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Exploration of the energy dependence of proton nonlocal optical potentials
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Background: Given the importance of including nonlocality in the effective interactions in reaction models, a
recent phenomenological study focusing on neutron-target nonlocal optical potentials suggests the need for the
inclusion of explicit energy dependence [Lovell et al., Phys. Rev. C 96, 051601 (2017)].
Purpose: In this work, we inspect whether the same is true for proton nonlocal optical potentials.
Method: Similarly to the earlier work, we perform a χ2 analysis of proton elastic scattering data on 40Ca, 90Zr, and
208Pb at energies of E ≈ 10–45 MeV, assuming the Tian, Pang, and Ma nonlocal form for the optical potential.
We introduce energy and asymmetry dependencies in the imaginary part of the potential and refit the data to
obtain a global parametrization.
Results: No matter which starting point is used, or whether we include backward angles in the fitting procedure,
our results show the emergence of a strong energy dependence in the potential. We also show that while our
parametrization represents only a modest improvement over the original energy-independent potential for those
cases included in the fit, our new energy-dependent potential extrapolates much better for nuclei not included in
the fit and for energies above those included.
Conclusions: As for the neutron case, we conclude that nonlocality alone cannot provide a complete description
of proton elastic scattering data and that a significant energy dependence is required.
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I. INTRODUCTION

Reactions with rare isotope beams have revived an im-
portant discussion on the best form to describe the effective
interaction between a nucleon and a complex many-body
nucleus. From the many-body formulation of the problem it is
understood that the effective nucleon-target potential should be
nonlocal but the form of the nonlocality may differ significantly
based on the physics it is representing [1–3].

From earlier works (e.g., [4,5]) to those in recent times
(e.g., [6]), understanding the correct form of the nonlocality
in the optical potential has been a focus of many studies. As
discussed in [6], there are two main types of nonlocality in
the optical potential. The first arises from antisymmetrization
effects, can be described by a Gaussian shape, and is short
range. The second is caused by channel coupling, can have
a very different shape, and typically has a larger range.
Recent optical potential studies based on the dispersive relation
[7] are consistent with the existence of these two types of
nonlocality. Whatever the type of nonlocality, the community
has attempted to express the nonlocal character of the optical
potential into simpler forms, such as a velocity dependence
(e.g., [5,8,9]). Moreover, one must acknowledge that a large
part of the reaction community still uses the traditional local
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energy-dependent optical potential, assuming that the energy
dependence alone can make up for the effects of nonlocality
(e.g., [10,11]). Even if a given set of elastic scattering data can
usually be well described by a local approximation, studies
in the last few years have revealed that the explicit inclusion
of nonlocality in the optical potential is important for other
reaction channels and should be explicitly included [12–18].

In principle, one may be able to use microscopic calcula-
tions to derive the form of the optical potential. An example
of such studies is the microscopic proton optical potentials
based on the g-matrix approach [19,20] which provide good
predictions for several reaction observables. However, more
recent ab initio efforts [21,22] demonstrate the difficulties of
computing the optical potential from first principles, due to
both model space truncations as well as deficiencies in the NN
force. In this study, we focus on a phenomenological approach
to proton optical potential and we limit the energy range to
10–65 MeV. This work follows a similar study for neutrons
[23] where a broader introduction to the topic can be found.

The pioneering work of Perey and Buck (PB) [4] demon-
strated that just by fitting neutron elastic scattering on 208Pb at
7.0 and 14.5 MeV, one was able to obtain a parametrization that
provided a good description of neutron elastic scattering across
the nuclear chart. The form for the nonlocality incorporated
in the PB parametrization is Gaussian which, as mentioned
earlier, accounts for antisymmetrization effects [4]. More
recently Tian, Pang, and Ma (TPM) [24] expanded that study
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to both neutron and proton scattering on a wider variety of
targets. The fitting protocol for TPM included proton elastic
scattering data on 27Al, 56Fe, 90Zr, and 208Pb at energies in
the range E = 16–30 MeV. In both these efforts, the nonlocal
parametrization is energy independent.

Optical potentials are known to be target dependent and
contain an imaginary component; but as mentioned earlier,
from a formal point of view, one also expects it to contain both
nonlocality and energy dependence [1–3,25]. The question
one should ask, given the importance of nonlocality in the
interaction, is if the level of description in [4] and [24] is
sufficient, or whether elastic scattering data call for an explicit
energy dependence in addition to the explicit nonlocality.
Lovell et al. [23] investigated this aspect for neutron-nucleus
scattering. Starting from either PB or TPM, including a diverse
set of spherical target nuclei as well as a couple of different
angular cuts on the data, it was found that neutron elastic
scattering data always prefer an explicit energy dependence
in the interaction. In this work, we address the same question
but now for proton elastic scattering.

The paper is organized as follows. In Sec. II we discuss
the data, the general philosophy of the fitting procedure, and
some numerical details. The results are presented in Sec. III,
followed by the conclusions in Sec. IV.

II. DATA AND FITTING PROCEDURE

In this work we focus on proton optical potentials to
describe the scattering off of stable spherical nuclei. Just as
in [23] we attempt to find the best description of the data
with the minimum complexity. As for the neutron study [23]
we include three targets in our fitting protocol, namely, 40Ca,
90Zr, and 208Pb, so that the whole mass range is spanned.
Data for these targets are abundant and typically measured
with large angular coverage. For each of these targets, we
include angular distributions for five beam energies in the
range E = 10–45 MeV. Specifically we include proton elastic
scattering data on 40Ca at E = 12.4, 16.0, 26.3, 30.0, and
40.0 MeV [26,27]; 90Zr at E = 9.0, 12.7, 22.5, 30.0, and 40.0
MeV [28–32]; and 208Pb at E = 16.0, 24.1, 30.3, 35.0, and
45.0 MeV [33,34]. As for [23], an overall error of 10% was
included in the χ2 minimization, based on the assumption that
systematic errors in the cross-section measurements outweigh
the statistical errors typically included in the experimental
papers.

We used NLAT [35] combined with SFRESCO [36] to perform
χ2 (per degree of freedom) minimizations for the angular
distributions generated with the single-channel optical model
assuming nonlocal potentials. We obtain 95% confidence
bands by pulling parameter sets from the standard uncorrelated
χ2 distribution [37]. We also compute, for each set of differen-
tial angular distributions (corresponding to a given target and
beam energy), the χ2 per degree of freedom. As in other fitting
procedures (e.g., [38]), we can then group specific reactions by
target or energy, summing the corresponding χ2 per data set
and dividing by the number of data sets included, here denoted
χ2

set. These χ2
set are used to assess the quality of the results for

the various targets and energy ranges.

The TPM proton potential [24], after partial wave decom-
position, includes a real volume part and an imaginary volume
part of the form

g�(r, r ′) = 2i�z

π
1
2 β

j�(−iz) exp

(
− r2 + r ′2

β2

)

×UWS

(
1

2
(r + r ′)

)
, (1)

with r being the distance between the nucleon and the target.
The potential UWS is the standard Woods-Saxon form with the
following parameters for the depth, radius, and diffuseness:
V = 70.95 MeV, rv = 1.290 fm, and av = 0.580 fm for the
real term; and Wi = 9.03 MeV, ri = 1.240 fm, and ai =
0.5 fm for the imaginary term. It also includes an imaginary
surface term in which UWS is replaced by the derivative of
the Woods-Saxon with parameters Ws = 15.74, rs = 1.20 fm,
and as = 0.45 fm. The Gaussian nonlocality has a range of
β = 0.88 fm. In addition to the nonlocal potential, there are
two terms that are local, namely, the spin-orbit term (with
parametersVso = 8.130 MeV, rso = 1.020 fm, andaso = 0.590
fm) and the regularized Coulomb term with Coulomb radius
rc = 1.340 fm. In this work we fix the local terms and the
geometry of the nonlocal part of the interaction and vary the
potential depths V, Wi, and Ws simultaneously.

As a first exploration, we fit each angular distribution
individually using TPM as a starting point and obtain new
V, Wi , and Ws . We then analyze the dependence of these
parameters with mass number A and beam energy E. For the
real depth V we found that no energy dependence was needed
but the data did require a weak mass dependence:

V = 67.047 + 0.0238A. (2)

Here the parameter V has units of MeV. Note that this was not
necessary for the neutron scattering case [23]. The imaginary
depths coming from fitting the proton elastic scattering data
showed a strong variation with both mass and beam energy, a
dependence that could be described approximately as linear,
similar to other global potentials (e.g., [38]).

We then consider a form for the mass and energy depen-
dences similar to [23]

Wi = aE
v E + aasym

v (N − Z)/A + a0
v ,

(3)
Ws = aE

s E + aasym
s (N − Z)/A + a0

s ,

where the depths (Wi and Ws) and the energy (E) are provided
in units of MeV. Using the dependence in Eqs. (2) and (3) and
all 15 data sets simultaneously, we perform a six-parameter fit
(for aE

v , a
asym
v , a0

v , aE
s , a

asym
s , a0

s ) starting from the original
TPM potential. We estimate the errors on the parameters
directly from the covariance matrix.

III. RESULTS

Tables I and II summarize the results of our fitting proce-
dure. The first row in Table I corresponds to the parametrization
obtained in [23] for the neutrons, when the regression based
on independent fits is taken as a starting point, and only data
up to 100◦ are included (labeled in [23] as TPM-E). We also
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TABLE I. Best fit parameters using TPM as starting point for the minimization, fitting data with θ < 100◦.

θ < 100◦ aE
v aasym

v (MeV) a0
v (MeV) aE

s aasym
s (MeV) a0

s (MeV)

Neutron [23] 0.02 ± 0.009 (fixed) 0 0.36 ± 0.26 0.20 ± 0.004 4.50 ± 0.50 12.15 ± 0.40
Neutron (TPM) 0.23 ± 0.006 (fixed) 0 −0.75 ± 0.10 0.12 ± 0.005 5.33 ± 0.59 13.92 ± 0.22
TPM-E 0.03 ± 0.014 51.14 ± 3.22 0.405 ± 0.38 0.18 ± 0.011 9.08 ± 3.79 11.16 ± 0.37
TPM-E0 (fixed) 0 49.19 ± 3.19 1.86 ± 0.36 0.23 ± 0.015 9.72 ± 3.79 9.07 ± 0.62
MJ-E −0.17 ± 0.015 45.75 ± 3.51 7.86 ± 0.23 0.42 ± 0.011 11.86 ± 3.88 2.47 ± 0.36

show the results for the neutron potential when the neutron
TPM potential is taken as a starting point (second row) and the
fitting procedure included the same neutron data as in Ref. [23].
This fit was performed recently for the sake of comparison
with the proton results. These two sets of parameters for
neutrons demonstrate immediately that the parameters depend
strongly on the initial point, but in both cases a strong energy
dependence is obtained as in Ref. [23].

The parameters obtained for the proton interaction for
identical conditions (here denoted by TPM-E) are shown in the
third row. Apart from the asymmetry terms, a

asym
v and a

asym
s ,

the parameters obtained for neutrons and protons are similar,
supporting the idea of charge symmetry and suggesting similar
properties of the χ2 function. The interaction obtained for the
protons has a strong asymmetry dependence, with errors of
10% on the parameters a

asym
v and a

asym
s . The magnitude of the

surface asymmetry term is similar to that obtained for the local
parametrizations in [38], although in those earlier studies, no
asymmetry dependence is included in the volume part of the
imaginary potential.

Most importantly for this work, the energy dependence
in the imaginary surface term aE

s is significant, just as for
the neutron case. Since aE

v is very close to zero, one might
ask whether the energy dependence in the volume part of
the imaginary potential can be removed. Thus, we repeated
the fitting process with aE

v = 0. The resulting parameters
are shown in the third row of Table I (TPM-E0). These are
very similar to the TPM-E parameters, but aE

s increases to
compensate for the lack of energy dependence in the volume
part.

As for the neutrons, the proton parametrizations are strongly
dependent on initialization. For the neutron cases presented
in [23], fits to individual data sets were produced starting
from either the PB potential [4] or from TPM [24]. The linear
regressions as a function of energy were then used to produce
the full fits. These two starting points provided very different
parametrizations.

The potential labeled here as TPM-E starts directly from
TPM. Given that PB was only developed for neutrons, it would
not make sense to use it as an initialization here. We thus
performed regressions over energy and asymmetry for the
parameters resulting from the individual fits, mimicking the

dependencies in Eq. (3). That gave us a new starting point for
the joint fit to all 15 sets of data. The resulting parameters are
shown in the last row of Table I (MJ-E) and correspond to a
very different minimum. While parameters are very different,
there are two important aspects that remain unchanged: first
there remains a significant energy dependence through aE

s

and second the asymmetry terms remain large. Note that the
negative slope aE

v is a cause for concern, given that it is likely
to provide unreliable extrapolations to high energy. We will
return to this point in Sec. III B.

As in [23], we investigate the differences obtained in the
parametrizations when all the data are included (full angular
range) and only angles up to θ < 100◦ are considered. Table II
shows the resulting parameters including data for the full
angular range in the fit, for a TPM initialization (TPM-E)
or an initialization based on the independent fits (MJ-E). The
resulting parameters change significantly from those shown in
Table I, but the energy dependence in the imaginary surface
term remains strong. The results show an interaction with a
much stronger energy dependence, and an unexpected negative
dependence in asymmetry. It is understood that the optical
model will not perform well for backward angles where
complex coupling processes are expected to dominate. From
here on, we focus on the fits obtained including data only up
to 100◦.

A. Results for fitted cases

We now turn to assessing the quality of the fits, in com-
parison to the original TPM interaction. In this section we first
focus on the results obtained for those cases that were included
in the fitting protocol, and then, in Sec. III B, we discuss the
predictions for targets not included in the protocol and for
energies outside the fitted range (E > 45 MeV).

The angular distributions obtained with TPM-E from Table I
are shown in Figs. 1, 2, and 3 for proton elastic scattering off
of 40Ca, 90Zr, and 208Pb, respectively (green-dashed lines).
Included in grey are the 95% confidence bands. For compar-
ison, we also show the angular distributions obtained with
the original TPM interaction (blue-dotted lines). There are
several cases for which TPM-E improves the description of
the data over TPM. Visually, the data for 40Ca at the lower

TABLE II. Same as Table I, but fitting the full range of data θ � 180◦.

θ � 180◦ aE
v aasym

v (MeV) a0
v (MeV) aE

s aasym
s (MeV) a0

s (MeV)

TPM-E 0.14 ± 0.004 23.21 ± 0.50 4.62 ± 0.09 0.73 ± 0.003 −5.09 ± 0.10 14.43 ± 0.66
MJ-E 0.306 ± 0.008 32.33 ± 0.79 0.20 ± 0.01 0.578 ± 0.005 −0.79 ± 0.047 7.47 ± 0.34
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FIG. 1. Angular distributions for 40Ca(p, p)40Ca at E = 12.4,
16, 26.3, 30, and 40 MeV. Comparison of the predictions using TPM-E
(green-dashed lines) with TPM (blue-dotted line) and the data [26,27].

energies are better described by TPM-E, as well as the 208Pb
data for the higher energies. Strikingly, TPM-E and TPM both
do very well in describing the 90Zr data across the energy range
here considered. This is not surprising since the original TPM
already included 90Zr data in the fit.

To quantify the goodness of the fit, we show in Table III
the χ2, divided by the number of data sets, for the various
targets considered. These χ2 are computed for the whole
angular range, even though TPM-E was determined from a
fit including data only up to 100◦. The improvement obtained
by including the energy dependence is significant for both 90Zr
and 208Pb, but mostly due to the highest energy here considered
(the original TPM potential was fit with elastic scattering data
up to 30 MeV). For the 40Ca case, the averaged χ2 does not
show a significant improvement, although, as we saw for the
angular distributions, there is a clear improvement at the lower
energies. Even though 40Ca was not explicitly included in the
original TPM fit, TPM does very well in describing proton
elastic scattering on 40Ca for energies around 30 MeV.

Overall, the total χ2 for TPM-E is significantly reduced
compared to that obtained with TPM due to the χ2 being
calculated out to 180◦. For completeness, we also include the
resulting χ2 values when angular distributions are computed
with the interaction provided in the last row in Table I (MJ-E).
Even though the parametrization is somewhat different, the
resulting χ2 are very close to those obtained with TPM-E.
While the χ2 is reduced by 133% from TPM to TPM-E, the
difference between MJ-E and TPM-E is less than 5%.

FIG. 2. Angular distributions for 90Zr(p, p)90Zr at E = 9, 12.7,
22.5, 30, and 40 MeV. Comparison of the predictions using TPM-
E (green-dashed lines) with TPM (blue-dotted line) and the data
[28–32].

FIG. 3. Angular distributions for 208Pb(n, n)208Pb at E = 16,
24.1, 30.3, 35, and 45 MeV. Comparison of the predictions using
TPM-E (green-dashed lines) with TPM (blue-dotted line) and the
data [33,34].

The 95% confidence bands associated with TPM-E and
shown in Figs. 1–3 are rather narrow, especially considering the
large errors on some of the parameters in the TPM-E fit. Results
in [37] demonstrate that when an uncorrelated χ2 function is
used, the resulting confidence bands are unphysically narrow.
One can expect that if instead of using the standard uncorre-
lated χ2 function we had used a correlated χ2 function, these
confidence bands would widen considerably.

Finally, we discuss the nonlocality range. In the early
work of Perey and Buck [4], the nonlocality included in the
interaction was Gaussian with a range based on the properties
of the NN interaction (β = 0.85 fm). This was kept constant in
their fit to elastic scattering data. The original TPM interaction
was determined from a fit that included the nonlocality range as
a fitting parameter (β = 0.88 fm). In our work, the nonlocality
range β was fixed at the original TPM value, assuming this
corresponded indeed to the minimum for proton elastic scat-
tering. However, given that the energy dependence introduced

TABLE III. χ 2
set for proton elastic scattering on the various targets

here considered: our energy parametrization TPM-E from Table I is
shown in column 2 and compared with the original TPM in column
3 and MJ-E in column 4.

TPM-E TPM MJ-E

40Ca (E � 45 MeV) 72.0 70.2 69.1
90Zr (E � 45 MeV) 20.6 48.5 20.0
208Pb (E � 45 MeV) 8.6 117.1 8.5

Total (E � 45 MeV) 101.1 235.8 97.5
32S (E � 45 MeV) 12.2 15.9 13.8
68Zn (E � 45 MeV) 17.7 32.3 17.9
89Y (E � 45 MeV) 9.73 10.9 12.3
100Mo (E � 45 MeV) 23.2 30.8 24.3
110Pd (E � 45 MeV) 31.8 44.3 30.0

Total (E � 45 MeV) 94.6 134.2 98.4
32S (45 < E � 65 MeV) 400.9 826.5 313.8
68Zn (45 < E � 65 MeV) 503.6 1437.3 482.6
89Y (45 < E � 65 MeV) 48.2 82.9 53.9
100Mo (45 < E � 65 MeV) 30.9 62.5 34.0
110Pd (45 < E � 65 MeV) 235.2 718.9 203.0

Total (45 < E � 65 MeV) 1219 3128 1087

024609-4



EXPLORATION OF THE ENERGY DEPENDENCE OF … PHYSICAL REVIEW C 98, 024609 (2018)

FIG. 4. Angular distributions for proton elastic scattering for
targets within the fitted mass range A = 40–208 and at an energy
within E = 9–45 MeV. Comparison of the predictions using TPM-E
(green-dashed lines) with TPM (blue-dotted line) and the data [42,48].

in this work is significant, we felt it was necessary to explore
the χ2 function around this β = 0.88 fm value by refitting the
parameters in Table I starting with either β0 = 0.2 fm or with
β0 = 1.0 fm. We found that the minimum in the χ2 function
was obtained for β in the range 0.84–0.86 fm, although the
differences in the resulting χ2 at the minima were so small that
it did not justify the addition of one more free parameter in the
fit; the χ2 function is essentially flat with β around the TPM
value. We thus kept the original TPM value of β = 0.88 fm
throughout this work.

Given the different sources of nonlocality [6], this result
is somewhat surprising. To account for channel coupling
effects, one would expect the need for a larger range in the
nonlocality. However, this set of elastic data does not require
such a description. This is likely because the nuclei included
in the fitting protocol are, to a good approximation, spherical,
and their elastic scattering is fairly well described within a
single-channel description. We do expect that when focusing
on light targets or nuclei farther from stability, the nonlocality
range would likely increase and one may need different terms
in the interaction, with multiple nonlocality ranges as in [7].

B. Results for predicted cases

We now use TPM-E to make predictions of cross sections
and test the quality of these predictions with existing data. For
that purpose we consider proton elastic scattering on 32S at 15,
17.7, 19, 21, 23, 25, and 65 MeV [34,39]; 68Zn at 20.4, 30.5,
39.6, 49, and 61.4 MeV [40–43]; 89Y at 21.1, 49.4, and 65
MeV [44–46]; 100Mo at 15, 30.3, 49.5, and 65 MeV [47–49];
and 110Pd at 22 and 52 MeV [50,51].

Figure 4 shows the angular distributions for proton elastic
scattering on 68Zn at 39.6 MeV and 100Mo at 30 MeV. These
cases correspond to interpolations of the TPM-E parametriza-
tion of Table I as a function of mass, asymmetry, and beam
energy. The green-dashed line is the prediction using TPM-E
while the blue-dotted line represents the results using the
original TPM interaction. The corresponding 95% confidence
bands for TPM-E are also provided (gray bands). These results
illustrate the modest improvement obtained when using the
explicit energy dependence in the interaction for those cases
within the fitted range.

Figure 5 shows the predicted angular distributions for
proton elastic scattering on 32S, which is outside the fitted mass

FIG. 5. Angular distributions for 32S(p, p)32S at E = 17.5, 19,
23, and 25 MeV. Comparison of the predictions using TPM-E (green-
dashed lines) with TPM (blue-dotted line) and the data [34].

region. As before, the 95% confidence bands for TPM-E are
shown in gray. The figure shows that the TPM-E interaction,
which includes a small mass dependence on the real part of
the potential, is able to provide a satisfactory description of
elastic scattering, as opposed to TPM which does not perform
well. This is despite the fact that the TPM fitting protocol does
include light masses, namely, 27Al.

Finally in Fig. 6 we show predictions for proton elastic
scattering angular distributions for a higher energy, outside the
range where the interactions were fitted. Due to the explicit
energy dependence introduced in TPM-E, this interaction
performs better than the original energy-independent TPM.

Table III includes the χ2 for each of the data sets considered
in testing the predictive power of TPM-E. For the five targets
studied, we first only include beam energies within the range
that was fitted. We see an improvement of TPM-E over TPM of
the same magnitude as that obtained for the fitted cases (40Ca,
90Zr, and 208Pb). We then also show the resulting χ2 per data
set, obtained when including the higher energies up to 65 MeV.
Expectedly, in this case the improvement is much larger.
However, in some cases, the resulting χ2 using TPM-E is still
very large, which suggests that the linear energy dependence
may already break down for energies E > 50 MeV. This is
a known problem with phenomenological approaches (e.g.,
[11]), a problem that can be reduced by using the dispersion
relation to further constrain the interaction [52].

In Table III we also show the χ2 values obtained when
using the MJ-E parametrization. As for the fitted cases, MJ-E

FIG. 6. Angular distributions for proton elastic scattering on 89Y,
100Mo, and 110Pd at beam energies outside the fitted range, namely,
65 MeV for the two first cases and 52 MeV for the last. Comparison of
the predictions using TPM-E (green-dashed lines) with TPM (blue-
dotted line) and the data [46,49,51].
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provides very similar χ2 as the TPM-E parametrization. The
difference of roughly 5% is not significant compared to the
large improvement over the original TPM interaction. Also, it
appears that the negative slope aE

v does not cause problems up
to E = 65 MeV.

Finally, we need to consider the asymmetry term in this
interaction. First of all, contrary to the neutron case, we
found it necessary to include an asymmetry dependence in
the imaginary volume part of the interaction. This resulted
in a very large a

asym
v parameter, regardless of the starting

point. Such a large asymmetry dependence in the volume
imaginary term of the optical potential is not observed for
local potentials. In addition, the asymmetry dependence of
the surface imaginary potential a

asym
s doubled compared to the

values obtained for the neutron elastic scattering study [23].
As mentioned before, its numerical value is very much in line
with that of a local parametrization of [38]. Moreover, if the
proton elastic scattering fit includes data in the full angular
range, the asymmetry dependence is much reduced and even
changes sign for the surface asymmetry. This will result in a
cancellation of the effect of the imaginary volume term.

Note that the energy range over which the TPM predictions
deviate largely from the experimental data is not the same
for proton-target and neutron-target interactions. For neutrons,
energy dependence was required above 40 MeV, while for
the protons, the transition occurred around 50 MeV. This
difference is likely due to the Coulomb repulsion.

All nuclei for which we made predictions have asymmetries
within the range of asymmetries included in the fit N−Z

A
=

0–0.21. It is thus evident that the interpolations provided
by the asymmetry dependence we obtain are reliable. How-
ever, it is unclear how the asymmetry dependence of the
parametrizations of Table I will extrapolate outside the region,
and in particular when moving away from stability into the
neutron-rich and proton-rich regions of the nuclear chart.

Based on physics considerations, one might assume the
asymmetry coefficient for the neutron and proton to be of
the same magnitude but opposite sign. We have thus rerun
the neutron case of Ref. [23], fixing the asymmetries a

asym
v =

−51.14 MeV and a
asym
s = −9.080 MeV. The resulting mini-

mum has a much larger χ2 value (4 times worse). The resulting
parametrization has a much stronger energy dependence in the
volume term, while the surface term suffers only a modest
modification: aE

s = 0.453; a0
s = 21.17 MeV; aE

v = 0.26; and
a0

v = 18.77 MeV. Further work is needed to better understand
the asymmetry dependence of a nonlocal global potential and
the interrelation between neutron and proton parameters.

IV. CONCLUSIONS

Following the study of energy dependence of nonlocal
optical potentials for neutron elastic scattering [23], in this
work, we looked into the energy dependence of proton elastic

scattering. Namely, we wanted to answer the question of
whether the inclusion of an explicit Gaussian nonlocality can
fully account for the complexity of the effective proton-nucleus
interaction, or whether the elastic data call for an additional
energy dependence in the interaction.

With this goal in mind, we performed a joint fit to proton
elastic scattering data for a range of energies E = 10–45 MeV
on 40Ca, 90Zr, and 208Pb. We used the energy-independent
nonlocal parametrization of Ref. [24] as our starting point.
Motivated by local global parametrizations and by the fits to
the individual elastic scattering data, we introduced a linear
energy dependence on both the surface and volume imaginary
parts of the interaction, as well as asymmetry terms.

Our results show that this energy-dependent nonlocal inter-
action (TPM-E) offers a modest improvement over the original
TPM for those cases in our fitting protocol. However, TPM-E
presents a larger improvement over TPM for those nuclei with
masses outside the range included in the fit, as well as for
extrapolations in energy up to E = 65 MeV. We also show
that although the details of the parametrization obtained do
depend on the initial starting point for the fitting protocol,
the magnitude of the energy-dependent component is identical
and the resulting quality of the fit is similar for the two
different initializations considered here (TPM-E and MJ-E).
Finally, we also confirm that our conclusions concerning the
energy dependence do not change when the nonlocality range
parameter is allowed to vary in the fit.

In addition to the energy dependence, our study gives rise
to a large asymmetry dependence in the optical potential.
Although the errors on a

asym
v and a

asym
s are small, of the order of

10%, we do not believe the asymmetry dependence is robust.
Most importantly, when comparing with the neutron case [23],
we do not understand the physical reason for its emergence.

This study confirms that the Gaussian nonlocality intro-
duced explicitly in the optical potential is not sufficient to
properly describe proton elastic scattering. This result is con-
sistent with [6,23], and justifies a more comprehensive study
to extract a new energy-dependent nucleon-nucleus nonlocal
optical potential. This study should also consider cases away
from stability to become useful for research on rare isotopes
worldwide.
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