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Cluster formation in relativistic nucleus-nucleus collisions

T. Ogawa,* T. Sato, and S. Hashimoto
Research Group for Radiation Transport Analysis, Japan Atomic Energy Agency, Tokai, Ibaraki, Japan

K. Niita
Research Organization for Information Science and Technology, Tokai, Ibaraki, Japan

(Received 20 February 2018; revised manuscript received 6 June 2018; published 13 August 2018)

An event generator for exclusive simulation of nucleus-nucleus collisions based on quantum molecular
dynamics is developed. A comparison of the results obtained using this event generator with earlier measurements
show that the yields of pions, kaons, antiprotons, deuterons, and nuclear fragments in the collisions of various
nuclei pair such as Si-Al and Pb-Pb in the energy range of a few to 100 A GeV are predicted successfully.
The Lorentz-covariant description of nucleon-nucleon interactions plays a critical role in reproducing fragment
yields in peripheral collisions. Secondary meson yields from nucleus-nucleus collisions are well reproduced by
incorporating the production and decay of resonances of up to 2 GeV/c2 and strings. This model can therefore be
used for analysis and planning of high-energy particle physics experiments, prediction of cosmic ray transport,
and shielding design of high-energy heavy-ion accelerators.

DOI: 10.1103/PhysRevC.98.024611

I. INTRODUCTION

Information about nucleus-nucleus collisions is important
for investigating issues in fundamental physics such as param-
eters of the nuclear equation of state [1], phase transition of
nuclear matter [2], and properties of exotic nuclei [3]. Heavy-
ion collision experiments at facilities such as LHC-ALICE
(Large Hadron Collider—A Large Ion Collider Experiment)
and RHIC (Relativistic Heavy Ion Collider) are performed to
obtain experimental evidence to support the findings of theo-
retical studies. Moreover, in cosmic-ray physics, information
about nucleus-nucleus collisions is important for predicting
the interaction of heavy ions in galactic cosmic rays and the
atmosphere. Prediction of the secondary particle production
and fragment yield is crucial for cosmic-ray detectors such as
the Fermi-LAT [4] and the Telescope Array [5]. It is suggested
that γ -ray detector satellites capture the prompt γ rays pro-
duced by cosmic-ray heavy ions fragmented in the atmosphere
in addition to those that come directly from astronomical
objects. Prediction of the former is necessary for background
subtraction. In the case of Telescope Array detectors, which
are placed on Earth, reconstruction of particle trajectories is
fundamental for identification of incident cosmic rays. Particle
trajectories are reconstructed based on the detected signals and
reaction simulation. Microscopic reaction models to simulate
nucleus-nucleus collisions, which are used in such studies,
were developed based on a few theories. The most popular
methods are the time-dependent Hartree-Fock method [6–13],
quantum molecular dynamics (QMD) model [14–23], cas-
cade models [24–28], Boltzmann-Uehling-Uhlenbeck (BUU)
model [29–36], and jet + string models [37–39].
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In nucleus-nucleus collision experiments, the observed
events are filtered based on the multiplicities of specific
secondary particles or isotopic identities of residual nuclei.
Therefore, exclusive reproduction of each event considering
resonances, string decays, interaction between particles, and
clusterization of nucleons in the final stage is necessary for
performing simulation of the experiments. In earlier studies,
production of baryons and mesons in nucleus-nucleus colli-
sions was well reproduced as a combination of incoherent
binary collisions [24]. However, to simulate the production of
residual nuclei, treatment of interactions inside the spectator
part of nuclei is necessary.

One of the most common approaches to nucleus-nucleus
collision simulation, QMD [14] explicitly calculates the inter-
action of every single particle in the system; such a simulation
can therefore be used to calculate particle multiplicities and
fragment yields in each reaction explicitly. TUQMD [40],
IMQMD [41], RQMD [42], URQMD [22], and JQMD [23]
were developed to simulate nucleus-nucleus reactions. These
codes have been used to successfully reproduce secondary
particle yields. However, in these codes, nuclei were disin-
tegrated spuriously or excited during time evolution, mainly
owing to the nonrelativistic description of the Hamiltonian.
The nonrelativistic equation of motion can be derived easily
from the nonrelativistic Hamiltonian, which is written as

H =
∑

i

√
pi

2 + m2
i + V, (1)

where pi is the momentum of the ith particle, mi is the mass
of the ith particle, and V is the system potential. By contrast,
the relativistic Hamiltonian is written as

H =
∑

i

√
pi

2 + m2
i + 2miVi, (2)
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FIG. 1. Flowchart of the JAMQMD algorithm.

where Vi is the potential of the ith particle. In this case,
the particle mass is no longer a constant but is effectively
written as

√
m2

i + 2miVi ; therefore, the equation of motion
cannot be obtained without additional assumptions. In a few
codes, instead of solving the relativistic equation of motion,
spurious excitation or decay was suppressed by introducing
Pauli force and freezing the nucleons until impact. Alterna-
tively, the impact parameter was intentionally limited and both
peripheral collisions and spurious reactions were disregarded.
These treatments resulted in nonconservation of energy, an
incorrect specific heat of the nucleus, or inaccurate simulation
of peripheral collisions, leading to undesirable effects on the
formation of residual nuclei. Antisymmetrized molecular dy-
namics (AMD) and Fermionic molecular dynamics (FMD) are
advantageous in the sense that they can start from the rigorous
ground-state configuration [43,44], but asymmetrization is
unrealistically CPU-expensive for analysis of heavy-nucleus
collisions (such as Pb-Pb collisions). Moreover, AMD and
FMD tend to underestimate secondary particles owing to the
rigorously cramped ground-state configuration. Coalescence
models [45,46] are often used to simulate cluster formation;
however, they cannot be applied to the formation of heavy
residues. Hence, the QMD, AMD, and FMD models are useful
for simulating either nuclear structures or particle yields, and
residual nucleus production remains an issue.

Mancusi et al. [47] showed that the relativistic equation
of motion for QMD calculation can be derived by their pre-
scription. Low-energy (�3A GeV) heavy-ion reaction model
JQMD version 2.0 [48] was developed based on their pre-
scription. Meanwhile, Nara et al. developed a cascade-type
hadronic collision event generator (JAM [24]) based on the rea-
sonable cross-section parametrization of high-energy baryons
and mesons. The idea of the present study is to incorporate
these two elements into a QMD model to develop a reaction

model (hereafter referred to as JAMQMD) that can reasonably
simulate particle production and fragment yield in high-energy
nucleus-nucleus reactions of up to 1 ATeV of incident energy.
In JAMQMD, artificial corrections such as freezing of nuclei
and coalescence on the nuclear surface are not necessary
because nuclei are formed and sustained by the interaction
between nucleons. Meanwhile, the calculation scheme is based
fundamentally on QMD; therefore, the calculation is as fast as
conventional QMD models, unlike the AMD-type models.

The calculation performed using JAMQMD was compared
with the data on earlier measurements in the energy range of a
few A GeV (resonance dominant) to 100 A GeV (string dom-
inant) to verify its performance. The comparison shows that
JAMQMD can reproduce not only the particle production but
also the yields of light clusters and heavy residues. Moreover,
it is shown that accurate reproduction of the heavy-fragment
yield requires a relativistic equation of motion. In Sec. II, we
give a description of the calculation procedure (Sec. II A, Con-
figuration of the Initial State of Interacting Nuclei; Sec. II B,
Time Evolution of Nuclei Based on Intranucleon Interaction;
Sec. II C, Determination of the Final State), formula, and
parameters of JAMQMD. In Sec. III A, the stability of the
nuclei initialized in Sec. II A was tested. In Secs. III B and III C,
we compare the fragment yield distribution and particle yields
calculated by JAMQMD with the corresponding experimental
data. Finally, we give a summary and outlook in Sec. IV.

II. MODEL

An outline of the developed model, JAMQMD, is shown in
Fig. 1. JAMQMD consists of three phases: initialization, time
evolution, and finalization. When the simulation proceeded
to the next phase, the frame of particles was transferred.
Initialization, time evolution, and finalization were calculated
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in the nuclear-rest, nucleus-nucleus center-of-mass (CM), and
laboratory frames, respectively.

A. Initialization

The initial state of the nucleus (i.e., arrangement of nucleons
in the phase space) was configured using the random packing
method associated with frictional cooling and heating, which
adjusts the excitation energy of the nucleus. Random packing
was carried out using the following scheme. The nuclear radius
(r) and diffuseness (a) were assumed to be

r = 1.124 × A1/3, (3)

a = 0.2, (4)

where A is the mass number of the nucleus. The spatial
coordinates of the nucleons were sampled randomly based
on the Woods-Saxon distribution defined by the above radius
and diffuseness while keeping the nucleon-nucleon distance
larger than 1.0 fm (isospin asymmetric pairs) or 1.5 fm (isospin
symmetric pairs). If the sampled coordinate did not satisfy
this condition, the coordinate was rotated randomly (i.e.,
angular coordinates were changed randomly without changing
the distance from the center). The momenta of the nucleons
were sampled randomly below the local Fermi momentum
calculated as

pf = h̄c

(
3π2ρ

2

)1/3

,

√
p2

x−r + p2
y−r + p2

z−r � pf , (5)

where px−r, py−r, and pz−r are the x, y, and z components of the
momentum in the nucleus-rest frame and ρ is the local nucleon
density.

Thus far, nuclei have been configured in their rest frame. The
configured ground-state nuclei were transferred from the rest
frame to the nucleus-nucleus CM frame. To save CPU time, the
colliding nuclei were placed with 4 fm (ELab � 10 A GeV)
or 2 fm (ELab � 10 A GeV) of longitudinal distance between
surfaces. In addition, by shifting the momenta and spatial
coordinates, the Coulomb repulsion between colliding nuclei
(Rutherford scattering) was considered. Thus the nuclei were
transformed to the CM frame. The nuclei are located close
to each other such that they almost touch by the coordinate
transform.

B. Time evolution

In our model, elastic and inelastic reactions between close
hadron pairs are treated as binary instant collisions, whereas
long-range interaction is described as the mean field, which
changes the momentum of particles gradually. In the nonrela-
tivistic limit, the equation of motion is written as

ṙi = pi

mi

+ ∂〈V̂ 〉
∂pi

, ṗi = −∂〈V̂ 〉
∂ri

, (6)

where 〈V̂ 〉 is the system potential, ri is the spatial coordinate
of the centroid of the ith particle, pi is the momentum of the ith
particle, and mi is the mass of the ith particle. The following
conditions were introduced to describe the equation of motion
in a Lorentz-covariant manner [47]:

(i) define the distance between nucleons as the Lorentz-
covariant scalar using the four-momentum,

(ii) define a Hamiltonian composed of 8N variables (4N
positional coordinates + 4N momentum coordinates),
and

(iii) eliminate 2N degrees of freedom by applying the on-
mass-shell condition and adopting the common time
coordinate,

where N is the number of particles in the system. The
common time coordinate is an approximation but this is
critical to solving the equation of motion. The adequacy of
this approximation is illustrated in Sec. III A. Under these
conditions, the equation of motion is written as Eq. (7),

ṙi = pi

p0
i

+
N∑
j

mj

p0
j

∂〈V̂j 〉
∂pi

,

ṗi = −
N∑
j

m

p0
j

∂〈V̂j 〉
∂ri

, (7)

p0
i =

√
pi

2 + m2
i + 2mi〈V̂i〉,

where 〈V̂j 〉 is the potential of the j th particle. The potential,
which consists of the Skyrme term, symmetry term, and
Coulomb term [23], is written as

Vi = 1

2

A

ρs
〈ρi〉+ 1

1 + τ

B

ρτ
s

〈ρi〉τ+1

2

∑
j

cicj e2

|ri − rj|

× erf

( |ri − rj|√
4L

)
+ Cs

2ρs

∑
j

(1 − 2|ci − cj |)ρij , (8)

where A is a Skyrme force parameter (=−219.4 MeV), ρs

is the saturation density (=0.168 fm−3), 〈ρi〉 is the overlap
integral of wave packets between the ith nucleon and all
the other nucleons, B is another Skyrme force parameter
(=165.3 MeV), τ is 4/3, ci is 1 for protons and 0 for
neutrons, e is the elementary charge, ri denotes the spatial
coordinates of the ith particle, L is the width of the wave
packet representing nucleons (=2 fm2), Cs is the symmetry
energy parameter (=25 MeV), and ρij is the overlap integral
of the wave functions of the ith and j th nucleons. The wave
packet of nucleons was assumed as Gaussian with 2 fm2 of
width to calculate the overlap integral. The first two, third,
and fourth terms are Skyrme-type force terms, the Coulomb
force term, and the symmetry term, respectively. The Lorentz-
covariant description of motion, written as Eq. (8) [47], and
the interaction between nucleons, written as Eq. (8), can keep
the nuclei stable not only in the nucleus rest frame but also in
the CM frame of the colliding nuclei.

Particles transport was tracked for 0.5 fm/c of time step
by default. But if the next collision was expected during the
next 0.5 fm/c of time step, the particles were transported until
the next collision occurred. In some codes, particle motion is
tracked at fixed time intervals (e.g., 1 fm/c), and the particle
pairs colliding in the time step are determined at the end of
every interval. However, central high-energy collisions can
result in dense nuclear matter, in which one particle collides
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TABLE I. Reaction channels considered in JAMQMD.

p + p → p + �+ n + n → n + �0 n + p → n + �+

p + p → n + �++ n + n → p + �− n + p → p + �0

p + p → p + p∗ n + n → n + n∗ n + p → n + p∗

p + p → �+ + �+ n + n → �0 + �0 n + p → n∗ + p
p + p → �0 + �++ n + n → �+ + �− n + p → �0 + �+

n + p → �− + �++

with more than one particle in a fixed time step. To maintain
the proper order of collisions, particles were tracked using
a variable time interval. The collision timing was calculated
in the nucleus-nucleus CM frame as the timing at which the
colliding particles are the closest point. Owing to the relativity
of simultaneity, the timing of one particle did not agree with
that of the other. Therefore the collision timing was defined as
the average of their times.

In the case of baryon-baryon cross sections, the total
reaction cross sections consisted of

σtotBB(
√

s) = σBW(
√

s) + σel(
√

s) + σs(
√

s), (9)

where σtotBB is the total cross section,
√

s is the total CM
energy, σBW is the resonance cross section expressed in the
Breit-Wigner form, σel is the elastic cross section, and σs is
the string formation cross section. The total reaction cross
section was taken from the literature [49]. The elastic reaction
cross sections were expressed based on the parametrization
with correction for in-medium suppression [50]. The inelastic
reaction cross section was calculated by subtracting the elastic
reaction cross section from the total reaction cross section.
When the inelastic reaction was sampled, resonance reaction
cross sections were calculated using the method described
below. All the resonance cross sections subtracted from the
inelastic cross section leave the string production cross section.
Inelastic resonance channels, listed in Table I, were considered.
Resonance production cross sections were fitted using the
function

σR(
√

s) = a(
√

s/
√

sth − 1)bd

(
√

s/c − 1)2 + d2
, (10)

where σR is the resonance cross section,
√

sth is the reaction
threshold, and a, b, c, and d are the fitting parameters. This
fitting function and the fitting parameters were taken from
[24]. As illustrated in Fig. 3 in [24], this fitting can reproduce
various exclusive meson production cross sections with a
good accuracy. A transition matrix is necessary to accurately
determine the reaction channel to be realized; however, in
JAMQMD, it was assumed that the transition probability is
proportional to the integral of the transition strength over the
spin, isospin, and product mass. Pionic fusion reactions and
s-wave pion production reactions were not treated explicitly
but included effectively in N + N → N + � reactions and
N + N → N + N(1440) reactions, respectively. Therefore, the
resonance reaction channels specified in Table I were consid-
ered, where � denotes all delta resonances from 1232 to 1950
MeV, and n∗ and p∗ denote all N* resonances from 1440 to
1990 MeV.

In the case of baryon-meson combination, cross sections
were decomposed depending on the type of meson,

σtotπB(
√

s) = σBW(
√

s) + σel(
√

s) + σs-S(
√

s) + σt-S(
√

s),

(11)

σtotK̄-B (
√

s) = σBW(
√

s) + σel(
√

s) + σch(
√

s) + σπY(
√

s)

+ σs-S(
√

s) + σt-S(
√

s), (12)

σtotK-B(
√

s) = σel(
√

s) + σch(
√

s) + σt-R(
√

s) + σt-S(
√

s),

(13)

where σtotπ-B, σtotK̄-B, and σtotK-B are the total cross sections
of π -baryon, K̄-baryon, and K-baryon combinations, respec-
tively, σBW is the resonance cross section expressed in the
Breit-Wigner form, σel is the elastic cross section, σs−S is the
s-channel string formation cross section, σt−S is the t-channel
string formation cross section, σch is the charge exchange
reaction cross section, σπY is the hyperon (�,�) production
cross section, and σt-R is the t-channel resonance production
cross section.

In the case of meson-meson combination, cross sections
were expressed using the combination

σtotMM(
√

s) = σBW(
√

s) + σel(
√

s) + σt-R(
√

s)

+ σs-S(
√

s) + σt-S(
√

s). (14)

where σtotMM denotes the total meson-meson reaction cross
section.

These cross sections were determined by fitting if exper-
imental data were available; otherwise, the total and elastic
reaction cross sections were calculated using the additive
quark model [22,51,52]. The outgoing angular distribution of
t-channel resonances was expressed as

dσt−R

dt
∝ exp(bt ),

b = 2.5 + 0.7 log(s/2)(
√

s � 2.17 GeV), (15)

where t denotes the Mandelstam variable t . Below 2.17 GeV,
the value of b was taken from [23].

The mass of resonances was sampled randomly from the
relativistic Breit-Wigner distribution written as

A(m2) = 1

π

mR�(m)(
m2 − m2

R

)2 + m2
R�(m)2

, (16)

where mR is the resonance mass, and � is the total decay width
calculated using Eq. (17),

� = �decay channel�ch,

�ch = �0
R

mR

m

(
pCM(m)

pCM(mR )

)2l+1 1.2

1 + 0.2
(

pCM(m)
pCM(mR )

)2l+1 , (17)

where �ch is the decay width of the decay channel, and l and
pCM are the relative angular momentum and relative momen-
tum of the decay products in the decay channel, respectively.
The inverse reaction cross sections were calculated based on
the extended detailed balance [53]. The cross sections were
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calculated as

dσinv

d�
= (2S1 + 1)(2S2 + 1)

(2S3 + 1)(2S4 + 1)

p2
12

p2
34

dσ

d�
, (18)

where σinv is the inverse reaction cross section, Si denotes the
spin of the ith particle, pij is the CM momentum of particles i
and j , and σ is the corresponding resonance production cross
section. Particles 1 and 2 are those before collision, whereas
particles 3 and 4 are those after collision. The resonance
production cross sections subtracted from the inelastic cross
section leave the string production cross sections. This be-
comes significant above 4.5, 3, and 2 GeV for baryon-baryon,
baryon-meson, and meson-meson combinations, respectively.
PYTHIA [54] was used to simulate the decay of strings
into particles. The time, distance, energy, and momentum of
collisions were calculated in the CM frame of the colliding
particles. The produced resonances underwent decay during
propagation. The partial decay widths of all possible decay
channels were calculated, and one of the channels was sampled
randomly. Both decays and collisions were Pauli-blocked if
the phase space of the final state was occupied. To calculate
the blocking probability, the phase-space occupation factor
at the final states of the reaction products was calculated by
Eq. (19),

pi,j = [1 − f (ri, pi)][1 − f (rj, pj)],

f (rk, pk ) =
∑
l �=k

8 exp

(
− (rk − rl)2

2L
− 2L(pk − pl)2

h̄2

)
,

(19)

where pi,j is the probability that the reaction is not Pauli-
blocked, i and j are the particle ID numbers, 	rn is the spatial
coordinate of the nth particle, 	pn is the momentum of the nth
particle, and L is the width of the wave packet (2 fm2). In the
second equation, summation was calculated over the particles
with the same isospin.

C. Finalization

After 100 fm/c of time evolution all resonances decayed,
and neighboring nucleons were bound to each other to form
clusters. The nucleon pairs that satisfied the following condi-
tions were bound:

(i) the distance in their CM frame was less than 4 fm, and
(ii) the difference in momentum was less than the local

Fermi momentum calculated as

pF =
(

3π2

2

ρ1 + ρ2

2

)1/3

h̄c, (20)

where ρ1 and ρ2 are the nucleon density at the nucleon posi-
tions. Binding of particles other than nucleons (i.e., formation
of hypernuclei) was not considered.

Translational motion of the clusters was calculated by
summing the momentum of the bound nucleons. The internal
energy was obtained by summing the kinetic energy of nucle-
ons in the nucleus rest frame. The binding energy of the nucleus
was calculated based on its isotopic identity. The excitation

energy of the nucleus Eex was obtained by the equation

Eex =
∑

i

(√
p2

i + m2
i + 2m2

i 〈V̂i〉i − mi

) + Ebin, (21)

where Ebin denotes the binding energy of the nucleus in the
ground state. If clusters with mass numbers lower than 5 had an
excitation energy lower than their particle separation energies,
the excitation energy was assumed to be 0 because such
clusters do not have bound excitation states. When clusters with
excitation energies lower than [−0.2 × mass number (MeV)]
were produced, the reaction event was rejected and the simu-
lation was run afresh with the same impact parameter. If the
excitation energy of a cluster was negative but higher than
[−0.2 × mass number (MeV)], its excitation energies were
overwritten by 0.

After clusterization, the sum of the rest mass (in the case of
clusters, the excitation energy was excluded), and the kinetic
energy of all particles (Eend) were calculated and compared
with those at the beginning of the reaction (Eini). The sum of
the excitation energies of all clusters at the end of the reaction
(Eex-s) was calculated as well. If Eend was lower than Eini

or equal to Eini, the excitation energies of all clusters were
scaled up by (Eini − Eend )/Eex-s to satisfy energy conservation.
If Eend was higher than Eini, the reaction simulation was
rejected and started afresh by conserving the impact parameter,
except for the reactions that satisfied either of the following
conditions:

(i) the number of particles in the final state is more than
100, and

(ii)
√

s − (rest mass) is larger than 200 GeV.

Because the local potential calculated in the previous time
step was used to calculate the motion in the next time step and
the equation of motion was derived using approximations, error
was accumulated in every time step. Therefore the total energy
fluctuated and deviated from the initial energy. This trend
was particularly significant for energetic collisions, in which
numerous particles were generated and interacted with each
other. Therefore, in the case where the above two conditions
were satisfied and the total energy exceeded the initial energy
at the end of reaction, the momenta of all particles were
gradually scaled down in the CM frame (typically around
0.01%) until energy conservation was satisfied. Otherwise,
the reaction simulation was run afresh after conserving the
impact parameter. Alternatively, if the projectile and target did
not lose any nucleons after clusterization and their excitation
energies were lower than their hadronic evaporation thresholds,
the event was rejected because it was not an inelastic reaction
event. The reaction simulation was started afresh by sampling
a new impact parameter.

The residual nuclei that had excitation energy after clus-
terization were deexcited using the generalized evaporation
model (GEM) [55]. The default version of the GEM had a
shell correction, in which the shell energy correction was
calculated as the sum of the proton shell correction and neutron
shell correction [56]. In this study, the isotopic shell energy
correction, given as the KTUY tabulation [57], was used to
reproduce isotopic yields more accurately.

024611-5



T. OGAWA, T. SATO, S. HASHIMOTO, AND K. NIITA PHYSICAL REVIEW C 98, 024611 (2018)

FIG. 2. Impact parameter dependence of the inelastic reaction
probability.

III. RESULTS AND DISCUSSION

A. Stability of ground states and verification
of total reaction cross sections

To confirm the stability of nuclei and obtain the range
of impact parameters within which inelastic reactions oc-
curred, the inelastic reaction probability was calculated by
running the nucleus-nucleus collision simulation by sweeping
the impact parameter from 0. The examined target-projectile
combinations were 12C-12C, 40Ca-40Ca, 12C-56Fe, 12C-208Pb,
and 107Ag-107Ag. Examined projectile incident energies were
4 and 158 A GeV in the laboratory frame. Figure 2 shows
the impact parameter dependence of the inelastic reaction
probability. Here reactions in which more than one nucleon was
removed in the final state or in which the excitation energies
of either the projectile or the target exceeded the emission
threshold of either proton, neutron, or alpha were defined
as inelastic reactions. JAMQMD denotes calculation by the
standard version of JAMQMD, whereas JAMQMD-NR de-
notes calculation based on JAMQMD with the nonrelativistic
equation of motion.

All the plots except Fig. 2(a) show that in JAMQMD-NR,
the reaction probability does not converge to 0 when the impact
parameter is large. In other words, nuclei are unstable and

disintegrate from 20% to 40% owing to the nonrelativistic
equation of motion. Figure 2(a) shows that the nonrelativistic
treatment is valid only when very few nucleons are involved
in the collision, and the incident energy is low. In Fig. 2(j),
the inelastic reaction probability decreases to about 10%, but
this is ascribed mainly to the events in which the total energy
turns negative. Such events are classified as elastic according
to the scheme described in Sec. II C, but they are eventually
attributed to energy conservation failure under nonrelativistic
treatment. Therefore, the Lorentz-covariant equation of motion
is essential to simulate nucleus-nucleus collisions universally.

Using JAMQMD, even in the heaviest combination
(107Ag-107Ag), the reaction probability decreases to 3% at
12 fm. This fact indicates that the self-binding nature of
nuclei is well described by the mean field description and
the initialization of JAMQMD. Stability during time evolu-
tion and frame transformation is essential to inhibit spurious
nucleus-nucleus reactions. In all cases, the impact parameter at
which the inelastic reaction probability decreases to less than
100% is independent of the incident energy. This is probably
because the total nucleon-nucleon reaction cross section is
almost constant in this energy range. For example, the inelastic
reaction probability falls to 97% between 3 and 3.5 fm in the
case of 12C-12C reactions at 4 A GeV. It falls further, to 0%, in
the 6- to 6.5-fm range and is constantly 0 beyond 6.5 fm. At
158 A GeV, the inelastic reaction probability is 95% in the 3-
to 3.5-fm region and 0% in the 5.5- to 6.0-fm region. A similar
trend in which the inelastic reaction probability decreases
from 100% to 0% within about 2 fm is true under the other
conditions.

Based on the systematics obtained from Fig. 2, inelastic re-
actions occur below the impact parameter bmax, parameterized
by the equation

bmax = 1.2 × (
A

1/3
t + A1/3

p

)
(fm), (22)

where At is the target mass number, and Ap is the projectile
mass number.

B. Residual nuclei

The charge distribution of residual nuclei produced by
nucleus-nucleus collisions was calculated to benchmark
JAMQMD. The charge distribution of fragments produced
by bombardment of 197Au with NatC at 10.6 A GeV and
that of fragments produced by bombardment of 28Si with
NatCu at 14.5 A GeV were calculated and they are compared
with the measurements [58,59] in Figs. 3 and 4, respec-
tively. JAMQMD-NR denotes the calculation performed using
JAMQMD with the nonrelativistic equation of motion. In
JAMQMD-NR, the inelastic reaction probability does not
converge to 0; therefore, the impact parameter is truncated at
Eq. (22).

In Fig. 3, the yield increases with an increase in product
charge up to 79 by one order of magnitude owing to peripheral
collisions, whereas the yield is almost constant below 70. Both
trends are well reproduced by JAMQMD. The odd-even effect
is slightly overemphasized but it originates from the statistical
decay phase as opposed to JAMQMD. The underestimation
of yield at Z = 79 can probably be attributed to the absence
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FIG. 3. Charge distribution of fragments produced in
197Au(NatCu,x ) collisions at Elab = 10.6 A GeV.

of the electromagnetic dissociation mechanism. It increases
the cross sections of interactions between high-Z nuclei pairs
at high energy by a few 10 mb. Contrariwise, JAMQMD-NR
overestimates the yield at Z = 78 and 79 because of spurious
disintegration.

In Fig. 4, the experimental data without the contribution of
electromagnetic dissociation was compared with the calcula-
tion results. In this case, the calculated cross sections agree with
the measurements even at Z = 13. The calculation shows that
the products at Z = 12 and 13 are about twice as abundant
as the lighter products, as seen in the experimental result.
It should be noted that the odd-even effect, which is shown
in Fig. 4, attributed to the statistical decay phase is in good
agreement between the simulation and the experiment in this
case. The yield fluctuation is attributed to the q value of proton
emission, which is dependent on the charge number and shell
energy correction of the level density parameter. When shell
energy correction data were taken from Cook et al. [56], the
yield distribution became inaccurate (not shown). Therefore it

FIG. 4. Charge distribution of fragments produced in
28Si(NatCu,x) collisions at Elab = 14.5 A GeV.

FIG. 5. Charge distribution of fragments produced in
208Pb(NatC,x) collisions at Elab = 158 A GeV.

is important to use accurate shell energy correction data (the
KTUY formula in this case) to reproduce the odd-even effect
of the charge distribution.

JAMQMD-NR underestimates the yield at Z = 12 and
13 because of the impact parameter truncation. The impact
parameter was cut at 8.63 fm but one- or two-nucleon knockout
reactions occurred at a larger impact parameter, at which true
reactions and spurious reactions could not be distinguished.
The results of JAMQMD-NR in Figs. 3 and 4 indicate that the
nonrelativistic version cannot predict the fragment yields re-
gardless of the impact parameter range. Accurate treatment of
the peripheral collisions by JAMQMD is crucial for simulation
of fragment yields.

As an example of ultrarelativistic energy reactions, the
charge distributions of fragments produced by the interaction
of 208Pb with NatC and NatCu at 158 A GeV are shown in
Figs. 5 and 6, respectively. Experimental data were taken from
[60,61]. They show that production of nuclei from light to
heavy is well reproduced by JAMQMD, except for reactions in
which one or two nucleons are lost, which were underestimated
owing to the absence of the electromagnetic dissociation
mechanism. According to [60,61], the data of Scheidenberger
is more reliable than those of Cecchini at high z, the fragment
yield increases at high Z by a factor of 10, similarly to
Fig. 3. This trend is accurately reproduced by JAMQMD,
while JAMQMD-NR systematically overestimates the heavy
fragments beyond Z = 65 in Fig. 5 and the calculated yield

FIG. 6. Charge distribution of fragments produced in
208Pb(NatCu,x) collisions at Elab = 158 A GeV.
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FIG. 7. Transverse mass distribution of p+, π−, π+, d , K−, and K+ in central 28Si(Al,x) collisions. The beam momentum (plab) is
14.6 A GeV/c. Symbols and lines are experimental data and calculation by JAMQMD, respectively. For protons the rapidity is 0.3–0.5 (top
spectrum) to 1.9–2.1 (bottom spectrum). The interval is 0.2. Each successive spectrum is scaled down by 10. For pions the rapidity is 0.5–0.7
(top spectrum) to 2.7–2.9 (bottom spectrum). The interval is 0.2. Each successive spectrum is scaled down by 10. For deuterons the rapidity is
0.4–0.6 (top spectrum) to 1.0–1.2 (bottom spectrum). The interval is 0.2. Each successive spectrum is scaled down by 100. For positive kaons
the rapidity is 0.4–0.8 (top spectrum) to 2.0–2.4 (bottom spectrum). The interval is 0.4. Each successive spectrum is scaled down by 100. For
negative kaons the rapidity is 0.8–1.2 (top spectrum) to 1.6–2.0 (bottom spectrum). The interval is 0.4. Each successive spectrum is scaled down
by 100.

drops at Z = 79. In addition, JAMQMD-NR underestimates
light fragments with charge numbers less than 20.

Reproduction of the fragment yields discussed above in-
dicates that the following perspectives of JAMQMD are well
described: initialization of nuclei, total nucleon-nucleon scat-
tering cross sections, binding force between nucleons in the
spectator part of nuclei during time evolution, and clusteriza-
tion in the finalization phase. The nuclei lose a few to a few

tens of nucleons in the statistical decay phase, therefore the
well-reproduced general trend is attributed to the performance
of JAMQMD.

C. Secondary particle production

The production of secondary particles in nucleus-nucleus
collisions was benchmarked against the experimental data.
The transverse mass distribution of baryons and mesons
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FIG. 8. Same as Fig. 7 but in peripheral 28Si(Al,x) collisions. For protons the rapidity is 0.3–0.5 (top spectrum) to 2.1–2.3 (bottom spectrum).
The interval is 0.2. Each successive spectrum is scaled down by 10. For pions the rapidity is 0.5–0.7 (top spectrum) to 2.7–2.9 (bottom spectrum).
The interval is 0.2. Each successive spectrum is scaled down by 10. For deuterons the rapidity is 0.3–0.5 (top spectrum) to 0.9–1.1 (bottom
spectrum). The interval is 0.2. Each successive spectrum is scaled down by 100. For positive kaons the rapidity is 0.6–1.0 (top spectrum) to
1.8–2.2 (bottom spectrum). The interval is 0.4. Each successive spectrum is scaled down by 100. For negative kaons the rapidity is 0.8–1.2 (top
spectrum) to 1.6–2.0 (bottom spectrum). The interval is 0.4. Each successive spectrum is scaled down by 100.

in midrapidity in various nucleus-nucleus combinations was
calculated. Figures 7–10 show comparisons of the transverse
mass distributions of protons, π+, π−, K+, K−, and deuterons
[62,63]. Events were accepted as central collisions if the
particle multiplicity was greater than 62 (Al target) or 154
(Au target). If the summation of the kinetic energies of all the
particles, the rest mass of short-lived particles, and the energy
released by annihilation of antiparticles within 0–24.6 mrad
was greater than 250 GeV, events were accepted as peripheral
collisions. Pions originate from the decay of resonances or
fragmentation of strings, which tend to emit particles in midra-
pidity. Protons, by contrast, are produced by the kick-out from

projectile or target nuclei. The absolute yield and transverse
mass slope are well reproduced by JAMQMD in Figs. 7–9. This
indicates that the fragmentation of strings, decay of resonances,
and disintegration of target and projectile nuclei are properly
described by JAMQMD. In Fig. 10, JAMQMD underestimates
the absolute yields of protons and pions, but the slope gradients
are in good agreement.

The good agreement between calculated and measured
deuteron yields is particularly important because clusterization
of nucleons is one of the most unique aspects of QMD in
comparison with other nucleus-nucleus collision event gen-
erators. Deuterons were produced by the default nucleon-
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FIG. 9. Same as Fig. 7 but in central 28Si(Au,x) collisions. For protons the rapidity is 0.4–0.6 (top spectrum) to 2.0–2.2 (bottom spectrum).
The interval is 0.2. Each successive spectrum is scaled down by 10. For pions the rapidity is 0.6–0.8 (top spectrum) to 2.6–2.8 (bottom spectrum).
The interval is 0.2. Each successive spectrum is scaled down by 10. For deuterons the rapidity is 0.4–0.6 (top spectrum) to 1.4–1.6 (bottom
spectrum). The interval is 0.2. Each successive spectrum is scaled down by 100. For positive kaons the rapidity is 0.6–0.8 (top spectrum) to
2.0–2.2 (bottom spectrum). The interval is 0.2. Each successive spectrum is scaled down by 100. For negative kaons the rapidity is 0.7–1.1 (top
spectrum) to 1.9–2.3 (bottom spectrum). The interval is 0.4. Each successive spectrum is scaled down by 100.

clusterization scheme based on relative distances and relative
momenta as explained in Sec. II, and therefore the features
of deuterons such as low binding energy were not considered.
This fact suggests that midrapidity deuteron production in en-
ergetic nucleus-nucleus collisions can be well described based
solely on the distances of neutron-proton pairs in the phase
space.

To verify JAMQMD at higher nuclear densities, experi-
mental data on Pb(Pb,x)X reactions at 20, 40, 80, and 158
A GeV were taken from the literature and compared with the
calculation performed using JAMQMD. Figures 11–15 show

comparisons of the transverse mass distribution of proton,
antiproton, π+, π−, K+ and K−. In this comparison, the
incident energy varies from the resonance regime to the
string formation regime, but meson yields are reproduced well
regardless of the incident energy. The proton yield, attributed
to kick-out from the nuclei, is stably well reproduced. In
contrast to the discussion on the residual nuclei in Sec. III B,
the agreement of particle yields indicates reasonable treatment
of the following aspects: angular distribution of the nucleon-
nucleon scattering cross section, energy dependence of the
resonance production cross section, mass distribution and
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FIG. 10. The same as Fig. 7 but in peripheral 28Si(Au,x) collisions. For protons the rapidity is 0.4–0.6 (top spectrum) to 2.0–2.2 (bottom
spectrum). The interval is 0.2. Each successive spectrum is scaled down by 10. For pions the rapidity is 0.6–0.8 (top spectrum) to 2.6–2.8
(bottom spectrum). The interval is 0.2. Each successive spectrum is scaled down by 10. For deuterons the rapidity is 0.4–0.6 (top spectrum) to
1.0–1.2 (bottom spectrum). The interval is 0.2. Each successive spectrum is scaled down by 100. For positive kaons the rapidity is 0.7–1.1 (top
spectrum) to 1.9–2.3 (bottom spectrum). The interval is 0.4. Each successive spectrum is scaled down by 100. For negative kaons the rapidity
is 1.0–1.6 (top spectrum) to 1.6–2.2 (bottom spectrum). The interval is 0.6. Each successive spectrum is scaled down by 100.

decay of the resonances, string formation cross section, and
fragmentation mechanism of strings. In addition, accurate
deuteron production is supported by the clusterization and the
mean-field interaction between proton-neutron pairs.

Figure 16 shows the comparison of the inverse slope
parameter T as a function of the incident energy. The inverse
slope parameter T was obtained by fitting the transverse mass
distribution by an exponential decline function, Exp[−mt/T ].
The inverse slope parameter calculated by JAMQMD was
around 200 MeV and was independent of the incident energy.
This trend agrees with that measured in Pb-Pb collisions,

which is distinctly different from that in p + p collisions
[67]. Simulation by reaction models such as URQMD [22],
HSD [68], GiBUU [30], and the hydrodynamic model [69]
was attempted to reproduce the inverse slope parameters. The
transition to QGP is not included in all these models but the hy-
drodynamic model [69] succeeded in reproducing the inverse
slope parameter. As JAMQMD is a hadronic reaction model
based on incoherent two-body interaction, JAMQMD cannot
consider the transition to QGP; but the temperature plateau
probably attributable to the system volume expansion, which
is not a direct consequence of QGP, was well reproduced. In
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FIG. 11. Proton transverse mass distribution in central Pb-Pb
collisions at 20, 40, 80, and 158 A GeV. Symbols are experimental
data taken from [64]. Lines are result of calculations performed by
JAMQMD. Each successive spectrum is scaled down by 2.

this way, JAMQMD can reproduce various nucleus-nucleus
reactions unless a QGP phase transition takes effect.

IV. CONCLUSION

A quantum molecular dynamics model, JAMQMD, com-
posed of binary reactions of elastic, resonant, and nonresonant
channels, a relativistic equation of motion, interaction by mean
field, and clusterization in the final state, was developed in

FIG. 12. Same as Fig. 11 but for antiprotons [64].

FIG. 13. Same as Fig. 11 but for π−. Experimental data are taken
from [65,66]. Each successive spectrum is scaled up by 10.

this study. JAMQMD can reproduce various cross sections
of nucleus-nucleus collisions from a few to a few hundred
A GeV. By the relativistic equation of motion, nuclei remain
stable during a typical reaction period of 100 fm/c. Otherwise,

FIG. 14. Same as Fig. 11 but for K−. Experimental data are taken
from [65,66].
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FIG. 15. Same as Fig. 11 but for K+. Experimental data are taken
from [65,66].

FIG. 16. Inverse slope parameters of π−, K−, and K+ measured
in experiments [65,66] and calculated by JAMQMD.

nuclei undergo spurious excitation or disintegration up to 40%
typically.

This model, JAMQMD, was benchmarked against the mea-
sured fragment charge distribution and the measured transverse
mass distribution of secondary particles in midrapidity in
the energy range from a few to a few hundred A GeV. The
calculated fragment mass distributions agree well with the
experimental results for both light and heavy targets. The
fragment mass distribution generally consists of a flat yield
of light fragments attributed to deep collisions and large
production cross sections for heavy fragments. The calculated
results reproduced the cross sections in both regions. This
indicates that JAMQMD can be used to reasonably simulate
the knockout of nucleons and the binding of residues. With
the nonrelativistic equation of motion, the yields of heavy
fragments are underestimated or overestimated depending on
the colliding nuclei; therefore, description of the equation
of motion is crucial for production of large fragments at-
tributed to peripheral collisions. The calculated transverse
mass distributions of secondary particles were benchmarked
against experimental data from the literature as well. Except
for the absolute yields in 28Si(Au,x) peripheral collisions, both
the transverse mass slope and the absolute yields were well
reproduced. Importantly, deuteron yields were well reproduced
by the general clusterization scheme without employing any
specialized mechanism such as coalescence. The good agree-
ment of meson yields indicates reasonable formation and decay
of resonance and strings. The accurate proton yield is attributed
to the nucleon-nucleon scattering angle distribution.

This model will be useful for exclusive simulation of
relativistic nucleus-nucleus collisions, which is important
for planning heavy-ion physics experiments, and studies on
galactic cosmic-ray transport. In addition to baryons and
mesons, prompt gamma-ray emission can be simulated by
combining JAMQMD with a statistical decay model and a
gamma de-excitation model because the excitation energy and
classical angular momentum of fragments are calculated on
an event-by-event basis. JAMQMD can be further extended
to simulate the phenomena observed in high-energy physics
experiments such as the “strange horn,” which appears in the
(K+)/(π+) ratio excitation function [66]. JAMQMD can re-
produce the measured (K−)/(π−) and (K+)/(π+) ratios except
the peak around

√
sNN = 8 GeV; therefore, implementation of

additional mechanisms responsible for the strange horn (e.g.,
the long-lived fireball [70] and consideration of high mass res-
onances [71]) is one of the best candidates for future upgrades.

ACKNOWLEDGMENTS

We wish to thank Dr. Davide Mancusi for providing the
source code of R-JQMD. T.O. acknowledges Dr. T. Furuta, Dr.
P. Gubler, and Dr. T. Maruyama, of the Japan Atomic Energy
Agency, for useful advice on hadronic reactions at high density
and high energy. We express gratitude to the operation team of
the Center for Computational Science and E-systems (CCSE)
at the Japan Atomic Energy Agency. Monte Carlo simulations
reported in this paper were executed on a PC-cluster system of
CCSE. This work was partly supported by JSPS KAKENHI
Grant-in-Aid for Young Scientists B No. 26790072.

024611-13



T. OGAWA, T. SATO, S. HASHIMOTO, AND K. NIITA PHYSICAL REVIEW C 98, 024611 (2018)

[1] G. Giuliani, H. Zheng, and A. Bonasera, The many facets of
the (non-relativistic) nuclear equation of state, Prog. Part. Nucl.
Phys. 76, 116 (2014).

[2] J. Pochodzalla, The search for the liquid-gas phase transition in
nuclei, Prog. Part. Nucl. Phys. 39, 443 (1997).

[3] V. Baran, M. Colonna, V. Greco, and M. Di Toro, Reaction
dynamics with exotic nuclei, Phys. Rep. 410, 335 (2005).

[4] P. F. Michelson, W. B. Atwood, and S. Ritz, Fermi gamma-ray
space telescope: High-energy results from the first year, Rep.
Prog. Phys. 73, 074901 (2010).

[5] H. Tokuno, T. Abu-Zayyad, R. Aida, M. Allen, R. Azuma, E.
Barcikowski, J. W. Belz, T. Benno, D. R. Bergman, S. A. Blake
et al., The status of the telescope array experiment, J. Phys.:
Conf. Ser. 293, 012035 (2011).

[6] H. Flocard, S. E. Koonin, and M. S. Weiss, Three-dimensional
time-dependent Hartree-Fock calculations: Application to 16O +
16O collisions, Phys. Rev. C 17, 1682 (1978).

[7] K. T. R. Davies and S. E. Koonin, Skyrme-force time-dependent
Hartree-Fock calculations with axial symmetry, Phys. Rev. C
23, 2042 (1981).

[8] C. I. Pardi and P. D. Stevenson, Continuum time-dependent
Hartree-Fock method for giant resonances in spherical nuclei,
Phys. Rev. C 87, 014330 (2013).

[9] K. T. R. Davies, K. R. Sandhya Devi, and M. R. Strayer, Fusion
behavior in time-dependent Hartree-Fock calculations of 86Kr +
139La and 84Kr + 209Bi collisions, Phys. Rev. C 24, 2576 (1981).

[10] K. R. Sandhya Devi, M. R. Strayer, J. M. Irvine, and K. T. R.
Davies, Time-dependent Hartree-Fock collisions of 16O + 93Nb
at Elab = 204 MeV, Phys. Rev. C 23, 1064 (1981).

[11] S. Faidi and J. M. Irvine, TDHF studies of heavy-ion collisions
leading to the compound nucleus 56Ni, J. Phys. G 9, 409 (1983).

[12] W. Bauhoff, E. Caurier, and B. Grammaticos, The time-
dependent cluster model applied to the description of heavy-
ion collisions, Proceedings of the Topical Meeting on Nuclear
Fluid Dynamics, Trieste, Italy, 1982, IAEA Rep. No.: IAEA-
SMR–108 (International Atomic Energy Agency (IAEA), 1983),
pp. 167–172.

[13] B. G. Giraud, An introduction to the time-dependent Hartree-
Fock theory in nuclear physics, in Bifurcation Phenomena in
Mathematical Physics and Related Topics (Springer-Verlag,
Berlin, 1980), pp. 555–583.

[14] J. Aichelin and H. Stocker, Quantum molecular dynamics—A
novel approach to N-body correlations in heavy-ion collisions,
Phys. Lett. B 176, 14 (1986).

[15] J. Su, F.-S. Zhang, and B.-A. Bian, Odd-even effect in heavy-ion
collisions at intermediate energies, Phys. Rev. C 83, 014608
(2011).

[16] M. Papa, T. Maruyama, and A. Bonasera, Constrained molecular
dynamics approach to fermionic systems, Phys. Rev. C 64,
024612 (2001).

[17] M. Papa, Cluster production and nuclear dynamics, J. Phys.:
Conf. Ser. 863, 012056 (2017).

[18] Y. Zhang and Z. Li, Elliptic flow and system size dependence
of transition energies at intermediate energies, Phys. Rev. C 74,
014602 (2006).

[19] Z.-Q. Feng, Momentum dependence of the symmetry potential
and its influence on nuclear reactions, Phys. Rev. C 84, 024610
(2011).

[20] X. G. Cao, G. Q. Zhang, X. Z. Cai, Y. G. Ma, W. Guo, J. G.
Chen, W. D. Tian, D. Q. Fang, and H. W. Wang, Roles of
deformation and orientation in heavy-ion collisions induced by

light deformed nuclei at intermediate energy, Phys. Rev. C 81,
061603 (2010).

[21] Q. Li, Z. Li, S. Soff, M. Bleicher, and H. Stöcker, Probing the
density dependence of the symmetry potential at low and high
densities, Phys. Rev. C 72, 034613 (2005).

[22] S. A. Bass, M. Belkacem, M. Bleicher, M. Brandstetter, L.
Bravina, C. Ernst, L. Gerland, M. Hofmann, S. Hofmann, J.
Konopka, G. Mao, L. Neise, S. Soff, C. Spieles, H. Weber, L. A.
Winckelmann, H. Stocker, W. Greiner, Ch. Hartnack, J. Aichelin,
and N. Amelin, Microscopic models for ultrarelativistic heavy
ion collisions, Prog. Part. Nucl. Phys. 41, 255 (1998).

[23] K. Niita, S. Chiba, T. Maruyama, T. Maruyama, H. Takada, T.
Fukahori, Y. Nakahara, and A. Iwamoto, Analysis of the (N, xN ′)
reactions by quantum molecular dynamics plus statistical decay
model, Phys. Rev. C 52, 2620 (1995).

[24] Y. Nara, N. Otuka, A. Ohnishi, K. Niita, and S. Chiba, Relativistic
nuclear collisions at 10A GeV energies from p + Be to Au +
Au with the hadronic cascade model, Phys. Rev. C 61, 024901
(1999).

[25] N. Ikeno, A. Ono, Y. Nara, and A. Ohnishi, Probing neutron-
proton dynamics by pions, Phys. Rev. C 93, 044612 (2016).

[26] S. Leray, D. Mancusi, P. Kaitaniemi, J. C. David, A. Boudard,
B. Braunn, and J. Cugnon, Extension of the Liege intra nuclear
cascade model to light ion-induced collisions for medical and
space applications, J. Phys.: Conf. Ser. 420, 012065 (2013).

[27] K. K. Gudima, S. G. Mashnik, and A. J. Sierk, User Manual
for the Code LAQGSM, Los Alamos National Laboratory
Report LA-UR(01):6804 (Los Alamos National Laboratory, Los
Alamos, NM, 2001).

[28] S. G. Mashnik, A. J. Sierk, K. K. Gudima, and M. I. Baznat,
CEM03 and LAQGSM03—New modeling tools for nuclear
applications, J. Phys.: Conf. Ser. 41, 340 (2006).

[29] J. M. Torres-Rincon, Boltzmann-Uehling-Uhlenbeck Equation
(Springer International, Cham, Switzerland, 2014).

[30] T. Gaitanos, A. B. Larionov, H. Lenske, and U. Mosel, Breathing
mode in an improved transport approach, Phys. Rev. C 81,
054316 (2010).

[31] S. Mallik, S. Das Gupta, and G. Chaudhuri, Event simulations in
a transport model for intermediate energy heavy-ion collisions:
Applications to multiplicity distributions, Phys. Rev. C 91,
034616 (2015).

[32] B.-A. Li, L.-W. Chen, and C. M. Ko, Recent progress and new
challenges in isospin physics with heavy-ion reactions, Phys.
Rep. 464, 113 (2008).

[33] P. Danielewicz, Determination of the mean-field momentum-
dependence using elliptic flow, Nucl. Phys. A 673, 375 (2000).

[34] T. Song and C. M. Ko, Modifications of the pion-production
threshold in the nuclear medium in heavy-ion collisions and the
nuclear symmetry energy, Phys. Rev. C 91, 014901 (2015).

[35] J. Weil, V. Steinberg, J. Staudenmaier, L. G. Pang, D. Oliiny-
chenko, J. Mohs, M. Kretz, T. Kehrenberg, A. Goldschmidt,
B. Bäuchle, J. Auvinen, M. Attems, and H. Petersen, Particle
production and equilibrium properties within a new hadron
transport approach for heavy-ion collisions, Phys. Rev. C 94,
054905 (2016).

[36] M. Colonna, Fluctuations and Symmetry Energy in Nu-
clear Fragmentation Dynamics, Phys. Rev. Lett. 110, 042701
(2013).

[37] S. Roesler, R. Engel, and J. Ranft, The Monte Carlo event
generator DPMJET-III, in Advanced Monte Carlo for Radiation
Physics, Particle Transport Simulation and Applications, edited

024611-14

https://doi.org/10.1016/j.ppnp.2014.01.003
https://doi.org/10.1016/j.ppnp.2014.01.003
https://doi.org/10.1016/j.ppnp.2014.01.003
https://doi.org/10.1016/j.ppnp.2014.01.003
https://doi.org/10.1016/S0146-6410(97)00048-3
https://doi.org/10.1016/S0146-6410(97)00048-3
https://doi.org/10.1016/S0146-6410(97)00048-3
https://doi.org/10.1016/S0146-6410(97)00048-3
https://doi.org/10.1016/j.physrep.2004.12.004
https://doi.org/10.1016/j.physrep.2004.12.004
https://doi.org/10.1016/j.physrep.2004.12.004
https://doi.org/10.1016/j.physrep.2004.12.004
https://doi.org/10.1088/0034-4885/73/7/074901
https://doi.org/10.1088/0034-4885/73/7/074901
https://doi.org/10.1088/0034-4885/73/7/074901
https://doi.org/10.1088/0034-4885/73/7/074901
https://doi.org/10.1088/1742-6596/293/1/012035
https://doi.org/10.1088/1742-6596/293/1/012035
https://doi.org/10.1088/1742-6596/293/1/012035
https://doi.org/10.1088/1742-6596/293/1/012035
https://doi.org/10.1103/PhysRevC.17.1682
https://doi.org/10.1103/PhysRevC.17.1682
https://doi.org/10.1103/PhysRevC.17.1682
https://doi.org/10.1103/PhysRevC.17.1682
https://doi.org/10.1103/PhysRevC.23.2042
https://doi.org/10.1103/PhysRevC.23.2042
https://doi.org/10.1103/PhysRevC.23.2042
https://doi.org/10.1103/PhysRevC.23.2042
https://doi.org/10.1103/PhysRevC.87.014330
https://doi.org/10.1103/PhysRevC.87.014330
https://doi.org/10.1103/PhysRevC.87.014330
https://doi.org/10.1103/PhysRevC.87.014330
https://doi.org/10.1103/PhysRevC.24.2576
https://doi.org/10.1103/PhysRevC.24.2576
https://doi.org/10.1103/PhysRevC.24.2576
https://doi.org/10.1103/PhysRevC.24.2576
https://doi.org/10.1103/PhysRevC.23.1064
https://doi.org/10.1103/PhysRevC.23.1064
https://doi.org/10.1103/PhysRevC.23.1064
https://doi.org/10.1103/PhysRevC.23.1064
https://doi.org/10.1088/0305-4616/9/4/008
https://doi.org/10.1088/0305-4616/9/4/008
https://doi.org/10.1088/0305-4616/9/4/008
https://doi.org/10.1088/0305-4616/9/4/008
https://doi.org/10.1016/0370-2693(86)90916-0
https://doi.org/10.1016/0370-2693(86)90916-0
https://doi.org/10.1016/0370-2693(86)90916-0
https://doi.org/10.1016/0370-2693(86)90916-0
https://doi.org/10.1103/PhysRevC.83.014608
https://doi.org/10.1103/PhysRevC.83.014608
https://doi.org/10.1103/PhysRevC.83.014608
https://doi.org/10.1103/PhysRevC.83.014608
https://doi.org/10.1103/PhysRevC.64.024612
https://doi.org/10.1103/PhysRevC.64.024612
https://doi.org/10.1103/PhysRevC.64.024612
https://doi.org/10.1103/PhysRevC.64.024612
https://doi.org/10.1088/1742-6596/863/1/012056
https://doi.org/10.1088/1742-6596/863/1/012056
https://doi.org/10.1088/1742-6596/863/1/012056
https://doi.org/10.1088/1742-6596/863/1/012056
https://doi.org/10.1103/PhysRevC.74.014602
https://doi.org/10.1103/PhysRevC.74.014602
https://doi.org/10.1103/PhysRevC.74.014602
https://doi.org/10.1103/PhysRevC.74.014602
https://doi.org/10.1103/PhysRevC.84.024610
https://doi.org/10.1103/PhysRevC.84.024610
https://doi.org/10.1103/PhysRevC.84.024610
https://doi.org/10.1103/PhysRevC.84.024610
https://doi.org/10.1103/PhysRevC.81.061603
https://doi.org/10.1103/PhysRevC.81.061603
https://doi.org/10.1103/PhysRevC.81.061603
https://doi.org/10.1103/PhysRevC.81.061603
https://doi.org/10.1103/PhysRevC.72.034613
https://doi.org/10.1103/PhysRevC.72.034613
https://doi.org/10.1103/PhysRevC.72.034613
https://doi.org/10.1103/PhysRevC.72.034613
https://doi.org/10.1016/S0146-6410(98)00058-1
https://doi.org/10.1016/S0146-6410(98)00058-1
https://doi.org/10.1016/S0146-6410(98)00058-1
https://doi.org/10.1016/S0146-6410(98)00058-1
https://doi.org/10.1103/PhysRevC.52.2620
https://doi.org/10.1103/PhysRevC.52.2620
https://doi.org/10.1103/PhysRevC.52.2620
https://doi.org/10.1103/PhysRevC.52.2620
https://doi.org/10.1103/PhysRevC.61.024901
https://doi.org/10.1103/PhysRevC.61.024901
https://doi.org/10.1103/PhysRevC.61.024901
https://doi.org/10.1103/PhysRevC.61.024901
https://doi.org/10.1103/PhysRevC.93.044612
https://doi.org/10.1103/PhysRevC.93.044612
https://doi.org/10.1103/PhysRevC.93.044612
https://doi.org/10.1103/PhysRevC.93.044612
https://doi.org/10.1088/1742-6596/420/1/012065
https://doi.org/10.1088/1742-6596/420/1/012065
https://doi.org/10.1088/1742-6596/420/1/012065
https://doi.org/10.1088/1742-6596/420/1/012065
https://doi.org/10.1088/1742-6596/41/1/037
https://doi.org/10.1088/1742-6596/41/1/037
https://doi.org/10.1088/1742-6596/41/1/037
https://doi.org/10.1088/1742-6596/41/1/037
https://doi.org/10.1103/PhysRevC.81.054316
https://doi.org/10.1103/PhysRevC.81.054316
https://doi.org/10.1103/PhysRevC.81.054316
https://doi.org/10.1103/PhysRevC.81.054316
https://doi.org/10.1103/PhysRevC.91.034616
https://doi.org/10.1103/PhysRevC.91.034616
https://doi.org/10.1103/PhysRevC.91.034616
https://doi.org/10.1103/PhysRevC.91.034616
https://doi.org/10.1016/j.physrep.2008.04.005
https://doi.org/10.1016/j.physrep.2008.04.005
https://doi.org/10.1016/j.physrep.2008.04.005
https://doi.org/10.1016/j.physrep.2008.04.005
https://doi.org/10.1016/S0375-9474(00)00083-X
https://doi.org/10.1016/S0375-9474(00)00083-X
https://doi.org/10.1016/S0375-9474(00)00083-X
https://doi.org/10.1016/S0375-9474(00)00083-X
https://doi.org/10.1103/PhysRevC.91.014901
https://doi.org/10.1103/PhysRevC.91.014901
https://doi.org/10.1103/PhysRevC.91.014901
https://doi.org/10.1103/PhysRevC.91.014901
https://doi.org/10.1103/PhysRevC.94.054905
https://doi.org/10.1103/PhysRevC.94.054905
https://doi.org/10.1103/PhysRevC.94.054905
https://doi.org/10.1103/PhysRevC.94.054905
https://doi.org/10.1103/PhysRevLett.110.042701
https://doi.org/10.1103/PhysRevLett.110.042701
https://doi.org/10.1103/PhysRevLett.110.042701
https://doi.org/10.1103/PhysRevLett.110.042701


CLUSTER FORMATION IN RELATIVISTIC NUCLEUS- … PHYSICAL REVIEW C 98, 024611 (2018)

by A. Kling, F. J. C. Barao, M. Nakagawa, L. Tavora, and P. Vaz
(Springer-Verlag, Berlin, 2001), pp. 1033–1038.

[38] R. Engel and J. Ranft, Hadronic photon-photon interactions at
high energies, Phys. Rev. D 54, 4244 (1996).

[39] T. Sjostrand and M. Bengtsson, The Lund Monte Carlo for
jet fragmentation and e+ e− physics—Jetset version 6.3—An
update, Comput. Phys. Commun. 43, 367 (1987).

[40] M. D. Cozma, Y. Leifels, W. Trautmann, Q. Li, and P. Russotto,
Toward a model-independent constraint of the high-density
dependence of the symmetry energy, Phys. Rev. C 88, 044912
(2013).

[41] N. Wang, Z. Li, and X. Wu, Improved quantum molecular
dynamics model and its applications to fusion reaction near
barrier, Phys. Rev. C 65, 064608 (2002).

[42] H. Sorge, Flavor production in Pb(160a GeV) on Pb collisions:
Effect of color ropes and hadronic rescattering, Phys. Rev. C 52,
3291 (1995).

[43] H. Feldmeier and J. Schnack, Fermionic molecular dynamics,
Prog. Part. Nucl. Phys. 39, 393 (1997).

[44] A. Ono, H. Horiuchi, T. Maruyama, and A. Ohnishi, Fragment
Formation Studied with Antisymmetrized Version of Molecular
Dynamics with Two-Nucleon Collisions, Phys. Rev. Lett. 68,
2898 (1992).
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