT
c = 2xc

(1 + xc/2)2 + (PcR∞
c )2

. (21)

Here we define Verbaarschot, Weidenmüller, and Zirnbauer’s
parameter xc as xc ≡ π�c/D = 2πPcsc. Noguerre et al. pro-
vide a modified form of this expression that includes some
direct reaction effects, amounting to adding an additional term
to Tc.

The transmission coefficient implied by Eq. (21) rises from
zero at xc → 0 to its peak value of

T c(xc = 2) = [1 + (PcR
∞
c /2)2]−1

and then decreases monotonically as xc → ∞. The peak
value of the transmission coefficient only reaches unity when
the distant level parameter is ignored. Moldauer argues that
the peak occurs at the so-called optical model peak in the total
cross section (typically around a few MeV). We disagree with
this assertion as the peak in the total cross section is controlled
by the energy dependence of the hard sphere phase φc as one
can see by combining Eqs. (13) and (4).

B. Moldauer’s sum rule

Moldauer provided an alternative approach to computing
the average scattering matrix in Ref. [7], leading to his sum
rule of the resonance region, hereafter called the Moldauer’s
sum rule or just sum rule. Following Moldauer [7,23], we write
the scattering matrix in the resonance pole form as

Scc′ = e−i(φc+φc′ )

(
S0

cc′ + i
∑

λ

Gλcc′

E − Eλ

)
. (22)

Here the width matrix Gλcc′ and pole energy Eλ, are easiest
understood in the multilevel Breit-Wigner (MLBW) approxi-
mation of the R matrix [15]:

Gλcc′ = �
1/2
λc �

1/2
λc′ (23)

and

Eλ = Eλ + �λ − i�λ/2. (24)
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FIG. 1. Contour in the complex energy plane used in the deriva-
tion of Moldauer’s sum rule. The contour is a counterclockwise
rectangle of length along the real axis �E and width in the imaginary
direction of 2I . The scattering matrix poles are all in the lower
half-plane due to causality.

Similar identifications can be made for other formulations of
the R matrix. Here S0

cc′ is a smooth background part of the
S matrix, which is usually taken as the identity matrix. We
comment that the poles at Eλ have 
Eλ < 0 due to causality.
Any unitary transform of the Gλcc′ and S0

cc′ matrices cannot
change the pole structure.

Rather than use the Lorentian-shaped smoothing from
Eq. (5), Moldauer considered a different contour: a counter-
clockwise rectangle of length �E along the real axis and width
in the imaginary direction of 2I , shown in Fig. 1. With this, he
found∮

dEScc′ (E) = 2π
∑

λ

Gλcc′

= � + (Scc′ (E0 − iI ) − Scc′ (E0 + iI ))�E,

where � is the contribution from the ends at E → ±∞. Using
Eq. (5), unitarity, and analyticity, we have

2π
∑

λ

Gλcc′ − � = (〈S∗
cc′ 〉−1 − 〈Scc′ 〉)�E. (25)

Moldauer then argues that if we perform an ensemble
average over sets of poles, � will vanish1 and we may
approximate

∑
λ

Gλcc′ ≈ �E

D
〈〈Gcc′ 〉〉. (26)

Here D is the average resonance pole spacing and 〈〈f (X)〉〉 is
an ensemble average of the quantity in the double brackets.
In other words, 〈〈f (X)〉〉 = ∫

dXP (X)f (X) where P (X) is
the probability distribution function for quantity X. Equations
(25) and (26) constitute Moldauer’s sum rule.

In the presence of direct reactions, the average S ma-
trix is not diagonal. Although the S matrix is unitary, the
energy-averaged S matrix is not and 〈S〉 and 〈S∗〉 cannot
simultaneously be diagonalized. Englebrecht and Weiden-
müller’s solution was to diagonalize Satchler’s transmission

1We suspect, without substantial proof, that � is related to the distant
level parameter R∞

c .

matrix [24]:

ρab = 1 −
∑

c

〈Sac〉〈S∗
bc〉 =

∑
c

U †
ac�cUcb. (27)

Here U is the unitary matrix that diagonalizes the transmission
matrix with eigenvalues �c. The eigenvalues of the trans-
mission matrix �a play the role of transmission coefficients
in Englebrecht and Weidenmüller’s reformulation of Hauser-
Feshbach theory. We note that the transmission coefficient is
usually identified as the trace of the transmission matrix:

Ta = ρaa = 1 −
∑

c

|〈Sac〉|2 =
∑

c

|Uac|2�c, (28)

so in the absence of direct reactions,

Ta = �a = 1 − |〈Saa〉|2. (29)

Englebrecht and Weidenmüller continue to show that, with
the aid of Moldauer’s sum rule,

2π

D

∑
cc′

Uac〈〈Gcc′ 〉〉U ∗
c′b = δab�a (1 − �a )−1/2e2iφa . (30)

We identify xa as

xa = π

D

∣∣∣∣∣
∑
cc′

Uac〈〈Gcc′ 〉〉U ∗
c′a

∣∣∣∣∣. (31)

With this, we find

�a = 2xa

[√
x2

a + 1 − xa

]
. (32)

If we may ignore direct reactions, then both the energy-
averaged S matrix and 〈〈Gcc′ 〉〉 are diagonal. Furthermore,
we have 〈〈Gcc′ 〉〉 ≈ δcc′ 〈〈�c〉〉 in the MLBW approximation so
Eq. (31) gives xa = π�a/D (hence our identification of xa).
This gives us Moldauer’s sum rule result for the transmission
coefficient

T SR
a = 2xa

[√
x2

a + 1 − xa

]
. (33)

In the presence of direct reactions, the MLBW approxi-
mation give us 〈〈Gcc′ 〉〉 = 〈〈�1/2

c �
1/2
c′ 〉〉. Inserting Eq. (26) into

Eq. (31), we see that the Englebrecht-Weidenmüller transform
correlates the different channel widths of a given resonance.
Given this, it is difficult to make progress from this point as we
do not know the joint probability distribution for the widths
for different channels of the same resonance. In the future we
hope to use this fact to generalize Eq. (33) for cases where
direct reactions cannot be neglected.

C. Moldauer-Simonius form

In 1967, Moldauer published the results of a series of
numerical and analytic studies motivating the following form
of the transmission coefficient [6]:

T MS
c = 1 − exp (−2xc ). (34)

He then conjectured that this form is general and indeed it
works very well in practice [25]. This result was supported
by Simonius [5] using Moldauer’s sum rule [7]. The earliest
formulations of Hauser-Feshbach theory, which use the optical
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model began by noting that the energy-averaged S matrix 0 �
|〈Scc〉| � 1 so may be written written as [26]

〈Scc〉 = exp (−ηc + iδc ), (35)

where ηc is some positive, channel-dependent, constant and δc

is a channel-dependent phase factor. Implying

Tc = 1 − exp (−2ηc ). (36)

Expanding Eqs. (34) and (36) in the weak coupling limit allows
the identification of xc with ηc.

D. Comparison of transmission coefficients

The weak coupling limit (xc � 1 and Tc � 1) can be
achieved with very small widths or a small number of reso-
nances widely spaced. All three forms considered here (the
SPRT, the Moldauer’s sum rule, and the Moldauer-Simonius
forms) have the same first two terms in the weak coupling limit
(xc � 1):

T weak
c ≈ 2xc(1 − xc ). (37)

This is equivalent to Eq. (2.7) in Ref. [27].
In Fig. 2 we show the dependence of the transmission

coefficient onxc for all three approaches as well as two different
levels of approximation of the weak coupling limit. In this
figure, we see that if we keep only the leading order of the
weak coupling expansion, we only match Tc below xc ≈ 0.25.
The second-order expansion of the weak coupling seems to

0.25

0.50

0.75

1.00

T(
x)

SR
MS
SPRT
weak (2

nd
 order)

weak (1
st
 order)

0 1 2 3 4
x=πΓ/D 

0.95

1.00

1.05

T(
x)

/T
M

S (x
)

(a)

(b)

FIG. 2. Comparison the transmission coefficient formulas. (a)
shows the Moldauer–Simonius (MS), sum rule (SR), SPRT, and
linear (first-order) and quadratic (second-order) approximations of the
weak coupling transmission coefficients. (b) shows the transmission
coefficients in ratio to the Moldauer-Simonius (MS) transmission
coefficient.

work up to a much higher xc ≈ 0.5. The other three forms are
in roughly 5% agreement up to xc ≈ 2 where the SPRT method
diverges from the other two forms.

Given that xc is proportional to the ratio of the average
channel width and the resonance spacing, the strong coupling
limit (Tc → 1) can be achieved either with very closely spaced
resonances or with one or more resonances with anomalously
large width(s). The transmission coefficients for both the sum
rule and Moldauer-Simonius forms approach 1 as xc → ∞ or
equivalently � � D in the strong coupling limit. We note that
the differences between the two parametrizations are at most
5% deep in the overlapping resonance region (�c ∼ D).

As we discussed above, the SPRT form predicts a maximum
at xc = 2 and then decreases to 0 as xc → ∞. The value of xc =
2 corresponds to�c ∼ 2

3D, nearly in the overlapping resonance
region. In the SPRT approach, there is no explanation why the
transmission coefficient should approach zero at large coupling
other than that it is a natural outcome of the approximation in
Eq. (16).

Equations (33) and (34) work in both strong and weak cou-
pling limits. Both provide us a method to directly compare the
transmission coefficients used in a Hauser-Feshbach equation
to the effective transmission coefficients in the RRR or URR.

E. Implications for the Hauser-Feshbach equation

It is interesting to see how the different Tc prescriptions
modify Hauser-Feshbach theory. Both the Hauser Feshbach
equation (9) and the WFC (10) contain factors �b/

∑
c �c,

which, by substituting (33) and using xc = π�c/D, are mod-
ified to

�b∑
c �c

∣∣∣∣∣
SR

= Tb/
√

1 − Tb∑
c Tc/

√
1 − Tc

. (38)

There is an additional factor of �a in the absorption cross
section, which we will return to later in this section. If instead
one used the Moldauer-Simonius form of the transmission
coefficient in Eq. (34), we arrive at a similar expression
involving natural logarithms of 1 − Tc:

�b∑
c �c

∣∣∣∣∣
MS

= ln (1 − Tb )∑
c ln (1 − Tc )

. (39)

Both of these substitutions reduce to the one shown in Eq. (11)
in the weak coupling limit. We note that the SPRT form does
not provide a unique mapping between xc = π�c/D and Tc

due to its behavior at large xc. It is not clear how to make the
same substitution that is done in Eqs. (38) or (39) for the SPRT
method.

With Eq. (38), the compound nuclear cross section becomes

σ cn
ab

∣∣
SR = σ abs

a

Tb/
√

1 − Tb∑
c Tc/

√
1 − Tc

WSR
ab ( T ), (40)

where WSR
ab ( T ) = Wab(�) denotes the usual WFC, using

the replacement in Eq. (38). Similarly using Eq. (39), the
compound nuclear cross section becomes

σ cn
ab

∣∣
MS = σ abs

a

ln(1 − Tb )∑
c ln(1 − Tc )

WMS
ab ( T ), (41)
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where WMS
ab ( T ) = Wab(�) denotes the usual WFC, using the

replacement in Eq. (39). Either modification possibly has
dramatic implications. When we reach the strong coupling
limit in only one channel (so Tc → 1), that channel dominates
the cross section. The cross sections of all competing channels
are strongly suppressed, an effect known as superradiance
[8]. This effect may have been noted in a recent paper by
Bertsch and Kawano [28], but they attributed it to a poor
understanding of the lower bound on the number of fission exit
channels.

The superradiant effect has been seen in many other
mesoscopic systems and the question was raised in Ref. [8]
why it is not seen in nuclear reactions. We counter that it
may well have been seen. Since we treat compound nuclear
reactions only in the weak coupling limit, so Tc ≈ 2π�c/D, we
have essentially neglected the functional dependence that gives
rise to superradiance. In the weak coupling limit we recover
the traditional Hauser-Feshbach equation with the WFC in
Eq. (12).

In practice, there are many effects that prevent Tc → 1 and
therefore mask superradiance. We have already mentioned that
direct reactions will lower the effective transmission coeffi-
cient. Strong level repulsion keeps D nonzero and therefore
�c/D finite. Also, �c → ∞ is unphysical. However, it can
happen that a given optical model potential could lead toTc ≈ 1
for certain energies as we show in the next section. This may
be corrected by refitting the optical model potential. Given
that one rarely uses the optical model in the URR, this region
is understudied and the average cross section can easily be
washed out by the cross section fluctuations.

It might be easier to see the effects of superradiance in
the incoming channel simply because it is easier to con-
trol experimentally. However, there are problems with this.
Blindly substituting the sum rule transmission coefficient (33)
into the absorption cross section and using xa = π�a/D,
we have

σ abs
a

∣∣
SR = 2π2ga

k2
a

Ta√
1 − Ta

, (42)

which clearly is singular when Ta → 1, violating both unitarity
and common sense. The Moldauer-Simonius transmission
coefficient is not a viable alternative either as it gives

σ abs
a

∣∣
MS = 2π2ga

k2
a

[− ln(1 − Ta )], (43)

which is also singular as Ta → 1. This issue was noted by
Moldauer [18] and Englebrecht and Weidenmüller [24]. In
both cases, they attributed it to the lack of M cancellation,
that is, the effects of ignoring detailed level-level repul-
sion in the energy distribution of poles in the S matrix.
Englebrecht-Weidenmüller transform does effectively reduce
the transmission coefficient, preventing Tc from reaching the
singular value. One possible resolution may be that the entrance
channels should not be treated symmetrically with the exit
channels. Another potential resolution might require a detailed
reexamination of how the WFC must be modified to account
for level repulsion along the lines of Ericson et al. [29,30].
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FIG. 3. Neutron transmission coefficients of 90Zr, computed us-
ing ECIS and the Lane consistent dispersive soft rotor coupled
channel optical model potential (RIPL OMP #612) [34,35] and
transmission coefficients computed directly from the resolved and
unresolved resonance parameters in the ENDF/B-VIII.0 file. The large
uncertainty in the RRR is is expected due to the fact that the widths
obey the Porter-Thomas distribution where the variance is 2�.

IV. APPLICATION TO 90Zr

We now turn to 90Zr, both because of its importance in
nuclear energy applications and because of its simplicity.
90Zr is nearly spherical, has a closed neutron shell, and has
a relatively low level density. In addition, the URR was
recently reevaluated by Mughabghab [27,31]. In our study,
we computed the neutron transmission coefficients using the
coupled channels code ECIS [32], implemented in the EMPIRE

code system [33], and a Lane consistent dispersive soft rotor
coupled channel optical model potential (RIPL OMP #612)
[34,35].

In Fig. 3 we show the transmission coefficients extracted
from the resolved and unresolved resonance parameters of the
ENDF/B-VIII.0 90Zr evaluation using the different transmis-
sion coefficient prescriptions discussed in this paper and using
ECIS. For s-, p-, and d- wave neutrons impinging on the 0+
ground state of 90Zr, only the given J shown in Fig. 3 are
possible.

The first aspect we note in Fig. 3 is that all of the trans-
mission coefficient parametrizations are generally consistent
at low energies but the two weak coupling approximations
diverge from the rest of the forms above 500 keV. The other
three forms (SPRT, Moldauer-Simonius, and sum rule) agree
over the entire range of the URR and with the RRR at low
energy. In the RRR itself, the transmission coefficients are
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FIG. 4. Plots of the 90Zr (a) elastic, (b) total inelastic, (c) capture, and (d) total cross sections, computed with and without the superradiance-
modified Hauser-Feshbach equation. Superradiance cross sections computed with the sum rule form are labeled “SR” while those with the
Modauer-Simonius form are labeled “MS”. Experimental data from the EXFOR library are also shown [36].

generally small, but with rather large variances. This variance
is a reflection of the intrinsic spread of the Porter-Thomas
distribution of the resonance widths and not an artifact of
limited statistics. Finally, we note that the ENDF evaluation
apparently uses a J independent ratio of �c/D even though �c

and D both independently have a J dependence.
The transmission coefficients computed by ECIS clearly

demonstrate a general consistency with the resolved and
unresolved resonances, but disagree in detail. The spin orbit
coupling in the optical model potential does generate a J
dependence, which is clearly visible in the plots, especially
in the p-wave (L = 1) channels. We also note that the neu-
trons in Fig. 3 reach the strong coupling limit already at 1
MeV in the p-wave channels and could, in principle, exhibit
superradiance. We note that a coupled channels calculation
with any realistic optical model potential should not let T → 1
as this, when combined with all of the other channels in the
problem, would violate unitarity. In any event, this comparison
provides a stringent test of the matching between the aver-
age resonance parameters and the optical model in the fast
region.

The peaks in the p-wave transmission coefficients are
intriguing and suggest that we might find an indication of
superradiance in the 90Zr cross sections. We calculated the
90Zr cross sections using the EMPIRE [33] reaction code, using

the Moldauer WFC, multistep direct and multistep compound
reactions, and Hartree-Fock-Bogoliubov level densities from
RIPL-3 [35]. EMPIRE was modified to include the modified
Hauser-Feshbach form in Eqs. (40) and (41) and the results are
shown in Fig. 4 for the total, elastic, capture, and total inelastic
cross sections. In these plots, the effects of superradiance are
not obvious either at low energy (where we are in the weak
coupling limit) or at high energy (where there are a large
number of open channels and the effects of preequilibrium
emission become evident). However, in the region around 2–4
MeV, we see noticeable differences between the cross sections
computed with and without superradiance. The most dramatic
changes are in the total inelastic and capture cross sections, but
the elastic cross section shows an effect as well. In all cases, the
difference to the nonsuperradiant cross section is greatest for
the sum rule superradiant cross section. We are not concerned
about the change to the capture cross section as our calculations
do not yet include the effects of semidirect capture, which will
dominate over the compound contribution to the cross section
at higher energies. The total cross section, of course, shows no
difference since unitarity must be preserved with or without
superradiance. However, the total cross section does indicate
the size of the fluctuations, which extend nearly to 5 MeV and,
if measured, would be evident in the different partial cross
sections.
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Superradiance appears to cause an interesting modification
to the shape of the inelastic cross section just above threshold.
This shape has been seen in (n, n′γ ) measurements of other
closed shell nuclei such as 56Fe (c.f. Ref. [37], Fig. 7), but
is difficult to reproduce with traditional Hauser-Feshbach
calculations. It would be interesting to investigate the impact of
superradiance in the CIELO Fe evaluation [38], however, these
cross sections are tightly constrained by other experimental
data and would require a whole new evaluation. In any event, a
measurement of 90Zr(n, n′γ ) between 2 and 4 MeV would be
very helpful by providing experimental evidence (or lack of)
of superradiance.

V. APPLICATION TO 197Au

The change to the capture cross section in Fig. 3, although
easily correctible in 90Zr, might have dramatic implications
elsewhere. Therefore we turn to 197Au where the capture cross
section is regarded as a neutron data standard [39].

In what follows, we performed two sets of EMPIRE cal-
culations, differing only in the choice of optical model po-
tential. We used the Delaroche dispersive coupled channel
rigid rotor model (RIPL #400) [40] and the Koning-Delaroche
potential [41]. Both potentials give comparable results. Also
in these calculations, EMPIRE-specific level densities were
used and the PCROSS2 preequilibrium model was adopted for
all outgoing particles. The preequilibrium contribution was
in general modest and only begins above 5 MeV incident
energy.

As in 90Zr, let us first examine the transmission coefficients
before turning to the changes to the cross sections. The J = 0
transmission coefficients are shown in Fig. 5. As in 90Zr, �c/D
was fixed for given J in the 197Au evaluation although �c and
D both independently have a J dependence. At high energies
(above the RRR), neutron scattering has weak or negligible
dependence on the target nucleus spin. Therefore, most optical
model potentials treat the target nucleus as a 0+ nucleus and
use L, j , and � as good quantum numbers (where j = L + i
and J = j + I ). If I = 0, J = j . However, the ground state
of 197Au has J� = 3/2+. Inside EMPIRE, additional weighting
is done to couple up to the actual quantum numbers J =
j + I . However, for the potentials under consideration, the
transmission coefficient dependence on j , and hence J , was
minimal over the energy range of the URR. Therefore, only
J = 0 plots are shown.

In Fig 5, it is clear that there is overall good agreement
between all of the transmission coefficients. The largest devia-
tions between the ECIS calculations and the URR transmission
coefficients occurs in the L = 0 panel, but even here the
differences are modest. The fact that the ECIS calculations
reproduce the RRR and URR transmission coefficients is not
really a surprise as Delaroche used the SPRT method to derive
his optical model potential [40].

2EMPIRE’s PCROSS module includes the exciton model [42], based
on the solution of the master equation [43] in the form proposed by
Cline [44] and Ribanský [45].
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FIG. 5. Plots of the J = 0 transmission coefficients extracted
from the ENDF/B-VIII.0 197Au evaluation’s URR and RRR as well
as that computed using ECIS and the #400 optical model potential
from RIPL-3 [35]. Results from the Koning-Delaroche potential are
equivalent. As the neutron width is small for this nucleus for URR
energies, all of our transmission coefficient prescriptions are also
essentially equivalent and their curves are all superimposed on one
another.

In Fig. 6, we show the 197Au elastic, total inelastic, capture.
and total cross sections both with and without the sum rule
form of superradiance. The difference between the Moldauer-
Simonius and sum rule forms was not large enough to merit
plotting both. In the top two panels, it is clear the effect of
superradiance on either the elastic or inelastic cross section is
barely noticeable. The effect on the capture cross section is
larger as seen in the bottom left panel. We have no explanation
for the bump at 2 MeV, but we do note that it is present both with
and without superradiance and the difference between superra-
diant and regular results is roughly half the difference between
results using different optical model potentials. The panel
on bottom right shows that neither optical model potential
describes the experimental data well between 500 keV and 2
MeV. From an evaluators perspective, the differences in capture
cross section can be easily corrected by modifying either the
γ -ray strength function or the level densities or by adding
background as was done in the ENDF/B-VIII.0 evaluation.

The difference in impact of superradiance on 90Zr and 197Au
is easy to explain. 90Zr has very few open neutron channels and
large p-wave neutron transmission coefficients near 1 MeV. On
the other hand 197Au has 11 open neutron channels with J � 2
and all are of comparable magnitude.
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FIG. 6. Plots of the 197Au (a) elastic, (b) total inelastic, (c) capture, and (d) total cross sections, computed with and without the superradiance-
modified Hauser-Feshbach equation. In all panels, two nonsuperradiance calculations are shown: one using the #400 optical model potential
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also shown [36].

VI. CONCLUSION

We have investigated the consequences of different formu-
lations of the neutron transmission coefficient, enabling a rig-
orous connection between the resolved resonance, unresolved
resonance, and fast regions for neutron-induced reactions. Our
work shows that if one has predictions for the mean level
spacing (or, equivalently, level density) and an optical model
potential, then one can predict the average neutron widths using
Eqs. (33) or (34). This provides a tool for predicting neutron
widths far off stability. This work also sheds light on the large
coupling behavior of the SPRT method and why it should be
avoided in strong coupling cases.

Our work also shows how and where superradiance may
impact nuclear reactions. Features of superradiance may be
present in both the elastic and inelastic channels but are
obscured for a variety of reasons. First and foremost, it is
experimentally difficult to disentangle elastic and inelastic neu-
trons and only the recent experiments measuring (n, n′γ ) may
be able to see the signatures of superradiance. Furthermore,
while we see superradiance in our calculations on 90Zr, the
large fluctuations in the cross section undoubtably obscure
it. In 197Au, superradiant effects are even smaller than in
90Zr and can even be corrected away by an evaluator to
allow a match to experimental data. The effects of super-
radiance in the compound nuclear cross section appears to
be small in most cases and is only evident in systems with

a small number of open channels with large transmission
coefficients.

Several questions remain as to the role of correlations in
the level spacing distribution and the width fluctuation factor.
Answering these questions will likely help us understand the
correct behavior of the absorption correction. This might also
help us understand the variance of the cross section in the
URR. Finally, we would like to extend our work to other types
of channels, especially capture and fission.
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APPENDIX

In the main text, we consider two sums over the resonance
widths, which we approximate as ensemble averages:

�E

D
〈〈�c〉〉 ≈

∑
λ

�λc = 2Pc

∑
λ

γ 2
λc, (A1)

�E

D

〈〈
�1/2

c �
1/2
c′

〉〉 ≈
∑

λ

�
1/2
λc �

1/2
λc′ . (A2)
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Here the ensemble average of f (X) is just the expectation
value of f (X) using the probability distribution function for
X, namely 〈〈f (X)〉〉 = ∫

dXP (X)f (X).
We assume the widths are distributed according to the

generalized Porter-Thomas distribution, also known as a χ2

distribution with ν degrees of freedom

PPT (�c|�c, ν)d�c = e−yyν/2

�(ν/2)

dy

y
, (A3)

where y = ν
2

�c

�c
. Here, �(z) is a Gamma function and should

not be confused with the widths �c. With this distribution, it is
straightforward to show that

〈〈
�n

c

〉〉 =
(

2�c

ν

)n
�(ν/2 + n)

�(ν/2)
. (A4)

We now turn to Eq. (A1). Specializing to n = 1, we find
〈〈�c〉〉 = �c and∑

λ

�λc = 2Pc

∑
λ

γ 2
λc ≈ �E

D
�c. (A5)

This proves Eq. (20) in the main text.
Equation (A2) is not as easy to tackle. While we do know the

probability distribution for a single width, the joint probability
of two widths P (�c,�c′ ) is unknown. At best, we can assume
that the widths of different channels are uncorrelated (an
approximation that is untrue as the main text argues). With this
incorrect assumption, P (�c,�c′ ) ≈ PPT (�c )PPT (�c′ ) and〈〈

�1/2
c �

1/2
c′

〉〉 ≈ 〈〈
�1/2

c

〉〉〈〈
�

1/2
c′

〉〉
. (A6)

With this, we find〈〈
�1/2

c �
1/2
c′

〉〉
≈

(
4�c�c′

νcνc′

)1/2
�((νc + 1)/2)�[(νc′ + 1)/2]

�(νc/2)�(νc′/2)
. (A7)
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