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Background: Nuclear clustering has been one of the main interests in nuclear physics. In order to probe the
α clustering through reaction observables, α transfer and α knockout reactions have been studied. It is very
important to probe the α cluster amplitude at nuclear surface since the α spectroscopic factor is not necessarily a
direct measure of the α clustering.
Purpose: Our goal is to reveal how the α cluster amplitude is probed through α knockout reactions depending
on reaction conditions, e.g., the incident energy.
Method: We consider 20Ne(p, pα) 16O and 120Sn(p, pα) 116Cd at 100–400 MeV within the distorted wave impulse
approximation (DWIA) framework. We introduce a masking function, which shows how the reaction amplitude
in the nuclear interior is suppressed and defines the probed region of the α cluster wave function.
Results: It is clearly shown by means of the masking function that the α knockout reaction probes the α cluster
amplitude in the nuclear surface region, which is the direct measure of well-developed α cluster states. The incident
energy dependence of the masking effect is investigated, using a simplified form of the masking function.
Conclusions: The α knockout reaction can probe the α cluster amplitude in the nuclear surface region by choosing
proper kinematics owing to the masking effect originated from absorptions of distorting potentials, and is a suitable
method to investigate how α cluster states are spatially developed.
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I. INTRODUCTION

Cluster states are one of the main interests in nuclear
physics. For a recent review, see Ref. [1]. When investigating α
cluster states, it should be noted that a largeα spectroscopic fac-
tor does not necessarily indicate well-developedα cluster states
because of the dual nature of the cluster and the shell model [2].
From this point of view, recently the 16O(6Li, d ) 20Neα transfer
reaction has been studied [3] with a three-body reaction model
using a macroscopic cluster wave function, and the reaction
was shown to have high sensitivity in the nuclear surface region
and suitable to prove theα cluster amplitude there, i.e., spatially
developed α cluster states.

An alternative method to the α transfer reaction is the
proton-induced α knockout reaction, i.e., (p, pα). In the
present study we employ the distorted wave impulse approxi-
mation (DWIA) framework, which has been utilized and well
established in α knockout reaction studies [4–10] and nucleon
knockout reactions [11–16] as well. For a recent review on
the (p, pN) reactions, see Ref. [17]. In this paper we examine
the peripherality of 20Ne(p, pα) 16O and its incident energy
dependence to investigate how the α cluster amplitude in the
nuclear surface region is probed through the 20Ne(p, pα) 16O
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reaction. The 120Sn(p, pα) 116Cd reaction is also investigated
in a similar manner.

In Sec. II we describe the DWIA formalism for (p, pα)
reactions and also how the cluster wave function is constructed
in the present study. The definition of the masking function,
which is the key concept in the present study, is also given. In
Sec. III we introduce a general feature of knockout reactions.
Then the absorption effect in α knockout reactions due to
the distorting potential is discussed in terms of the masking
function, which defines the probed region in the (p, pα)
reaction. The 120Sn(p, pα) 116Cd reaction is investigated as
a case of strong absorption and Coulomb effects. The incident
energy dependence of the masking effect is also discussed with
introducing a simplified form of the masking function. Finally,
a summary is given in Sec. IV.

II. THEORETICAL FRAMEWORK

A. DWIA formalism

In the present study we consider the 20Ne(p, pα) 16O
reaction in normal kinematics. The incoming and outgoing
protons are labeled as particle 0 and 1, respectively. K i , �i , Ei ,
and Ti denote the momentum (wave number), its solid angle,
total and kinetic energy of particle i (=0, 1, α), respectively.
All quantities appear below are evaluated in the center-of-mass
(c.m.) frame, except those with the superscript L, which are in
the laboratory (L) frame.
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In the DWIA framework, the transition amplitude of
A(p, pα)B is given by

T nlm
K i

= 〈
χ

(−)
1,K 1

χ
(−)
α,Kα

∣∣ tpα

∣∣χ (+)
0,K 0

ϕnlm
α

〉
, (1)

where χi,K i
(i = 0, 1, α) are the distorted waves of p-A, p-

B, and α-B systems with relative momentum (wave number)
K i , respectively. The superscripts (+) and (−) are given to
specify the outgoing and the incoming boundary conditions of
the scattering waves, respectively. The α cluster wave function
of the α-B system is denoted by ϕnlm

α with n, l, and m being
the principal quantum number, the angular momentum, and its
third component, respectively. tpα is the effective interaction
between p and α, which is the transition interaction in the
DWIA framework.

Applying the so-called factorization approximation, or the
asymptotic momentum approximation, which has been justi-
fied in Ref. [18], Eq. (1) is reduced to

T nlm
K i

≈ t̃pα (κ ′, κ )
∫

d R FK i
(R) ϕnlm

α (R), (2)

where κ (κ ′) is the p-α relative momentum in the initial (final)
state. t̃pα and FK i

(R) are defined by

t̃pα (κ ′, κ ) ≡
∫

ds e−iκ ′ ·s tpα (s) eiκ ·s, (3)

FK i
(R) ≡ χ

∗(−)
1,K 1

(R)χ∗(−)
α,Kα

(R)χ (+)
0,K 0

(R) e−i K 0·RAα/A, (4)

where Aα = 4 and A is the mass number of the nucleus A.
By making the on-the-energy-shell (on-shell) approximation
of the final-state prescription:

κ = κ ′κ̂, (5)

the matrix element of tpα in Eq. (2) can be related with a free
p-α differential cross section as

|t̃pα (κ ′, κ )|2 ≈ (2πh̄2)2

μ2
pα

dσpα

d�pα

(θpα, Tpα ), (6)

where thep-α scattering angle θpα is an angle betweenκ andκ ′,
and the scattering energy is defined by Tpα = (h̄κ ′)2/(2μpα )
with μpα being the reduced mass of the p-α system. The triple
differential cross section (TDX) of the A(p, pα)B reaction is
then given by

d3σ

dEL
1 d�L

1 �L
2

= SαFkinC0
dσpα

d�pα

(θpα, Tpα )
∑
m

∣∣T̄ nlm
K i

∣∣2
, (7)

where Sα is the so-called α spectroscopic factor, and Fkin, C0,
and T̄ nlm

K i
are defined by

Fkin ≡ JL
K1KαE1Eα

(h̄c)4

[
1 + Eα

EB

+ Eα

EB

K 1 · Kα

K2
α

]−1

, (8)

C0 ≡ E0

(h̄c)2K0

1

2l + 1

h̄4

(2π )3μ2
pα

, (9)

and

T̄ nlm
K i

≡
∫

d R FK i
(R) ϕnlm

α (R) (10)

with JL being the Jacobian from the c.m. frame to the L frame.

The DWIA framework introduced in this section has been
validated in Ref. [19] by the benchmark comparison with the
transfer-to-the-continuum model [20,21] and the Faddeev/Alt-
Grassberger-Sandhas method [22,23].

B. α cluster wave function

The α cluster wave function ϕnlm
α (R) for the α-16O system

is defined as the eigenstate of the Schrödinger equation:[
− h̄2

2μα

∇2
R + VαB(R)

]
ϕnlm

α (R) = εαϕnlm
α (R), (11)

where μα , VαB, and εα are the reduced mass, the binding
potential, and the binding energy of α-B system, respectively.

For the nuclear part of VαB, a central Woods-Saxon shape
with the radius parameter r0 and the diffuseness parameter a0

is adopted:

fWS(R) = 1

1 + exp
(

R−r0
a0

) . (12)

The numerical input for r0, a0 and εα are given in Sec. III A.
Since VαB is a central potential, ϕnlm

α (R) can be simply
separated into the radial and the angular part as

ϕnlm
α (R) = φnl

α (R)Ylm(�), (13)

where φnl
α (R), Ylm, and � are the radial part of ϕnlm

α (R), the
spherical harmonics, and the solid angle of R, respectively.

C. Masking function

Since the square modulus of Eq. (10) is proportional to the
knockout cross section, it should be worth investigating the
property of the integrand in the right-hand side of Eq. (10)
to reveal a contribution of ϕnlm

α to the knockout cross section.
Here we define the masking function

Dlm(R) ≡ 1√
4π

∫
d�FK i

(R)Ylm(�) (14)

so that T̄ nlm
K i

is given by

T̄ nlm
K i

=
√

4π

∫
dR R2Dlm(R) φnl

α (R). (15)

Therefore the masking function Dlm(R) is a weighting func-
tion, which determines the radial contribution of φnl

α (R) to the
knockout reaction amplitude.

If the nucleus B can be treated as a spectator, the total
momentum of the p-α system is approximately conserved;

kα ≈ q ≡ K 1 + Kα −
(

1 − Aα

A

)
K 0, (16)

where q is the so-called missing momentum and kα is the
momentum of the α cluster in the nucleus A in the initial state.
It can be shown that kα is actually the momentum −K L

B. Once
all distorting potentials are switched off, i.e., the plane wave
impulse approximation (PWIA) is adopted, T̄ nlm

K i
turns out to

be the Fourier transform of the α cluster wave function,

T̄ nlm
K i

≈
∫

d R e−ikα ·Rφnl
α (R). (17)
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FIG. 1. α cluster wave function obtained by solving Eq. (11). The
solid, dashed, and dotted lines correspond to φ40

α (R), Rφ40
α (R), and

R2φ40
α (R), respectively. The dashed line is equivalent to the PM1 in

Fig. 3 of Ref. [3].

The masking function Dlm(R) is normalized to unity when
an l = 0 cluster wave function is considered in PWIA, as
discussed in Sec. III B.

III. RESULTS AND DISCUSSION

A. Numerical inputs

In the calculation of 20Ne(p, pα) 16O, n = 4, and l = 0
are assumed for the α cluster orbital. For the binding poten-
tial VαB(R) = V0fWS(R), the radius parameter r0 = 1.25 ×
161/3 fm and the diffuseness parameter a0 = 0.76 fm are
employed. These parameters are fixed to describe the behavior
of the microscopic cluster model wave function in the tail
region [3]. The depth parameter V0 is determined so as to
reproduced the α separation energy of 4.73 MeV. In Fig. 1
we show the obtained φ40

α (R) by solving Eq. (11). The solid,
dashed, and dotted lines are φ40

α (R), Rφ40
α (R), and R2φ40

α (R),
respectively. The dashed line is equivalent to the PM1 in
Fig. 3 of Ref. [3]. The dotted line in Fig. 1 shows a cluster
wave function multiplied by R2, which will be helpful in the
following discussion because R2 appears as a weight on φ40

α (R)
in the transition matrix, as shown in Eq. (15).

For the optical potentials of the incoming and outgoing pro-
tons, the global optical potential by Koning and Delaroche [24]
is employed, and for the α-16O potential in the final state, the
parameter set by Nolte et al. [25] is employed. For calculating
the p-α scattering cross section, the microscopic single fold-
ing model [26] with a phenomenological α density and the
Melbourne nucleon-nucleon (NN) g-matrix interaction [27] is
adopted.

B. 20Ne( p, pα) 16O reaction

In Fig. 2 we show the TDX of 20Ne(p, pα) 16O at 392 MeV
as a function of the recoil momentum pR defined by

pR = h̄KL
B

KL
Bz∣∣KL
Bz

∣∣ , (18)

where KL
Bz is the z-component of K L

B following the Madison
convention. The kinematics are fixed to be T1 = 352 MeV,

FIG. 2. TDX of 20Ne(p, pα) 16O at 392 MeV as a function of the
recoil momentum.

θL
1 = 32.5◦, and Tα (θα) varies 31–35 MeV (27–108◦). The

azimuthal angles φK 1 and φK 2 are fixed at 0 and π , respectively,
i.e., the scattered particles are in a coplanar. The TDX has a
peak at pR ∼ 0 MeV/c when l = 0, since pR corresponds to
the momentum of α in the initial state in quasifree knockout
reactions.

In Fig. 3 we investigate the masking function D00(R) and
the radial reaction amplitude I (R) atpR = 0 MeV/c. The latter
is defined by

I (R) ≡ R2|D00(R)|φ40
α (R), (19)

which corresponds to the integrand of R in Eq. (15).
As shown by the solid line in Fig. 3(a), |D00(R)| is enough

small in the nuclear interior region to suppress contribution of
the α amplitude in this region to I (R) because of the absorption
effect of the distorting potentials. The result without the
Coulomb interaction Vc [dashed line in Fig. 3(a)] approaches to
unity in the asymptotic region because all the nuclear potentials
are absent there and FK i

(R) = 1 when q = 0; see Eqs. (4) and
(16). On the other hand, the result of DWIA including Vc (solid
line) never reaches to unity even in the asymptotic region. This
is because FK i

(R) suffers from the long-range nature of the
Coulomb interaction. Even if the asymptotic momenta of the
three particles satisfy q = 0, finite values of the Coulomb phase
shifts of the scattering waves make |D00(R)| deviate from unity
when R is finite.

Figure 3(b) shows I (R) defined by Eq. (19). One sees that
I (R) of DWIA (solid line) is strongly suppressed in the interior
region, compared with that of PWIA divided by 3 (dotted line).
The result of DWIA without Coulomb interactions (dashed
line) agrees well with that of DWIA (solid line), since the
cluster wave function has an amplitude for R � 8 fm, where
|D00(R)| with and without Coulomb interactions agrees well
each other. Therefore the deviation of the solid line in Fig. 3(a)
from unity due to Coulomb interactions makes no difference in
understanding the property of D00(R). This allows one to make
further simplification of D00(R) as discussed in Sec. III D.

The masking effect on the cluster wave function due
to nuclear distorting potentials can be a great advantage
of (p, pα) reactions for probing α cluster states. A large
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FIG. 3. (a) Masking function |D00(R)| defined by Eq. (15). The
solid, dashed, and dotted lines represent |D00(R)| of DWIA, DWIA
without Coulomb interactions, and PWIA, respectively. The dot-
dashed line shows the eikonal-masking function |DEK

00 (R)| discussed
in Sec. III D. (b) Same as (a) but I (R) and that with the eikonal
approximation IEK(R).

(p, pα) cross section corresponds to a large cluster amplitude
around the nuclear surface, which indicates an existence of
well-developed α cluster states in a nucleus. It should be
noted that in the nuclear interior, the NN antisymmetrization
plays a significant role, which makes even the definition of
the α cluster unclear. Because of the masking effect, (p, pα)
reactions automatically avoid such an unclear region and focus
the nuclear surface. In consequence of this, one can conclude
that what is determined by (p, pα) is not an α spectroscopic
factor Sα but the surface amplitude of the α distribution, and
the latter is the measure of the α clustering.

C. Coulomb effect in 120Sn( p, pα) 116Cd reaction

As shown in Fig. 3(a), long-ranged Coulomb interactions
prohibit the masking function from reaching unity, even if the
kinematics of the knockout process is fixed so as to satisfy
q = 0. This effect becomes significant when the charge of the
target nucleus is large. In this point of view, we investigate
the peripheral property of the 120Sn(p, pα) 116Cd reaction at
392 MeV and the masking function as well. The α cluster
wave function is constructed in the same method as mentioned
above but with r0 = 1.25 × 1161/3 fm and εα = −4.81 MeV.

FIG. 4. The same as Fig. 3 but for 120Sn(p, pα) 116Cd reaction.

The three-body kinematics are chosen to be T1 = 328 MeV,
θL

1 = 43.2◦, Tα = 51 MeV, and θα = 61◦, which satisfies
q = 0.

In Fig. 4 |D00(R)| and I (R) of 120Sn(p, pα) 116Cd are
shown in the same manner as in Fig. 3. The obtained masking
function for this system [the solid line in Fig. 4(a)] is only 0.2–
0.3 even in the asymptotic region by the Coulomb interactions.
On the other hand, D00(R) without VC (the dashed line) tends
to approach unity, as well as the eikonal masking function
DEK

00 (R) (dot-dashed line). This peculiar behavior of D00(R)
at larger R, however, causes no serious problem, because the
α cluster wave function is sufficiently damped in that region.
Consequently, the dashed line and the dot-dashed line agree
quite well with the solid line in Fig. 4(b) indicating that I (R)
can be approximately simulated by analyses of the masking
function without Coulomb interactions and also the eikonal
masking function. It turns out that only the α amplitude at the
nuclear surface can be safely probed by α knockout reactions
even in the case of heavy-mass targets.

D. Incident energy dependence of masking function

It is important to clarify how the aforementioned property
of the masking function depends on the incident energy.
For this purpose, a more simplified functional form of the
masking function is preferable. We thus rely on the eikonal
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FIG. 5. Incident energy T0 dependence of Cabs.

approximation and use the following form:

DEK
00 (R) ≡ 1

4π

∫
d� exp

[
−Cabs

∫ ∞

−∞
dz fWS(R)

]
e−iq·R,

(20)

which is designated eikonal masking function. Cabs represents
the total strength of the absorption caused by the distorting
potentials of particles 0–2, and is determined so that the peak
height of

IEK(R) ≡ R2
∣∣DEK

00 (R)
∣∣φ40

α (R) (21)

reproduces that of I (R). Thus, one can characterize the
masking function D00(R) by just one parameter Cabs. In a naïve
interpretation, Cabs is related to the mean-free path (MFP) λ
through 1/λ = 2CabsfWS(R).

The dot-dashed lines in Fig. 3(a) and 3(b) represent
|DEK

00 (R)| and IEK(R), respectively; Cabs is taken to be
0.69 fm−1. One sees in Fig. 3(a) that the dot-dashed line agrees
well with the solid line for 4 � R � 6 fm and slightly deviates
from it for larger R. This asymptotics of the dot-dashed
line can be understood as a result of absence of Coulomb
interactions in Eq. (20). Nevertheless, as shown in Fig. 3(b),
the dot-dashed line, IEK(R), agrees well with the solid line
for R � 4 fm, in which the integrand I (R) has a meaningful
amplitude. This indicates that Eq. (20) is sufficient to describe
the property of the masking function that is relevant to the
(p, pα) reaction considered. It should be noted that the small
but finite difference between the solid and dot-dashed lines in
Fig. 3(a) for R � 6 fm appears also in Fig. 3(b); for instance,
the difference is about 6% at 8 fm. We then discuss the incident
energy T0 dependence of Cabs, which is shown in Fig. 5. At

each T0, the scattering energies and angles of particle 1 and
α are chosen so as to satisfy pR = 0 MeV/c. It is found that
the T0 dependence of Cabs is weak above 200 MeV, where
the quasifree (impulse) picture of the knockout reaction is
valid. On the other hand, below 200 MeV, Cabs increases
rather rapidly as T0 decreases. This behavior can be understood
by the fact that the MFP’s of low energy particles are small.
Nevertheless, the general property of the masking function and
the peripherality of the reaction are found to be robust for T0

shown in Fig. 5.

IV. SUMMARY

20Ne(p, pα) 16O reactions at 100–392 MeV were inves-
tigated within the distorted wave impulse approximation
framework. We have introduced the masking function, which
describes the absorption effect due to distorting potentials of
the incident p and also the emitted p and α and suppresses
the α amplitude contribution in the interior region to the α
knockout cross section. Through the analyses on the masking
functions of the reactions, it is clearly shown that α knockout
reactions are peripheral and suitable for probing the α cluster
amplitude in the nuclear surface, which is regarded as a direct
measure of spatially developed α cluster states.

As a case of strong Coulomb interactions, the
120Sn(p, pα) 116Cd reaction at 392 MeV has been investigated.
It is shown that in this case the masking function has
a nontrivial behavior at larger distance due to Coulomb
interactions. Nevertheless, this does not cause any problem
because the overlap between the masking function and the
cluster amplitude in that region is negligibly small.

To investigate the incident energy T0 dependence of the
masking function, we introduce a simplified functional that is
characterized by only one parameter Cabs. It was found that Cabs

depends weakly on T0 for 200–400 MeV. At lower energies,
Cabs increases rather rapidly, corresponding to stronger absorp-
tion. However, the feature of the masking function turned out
to be robust down to 100 MeV.

ACKNOWLEDGMENTS

A part of the computation was carried out with the computer
facilities at the Research Center for Nuclear Physics, Osaka
University. This work was supported in part by Grants-in-Aid
of the Japan Society for the Promotion of Science (Grants No.
JP16K05352, No. JP15J01392, and No. JP26400270).

[1] H. Horiuchi, K. Ikeda, and K. Katō, Prog. Theor. Phys. Suppl.
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