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Neutrinoless ββ nuclear matrix elements using isovector spin-dipole Jπ = 2− data
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Ground-state-to-ground-state neutrinoless double-beta (0νββ) decays in nuclei of current experimental interest
are revisited. In order to improve the reliability of the nuclear matrix element (NME) calculations for the light
Majorana-neutrino mode, the NMEs are calculated by exploiting the newly available data on isovector spin-
dipole (IVSD) J π = 2− giant resonances. In order to correctly describe the IVSD up to and beyond the giant-
resonance region, the present computations are performed in extended no-core single-particle model spaces using
the spherical version of the proton-neutron quasiparticle random-phase approximation (pnQRPA) with two-
nucleon interactions based on the Bonn one-boson-exchange G matrix. The appropriate short-range correlations,
nucleon form factors, higher-order nucleonic weak currents, and partial restoration of the isospin symmetry
are included in the calculations. The results are compared with earlier calculations of Hyvärinen and Suhonen
[Phys. Rev. C 91, 024613 (2015)] performed in much smaller single-particle bases without access to the IVSD
J π = 2− giant-resonance data reported here.
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I. INTRODUCTION

The neutrinoless double-beta (0νββ) decay of atomic nuclei
is a promising way to access the physics beyond the standard
model [1–5], as witnessed by the ever growing experimental
interest in this decay mode. At the same time half-lives of the
two-neutrino ββ (2νββ) decays of several nuclei have been
measured with increased precision [6,7]. Important nuclei for
the present 0νββ experiments are 76Ge, 82Se, 96Zr, 100Mo,
116Cd, 130Te, and 136Xe [8].

There are many models which have recently been used
to compute the 0νββ nuclear matrix elements (NMEs): the
quasiparticle random-phase approximation (QRPA), as well
as its proton-neutron version (pnQRPA) (see, e.g., [9]) and its
renormalized extensions [10,11], the interacting shell model
(ISM) [12,13], the microscopic interacting boson model (IBA-
2) [14], the Gogny-based energy-density functional (EDF)
[15] and its variation [16], and the projected Hartree-Fock-
Bogoliubov mean-field scheme (PHFB) [17]. Very recently
also the beyond-mean-field covariant density functional theory
[18,19] and advanced shell-model frameworks [20–23] have
been used to describe the 0νββ NMEs of nuclei. For more
details see the reviews [5,24].

The pnQRPA has several advantages in calculating the 2νββ
and 0νββ NMEs:

(i) In the pnQRPA calculations one avoids the use of the
closure approximation,

(ii) pnQRPA can accommodate large single-particle bases,
including all the relevant spin-orbit-partner orbitals
[25,26], and

(iii) the gross features of the distribution of nuclear states
can be reliably accounted for by the pnQRPA [27]

although the model may fail to predict properties of
individual states.

The features (i)–(iii) of the pnQRPA make it an ideal
nuclear model to combine the 2νββ and 0νββ calculations in a
consistent way. The relation of the pnQRPA Hamiltonian and
the 2νββ decay was further deepened in the work of Ref. [28]
where a partial isospin-restoration scheme for the pnQRPA
was proposed. This same method was later used by Hyvärinen
et al. [29] for pnQRPA-based and in Barea et al. [30] for IBM-2
based 0νββ-decay calculations.

A key parameter of the pnQRPA is the particle-hole param-
eter gph associated with the spin-isospin correlations and the
location [31] of the giant resonances. So far in the calculations
the value of this parameter has been fixed by fitting the loca-
tion of the Gamow-Teller giant resonance (GTR). The fitted
value, gph(1+), together with the value of the particle-particle
parameter gpp of the pnQRPA, fixes the contribution of the
1+ channel to the 0νββ NME. However, the 1+ contributions
to the 0νββ NME are in many cases (much) smaller than the
contributions from the 2− isovector spin-dipole (IVSD) states
which play an important role in this NME, in particular for
the medium-heavy nuclei (see Fig. 7). Recently data on the
location of the IVSD giant resonances became available from
charge-exchange reactions performed at the Research Center
for Nuclear Physics (RCNP), Osaka, Japan. Here we report
for the first time on the values of the 0νββ NMEs based on
gph values gph(2−), fixed by the observed location of the IVSD
giant resonances.

In the present work we compute the 0νββ NMEs using
the spherical version of pnQRPA framework and the partial
isospin-restoration scheme of Ref. [28]. The value of gph
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is determined by the empirical locations of the Jπ = 1+
GTR and the Jπ = 2− IVSD giant resonance. The isoscalar
part of the particle-particle parameter, gT =0

pp , is fitted to the
values of the 2νββ matrix elements. The value of the isovector
part of the particle-particle parameter, gT =1

pp , on the other
hand, is determined by the isospin-restoration scheme. We
extend the studies of [29,32–34] by using large no-core single-
particle bases in order to reliably describe the IVSD Jπ = 2−
giant-resonance region and to see how the extension of the
valence space affects the magnitudes of the 0νββ NMEs for
the nuclei of interest. We also extend our previous work [35] by
studying the impact of the value of the parameter gph(2−) on
the magnitude of the 0νββ NME, when adjusted to describe
the energy of the measured IVSD Jπ = 2− giant resonance
separately. All this is done to test the reliability of the 0νββ
NMEs computed in Ref. [29] and to produce an improved
set of NMEs for further use in, e.g., analyses related to the
experimental 0νββ data.

This article is organized as follows: In Sec. II we briefly
introduce the underlying formalism of the 2νββ and 0νββ
decays as well as the IVSD Jπ = 2− strength. In Sec. III we
discuss the determination of the model parameters, and display
and discuss the obtained results for the 0νββ NMEs calculated
using different single-particle bases and model parameters. The
final conclusions are drawn in Sec. IV.

II. COMPUTATIONAL SCHEME

In this section we introduce a brief theoretical outline
of our computational scheme. Both the IVSD Jπ = 2− and
0νββ calculations are based on the spherical version of
pnQRPA theory, which is reviewed briefly in the first sub-
section. In the following subsections we introduce the theo-
retical aspects of the IVSD Jπ = 2− strength, two-neutrino
double-beta decay, and neutrinoless double-beta decay,
correspondingly.

A. pnQRPA and the Hamiltonian parameters

In this section we explain the spherical version of the pn-
QRPA procedure briefly, starting from the single-particle bases
for protons and neutrons: The single-particle energies for both
protons and neutrons, for each even-even nucleus involved,
are obtained by solving the radial Schrödinger equation for a
Coulomb-corrected Woods-Saxon (WS) potential optimized
for nuclei close to the β stability line [36]. This choice is
justified since the ββ-decaying nuclei lie always rather close to
the bottom of the valley of beta stability. We adopt the single-
particle bases used in the isovector spin-multipole calculations
of [35], i.e., no-core bases with all the orbits from the N = 0
oscillator major shell up to at least two oscillator major shells
above the respective Fermi surfaces for protons and neutrons.
We include in our calculations both the bound and quasibound
single-particle states. The same orbitals are used for both
neutrons and protons. We perform our calculations, whenever
possible, in both the bare Woods-Saxon bases, abbreviated
as “WS”, and in the slightly modified bases that we used in
[35], where the proton/neutron single-particle energies of the
orbitals close to the Fermi surfaces were adjusted to better

TABLE I. Pairing scaling factors and the resulting pairing gaps
for the nuclei relevant for this work. “WS” denotes the Woods-Saxon
and “sp” the modified basis.

Nucleus Basis g
(n)
pair g

(p)
pair �n (MeV) �p (MeV)

76Ge WS 1.05 0.89 1.57 1.52
sp 0.97 0.89

76Se WS 1.06 0.91 1.72 1.71
sp 1.01 0.91

96Zr sp 0.73 0.86 0.92 1.48
96Mo sp 0.90 0.91 1.03 1.52
100Mo WS 0.85 0.95 1.31 1.63

sp 0.88 0.96
100Ru WS 0.89 0.96 1.27 1.60

sp 0.85 0.93
116Cd WS 0.89 0.93 1.37 1.43
116Sn WS 0.82 0.89 1.16 1.84
128Te WS 0.96 0.81 1.30 1.09

sp 0.86 0.81
128Xe WS 0.94 0.88 1.27 1.30

sp 0.86 0.88
130Te WS 0.94 0.78 1.21 1.02

sp 0.86 0.78
130Xe WS 0.95 0.86 1.25 1.26

sp 0.85 0.86
136Xe WS 0.85 0.76 1.44 0.98

sp 0.84 0.76
136Ba WS 0.90 0.83 1.08 1.22

sp 0.87 0.83

reproduce the low-lying spectra of the neighboring odd-mass
nuclei. These bases are abbreviated as “sp” (see Table I). In
the cases of mass numbers A = 96, 100 the use of the bare
Woods-Saxon bases results in a nonphysical gpp behavior of
the 2νββ results, and we use therefore only the sp bases. On the
other hand, for A = 116 the use of the bare Woods-Saxon bases
results in a good correspondence between the calculated and
experimental spectra, so no modifications in the single-particle
energies were necessary.

The quasiparticle spectra for protons and neutrons, needed
in the pnQRPA diagonalization, are obtained by solving the
BCS equations for protons and neutrons, separately. In our
calculations the two-body interaction is derived from the
Bonn-A one-boson-exchange potential introduced in [37].
The calculated BCS pairing gaps are fitted (see [31,38–40])
to the phenomenological ones, �n for neutrons and �p for
protons, by using adjustable pairing strengths,g(n)

pair for neutrons

and g
(p)
pair for protons, in a way described in detail in Ref. [35].

The needed separation energies were taken from [41]. The
values of the resulting pairing scaling factors are presented in
Table I.

The wave functions and excitation energies for the complete
set of Jπ excitations in an odd-odd nucleus are obtained
by performing a pnQRPA diagonalization in the basis of
unperturbed quasiproton-quasineutron pairs coupled to Jπ .
The spherical pnQRPA states in odd-odd nuclei are then of
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the form∣∣Jπ
k M

〉 =
∑
pn

[
X

Jπ
k

pnA†
pn(JM ) − Y

Jπ
k

pn Ãpn(JM )
]|pnQRPA〉,

(1)

where k numbers the states of the same spin-parity Jπ , the
amplitudes X and Y are the forward- and backward-going
amplitudes, A† and Ã the quasiproton-quasineutron creation
and annihilation operators, and |pnQRPA〉 is the pnQRPA
vacuum. M denotes the z projection of J . The formalism is
explained in detail in Refs. [31,38].

The X and Y amplitudes in Eq. (1) are calculated by di-
agonalizing the pnQRPA matrix separately for each multipole
Jπ . The isoscalar (T = 0) and isovector (T = 1) parts of the
particle-particle G-matrix elements are multiplied by common
factors gT =0

pp and gT =1
pp , respectively, for all the multipoles. In

addition, the particle-hole part was scaled by a common factor
gph for each multipole. These renormalization factors are listed
in the following section for each mass number A separately.

B. Isovector spin-dipole Jπ = 2− strength

The transition operator for the IVSD (L = 1) Jπ = 2−
transitions is of the form

O±
1,2 = ir[Y 1σ ]2t±, (2)

where Y 1 is the spherical harmonic of rank 1, σ the Pauli
spin operator, r the radial coordinate, and t+ and t− are the
isospin raising and lowering operators. The reduced single-
particle NMEs of this operator are of the form [31,36]

(jf ‖O±
1,2‖ji ) =

(
nf lf

1

2
jf

∥∥∥∥ir[Y 1σ ]2

∥∥∥∥nili
1

2
ji

)

=
√

6ĵf

√
5ĵi

(−1)lf√
4π

l̂f
√

3l̂i

(
lf 1 li
0 0 0

)

×

⎧⎪⎨
⎪⎩

lf
1
2 jf

li
1
2 ji

1 1 2

⎫⎪⎬
⎪⎭R(1)

f i (−1)
1
2 (li−lf +1)

, (3)

where ĵ = √
2j + 1, R(1)

f i is a radial integral [31] and n
denotes the principal quantum number, l the orbital angular
momentum, and j the total angular momentum. The reduced
NMEs of (2) can now be calculated from [31]

(2−
f ‖O±

1,2‖0+
i ) =

∑
ab

(a‖O±
1,2‖b)√
5

(2−
f ‖[c†ac̃b]2‖0+

i ), (4)

where b and a denote the initial and final single-particle
quantum numbers, 0+

i is the initial ground state in an even-even
nucleus, and 2−

f is a final 2− state in an odd-odd nucleus.
The transition strength for a transition from the initial 0+

i

ground state to the 2−
f final state can be calculated from

S±
1,2(f ) = |(2−

f ‖O±
1,2‖0+

i )|2. (5)

In the present work 0+
i corresponds to the ground state of a

mother nucleus of 0νββ decay, and we need the (p, n) type
strength S−

1,2(f ) for the whole range of final states f , up to and

beyond the IVSD Jπ = 2− giant-resonance region, in order to
be able to compare with the corresponding experimental data.

C. Two-neutrino double-beta decays

The half-life of the 2νββ decay can be written in the form[
t

(2ν)
1/2 (0+

i → 0+
f )

]−1 = (
geff

A

)4
G2ν |M (2ν)|2, (6)

where geff
A is the effective value of the weak axial-vector

coupling strength and G2ν is a leptonic phase-space factor
(in units of inverse years) as defined in Ref. [42] without
the axial-vector coupling strength gA. The initial and final
ground states are denoted by 0+

i and 0+
f , correspondingly. The

Gamow-Teller NME involved in the equation is written in the
pnQRPA formalism as

M (2ν) =
∑
m,n

(0+
f ‖∑

k t−k σ k‖1+
m)〈1+

m|1+
n 〉(1+

n ‖∑
k t−k σ k‖0+

i )

Dm + 1

(7)
for the 2νβ−β− decays, with Dm being the energy denominator

Dm = (
1
2� + 1

2 [E(1+
m) + Ẽ(1+

m)] − Mi

)
/me, (8)

where � is the nuclear mass difference between the initial and
final 0+ ground states, Mi the mass of the initial nucleus, me

the electron rest mass, Ẽ(1+
m) is the (absolute) energy of the

mth 1+ state in a pnQRPA calculation based on the left-side
ground state, and E(1+

m) the same for a calculation based on the
right-side ground state. To do the calculations as accurately as
possible, the difference [E(1+

m) + Ẽ(1+
m)]/2 − Mi is adjusted

to the experimental energy difference between the first 1+ state
in the intermediate nucleus and the ground state of the initial
nucleus. The same is done in the calculations of the 0νββ
NMEs. The quantity 〈1+

m|1+
n 〉 is the overlap between the two

sets of 1+ states and it can be written as

〈1+
m|1+

n 〉 =
∑
pn

[
X

1+
m

pnX̄
1+

n
pn − Y

1+
m

pn Ȳ
1+

n
pn

]
. (9)

The overlap factor matches the corresponding states in the
two sets of states based on the left- and right-side even-even
reference nuclei and makes the computed NMEs more stable.
For deformed nuclei, and especially when the deformations of
the mother and daughter nuclei are considerably different, the
role of the overlap factor is important [43,44]. The quantities X
and Y (X̄ and Ȳ ) denote the pnQRPA amplitudes which stem
from the calculation based on the left-side (right-side) nucleus.

In principle, the expression in Eq. (7) should also contain
a Fermi part, but our choice for the gT =1

pp parameter forces
this contribution to zero, as will be explained in Sec. III A.
This is justified since in the case of isospin symmetry, which is
obeyed by the nuclear forces to a high degree, the ground states
of the mother and daughter nuclei belong to different isospin
multiplets and the Fermi contribution to the 2νββ NME should
vanish, leaving the Gamow-Teller NME in Eq. (7) as the sole
contributor to the 2νββ decay rate.

D. Neutrinoless double-beta decays

Assuming that the exchange of light Majorana neu-
trino dominates the 0νββ mechanisms, the half-life for a
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ground-state-to-ground-state 0νββ transition can be written as

[
t

(0ν)
1/2 (0+

i → 0+
f )

]−1 = (
geff

A

)4
G0ν |M (0ν)|2

∣∣∣∣ 〈mν〉
me

∣∣∣∣
2

, (10)

where G0ν is a phase-space factor, cited in Ref. [42] in units of
inverse years, for the final-state leptons defined here without
the axial-vector coupling strength gA [42] and 〈mν〉 is the
effective light-neutrino mass

〈mν〉 =
∑

j=light

(
Ul

ej

)2
mj (11)

with mj being the individual light-neutrino masses. Here the
amplitudes Ul

ej are the components of the electron row of the
neutrino-mixing matrix corresponding to the light sector.

The nuclear matrix element M (0ν) in Eq. (10) is defined as

M (0ν) = M
(0ν)
GT −

(
gV

geff
A

)2

M
(0ν)
F + M

(0ν)
T , (12)

where we adopt the CVC value gV = 1.0 for the weak vector
coupling strength and the double Fermi, Gamow-Teller, and
tensor nuclear matrix elements are defined for the 0νβ−β−
decays as

M
(0ν)
F =

∑
k

(0+
f ‖

∑
mn

hF(rmn, Ek )t−m t−n ‖0+
i ), (13)

M
(0ν)
GT =

∑
k

(0+
f ‖

∑
mn

hGT(rmn, Ek )( σm · σn)t−m t−n ‖0+
i ),

(14)

M
(0ν)
T =

∑
k

(0+
f ‖

∑
mn

hT(rmn, Ek )ST
mnt

−
m t−n ‖0+

i ), (15)

where the operator t−m is the isospin lowering operator (neutron
to proton) for the nucleon m and the spin tensor operator is
defined as

ST
mn = 3[( σm · r̂mn)( σn · r̂mn)] − σm · σn. (16)

The summation over k in Eqs. (13)–(15) runs over all the states
of the intermediate odd-odd nucleus, rmn = |rm − rn| is the
relative distance between the two decaying neutrons, labeled m
and n, and r̂mn = (rm − rn)/rmn. As in the two-neutrino case
the ground state of the initial even-even nucleus is denoted
by 0+

i and the ground state of the final even-even nucleus
is denoted by 0+

f . Expressions for the neutrino potentials
hK (rmn, Ek ), K = F, GT, T are given in Ref. [29].

The nuclear matrix elements can be written in the pnQRPA
framework as

M
(0ν)
K =

∑
Jπ ,k1,k2,J ′

∑
pp′nn′

(−1)jn+jp′ +J+J ′√
2J ′ + 1

×
{

jp jn J
jn′ jp′ J ′

}
(pp′ : J ′‖OK‖nn′ : J ′)

× (0+
f ‖[c†p′ c̃n′ ]J

∥∥Jπ
k1

)〈
Jπ

k1

∣∣Jπ
k2

〉(
Jπ

k2

∥∥[c†pc̃n]J ‖0+
i ),

(17)

where k1 and k2 label the different pnQRPA solutions for a
given multipole Jπ . The operators OK inside the two-particle

matrix element correspond to the ones of Eqs. (13), (14), and
(15), and they can be written as

OF = hF(r, Ek )[fCD(r )]2, (18)

OGT = hGT(r, Ek )[fCD(r )]2 σ 1 · σ 2, (19)

OT = hT(r, Ek )[fCD(r )]2ST
12, (20)

where ST
12 is the tensor operator of Eq. (16) and r = |r1 − r2|

is the distance between the participating nucleons. The energy
Ek is the average of the kth eigenvalues of the pnQRPA
calculations based on the initial and final nuclei of the decay,
and the overlap factor 〈Jπ

k1
|Jπ

k2
〉 in Eq. (17) is the one of

Eq. (9). It has an important role for deformed nuclei, especially
when the deformations of the mother and daughter nuclei are
considerably different. The factor fCD(r ) takes into account the
nucleon-nucleon short-range correlations (SRC) [32,45] and
here we use the CD-Bonn form [46] with the parametrization

fCD(r ) = 1 − 0.46e−(1.52/fm2 )r2
[1 − (1.88/fm2)r2]. (21)

In the pnQRPA the state of Eq. (1) leads to the transition
densities

(0+
f ‖[c†p′ c̃n′ ]J

∥∥Jπ
k1

) = Ĵ
[
v̄p′ ūn′X̄

Jπ k1
p′n′ + ūp′ v̄n′ Ȳ

J π k1
p′n′

]
, (22)(

Jπ
k2

∥∥[c†pc̃n]J ‖0+
i ) = Ĵ

[
upvnX

Jπ k2
pn + vpunY

Jπ k2
pn

]
, (23)

where v (v̄) and u (ū) correspond to the BCS occupation and
vacancy amplitudes of the initial (final) even-even nucleus.
The amplitudes X and Y (X̄ and Ȳ ) emerge from the pnQRPA
calculation based on the initial (final) nucleus of the double-
beta decay. Equation (17) does not include the overlap between
the initial and final BCS states that can be rather important,
according to the recent study by Fang et al. based on the
deformed QRPA formalism [47]. In this work it was found
that the 0νββ NMEs were reduced by as much as 30–60%
in comparison with the spherical formalism, mainly due to
the BCS overlap factors and partly due to the deformation.
According to the discussion in Ref. [47], the BCS factors could
cause a large (as large as 60%) decrease to the calculated
NMEs, if the neutron or proton number is close to a magic
number (as for 116Cd and 136Xe), and a milder (≈20–30%)
decrease in the other cases. In a purely spherical pnQRPA
approach it is expected that these changes in the NMEs
constitute an upper limit. In particular one has to be careful
in using the BCS overlap for the semimagic nuclei where
the BCS approach does not produce a pairing gap, and some
higher-order approach, like the Lipkin-Nogami approach [31],
would be better.

III. RESULTS AND DISCUSSION

In this section we present and discuss the results of our
studies. In the calculations we use two slightly different sets of
single-particle bases, and we also compare our results with the
numbers obtained in an earlier study of Hyvärinen et al. [29]
of the same 0νββ transitions.

A. Determination of model parameters

Here we adopt the single-particle bases used in the isovec-
tor spin-multipole calculations of [35] discussed already in
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Sec. II A. We decompose each isobaric triplet with mass
number A to “left-side” even-even (A,N,Z), “right-side”
even-even (A, N − 2, Z + 2) and “intermediate” odd-odd
(A, N − 1, Z + 1) nuclei and construct the spectra of Jπ

excitations in the intermediate odd-odd nuclei, applying the
pnQRPA formalism [31,38,39] to the left- and right-side even-
even nuclei. In this way one obtains two sets of energies and
wave functions for each Jπ state. The residual Hamiltonian for
the pnQRPA includes particle-hole and particle-particle com-
ponents. The particle-hole contribution is proportional to the
particle-hole matrix elements gph〈pn−1; Jπ |V |p′n′−1; Jπ 〉,
where Jπ is the multipole of the states in the inter-
mediate odd-odd nucleus, and the particle-particle contri-
bution is proportional to the two-body matrix elements
gpp〈pn; Jπ |V |p′n′; Jπ 〉. Here gph and gpp are the particle-hole
and particle-particle renormalization factors correspondingly.

Traditionally the gph parameter is fixed by fitting the
centroid of the Gamow-Teller resonance (GTR) in the 1+
channel of the calculations [1,38,39,48,49]. This same gph

is then used for all multipoles Jπ . We use this method as
a starting point (we call this Model 1), but explore how the
particle-hole parameter gph(2−) changes the values of the 0νββ
NMEs by fitting the Jπ = 2− channel separately (Model 2)
and by using the gph(2−) parameter for all channels excluding
the 1+ channel (Model 3). We adjust the gph(1+) and gph(2−)
parameters to the available data on Gamow-Teller [50–53] and
isovector spin-dipole giant-resonance energies [53–58].

The GT and IVSD strength distributions were studied
at RCNP, Osaka University, through high-resolution (3He,t)
charge-exchange reactions. Significant GT and IVSD strengths
are found as broad giant resonances around 12 and 20 MeV,
and the widths are around 5 and 10 MeV, respectively. In fact,
the IVSD resonance was first discussed in Ref. [59] to account
for the reduction of the low-lying SD β NMEs. We adjust the
gph(2−) parameter to the available data on the giant resonance
energies. The data for different nuclei are: 76Ge [53], 96Zr [54],
100Mo [55], 116Cd [56], 128Te [57], 130Te [57], and 136Xe [58].
The GTR and IVSD energies for the DBD nuclei of current
interest are expressed approximately as

E(GT) ≈ 9 + 0.4TZ MeV,

E(SD) ≈ 16.5 + 0.4TZ MeV,
(24)

where TZ = 1
2 (N − Z). The uncertainties of the GT and

IVSD energies are around ±0.5 and 1 MeV, respectively. The
gph values adjusted in this way are presented in Table II,
together with the values of the GTR and IVSD giant-resonance
centroids obtained from Eq. (24). For A = 96 we use the
measured centroid, as the linear fits of (24) do not reproduce
the measured values well. It is seen in Table II that the gph

values vary by 20–30% depending on the basis (WS/sp) and
the type of GR (GT/SD).

The gpp parameter has usually been adjusted by fitting this
value to the measured 2νββ-decay half-life [32–34,60,61], to
the log f t values of β decays [62,63], or to both β and 2νββ
decays [64,65]. In this work, we adopt an improved method
introduced in Ref. [28] and later used in Ref. [29], where
we decompose the pnQRPA NMEs into isoscalar (T = 0)
and isovector (T = 1) parts and then adjust the parameters

TABLE II. Parameters of the pnQRPA calculations for various
0νββ decaying nuclei. Column 2 indicates the basis that was used
in the calculations. Columns 3 and 4 list the experimental centroid
energies of the IVSDJ π = 2− and GTRJ π = 1+ resonances. The last
two columns list the values of the particle-hole parameters adjusted
to the locations of the IVSD resonance and the GTR.

Nucleus Basis E(SD2−) E(GT) gph(2−) gph(1+)
(MeV) (MeV)

76Ge WS 18.9 ± 1.0 11.4 ± 0.5 0.9 ± 0.2 1.24 ± 0.13
sp 1.2 ± 0.3 1.03 ± 0.13

96Zr sp 22 ± 1.0 12.7 ± 0.5 0.8 ± 0.2 0.84 ± 0.09
100Mo sp 19.7 ± 1.0 12.2 ± 0.5 1.0 ± 0.2 1.19 ± 0.08
116Cd WS 20.5 ± 1.0 13.0 ± 0.5 1.07 ± 0.09 0.85 ± 0.13
128Te WS 21.3 ± 1.0 13.8 ± 0.5 1.7 ± 0.2 1.64 ± 0.08

sp 1.9 ± 0.2 1.40 ± 0.09
130Te WS 21.7 ± 1.0 14.2 ± 0.5 1.7 ± 0.2 1.58 ± 0.08

sp 1.9 ± 0.2 1.36 ± 0.09
136Xe WS 22.1 ± 1.0 14.6 ± 0.5 1.0 ± 0.2 1.36 ± 0.07

sp 0.9 ± 0.2 1.18 ± 0.08

gT =0
pp and gT =1

pp independently. The particle-particle parts of
the pnQRPA matrices are divided into isoscalar (T = 0) and
isovector (T = 1) parts by the decomposition

gpp〈pn; Jπ |V |p′n′; Jπ 〉
→ gT =1

pp 〈pn; Jπ ; T = 1|V |p′n′; Jπ ; T = 1〉
+ gT =0

pp 〈pn; Jπ ; T = 0|V |p′n′; Jπ ; T = 0〉. (25)

The isovector parameter gT =1
pp is adjusted so that the Fermi

2νββ NME vanishes, and thus the isospin symmetry is partially
restored. Then we independently vary the isoscalar parameter
gT =0

pp such that it reproduces the calculated matrix element
corresponding to the measured 2νββ half-life and a (moder-
ately) quenched effective value geff

A = 1.0 of the axial-vector
coupling strength. These values are determined for each mass
number separately, and the obtained parameters are adopted
for all multipoles in both the left- and right-side even-even
nuclei. We list the obtained values in Table III. The gT =0,1

pp
values depend on the gph value only weakly: The variation in

TABLE III. The gpp parameters used in the present calculations
for the isoscalar (column 3) and the isovector (column 4) interaction.

Nucleus Basis gT =0
pp (gA ≈ 1.00–1.27) gT =1

pp

76Ge WS 0.80 0.99
sp 0.83 0.96

96Zr sp 0.83 0.93
100Mo sp 0.87 0.91
116Cd WS 0.82 0.82
128Te WS 0.73 0.94

sp 0.745 0.87
130Te WS 0.74 0.95

sp 0.73 0.86
136Xe WS 0.64 0.98

sp 0.67 0.87
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FIG. 1. Values of the particle-particle parameter gT =0
pp as functions

of gA for a representative set of bases and different nuclei.

the range of the gph values of Table II is only about 1–5% for
each nucleus. Since the impact of the variation on the NME
values in negligible, the gpp values obtained with gph(1+) were
adopted. The bare value gbare

A = 1.27 was also tested in the
determination of the gT =0

pp parameters, but the parameter values
obtained this way differed only by 1–3% from those obtained
with geff

A = 1.0 (see Fig. 1) so we do not list them separately for
gbare

A = 1.27. It seems that in the considered large basis sets the
behavior of gpp as a function of gA is rather flat for values larger
than 1, and only for the smaller gA values do the variations in
the gpp values set in. Hence, the 2νββ nuclear matrix element
M (2ν) is strongly dependent on the gT =0

pp value (see Fig. 2).

As a result, the values of the NMEs M
(0ν)
GT , M

(0ν)
F , and M

(0ν)
T

are altered mildly in the range gA ≈ 1.00–1.27, resulting in
about 10–20% changes in the total NMEs M (0ν) as in Ref.
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FIG. 2. Values of the 2νββ nuclear matrix element as functions
of gT =0

pp for a representative set of bases and different nuclei.

TABLE IV. IAS energies calculated using gph(1+) of Table II and
gT =0,1

pp of Table III. The corresponding experimental IAS energies are
listed in the last column.

Nucleus E(IAS)sp E(IAS)WS Efit (IAS)
(MeV) (MeV) (MeV)

76Ge 6.5 7.0 8.6
96Zr 5.8 9.8
100Mo 9.5 9.8
116Cd 9.8 11.0
128Te 11.0 11.9 12.2
130Te 10.6 11.4 12.8
136Xe 10.1 10.5 13.4

[29], and we adopt the effective value geff
A = 1.0 in the present

calculations.
The IAS (isobaric analog state) energies calculated using

the gph(1+) values of Table II and gT =0,1
pp values of Table III

are presented in Table IV. From the results of [53–59] we
can derive the following expression for the experimental IAS
locations for the DBD nuclei of current interest:

Efit (IAS) = 5 + 0.6TZ MeV, (26)

where TZ = 1
2 (N − Z). These values are presented in Table IV

for comparison. As can be seen in the table the computed
locations of the IAS are too low in comparison with the
experimental locations. The difference between the computed
and the experimental locations varies between 1.2 and 4
MeV, except for the cases A = 100 and 128 (sp basis), for
which the differences are less than 0.5 MeV. The sum rule
S− − S+ = N − Z, S− [S+] being the total Fermi strength
in the (p, n) [(n, p)] direction, is exactly fulfilled in our
calculations. The discrepancy in the computed IAS energies is
typical of pnQRPA calculations which are not self-consistent,
i.e., the mean field is not determined by the same Hamiltonian
as the excited states. In self-consistent calculations the situation
is improved and the discrepancies reach typically a level below
1 MeV, the computed energies of the IAS being still below the
measured ones (see, e.g., [66]).

B. IVSD Jπ = 2− strength functions

The Jπ = 2− strength functions were calculated in the
bare Woods-Saxon (WS) bases, as well as in the slightly
modified single-particle (sp) bases. Two different gph values
were adopted: one was obtained by adjusting it to the measured
location of the Gamow-Teller (GT) giant resonance, and the
other was obtained by adjusting it to the measured location
of the IVSD Jπ = 2− giant resonance (see Sec. III A). The
resulting strength functions for mass numbers A = 76, 100,
116, and 128 are presented in Figs. 3–6. In the figures we use
Lorentzian folding with a peak width of 0.5 MeV [35].

As we can see in Fig. 3, for A = 76 the large, about
30%, deviation between the values of gph(1+) and gph(2−)
(see Table II) results in large deviations between the strength
functions calculated using the WS basis. On the other hand, for
the sp basis the difference between the different gph values is
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FIG. 3. Isovector spin-dipole J π = 2− strength functions for A =
76 calculated using either a Woods-Saxon (WS) or a modified Woods-
Saxon (sp) single-particle basis, and gph values obtained by fitting to
the location of either the Gamow-Teller (GT) or the IVSD J π = 2−

giant resonance.

smaller, which leads to smaller deviations between the strength
functions.

From Fig. 4 we see that for A = 100 the moderate, about
15%, deviation between the gphvalues (see Table II) leads to
moderate differences between the calculated strength func-
tions. From Fig. 5, in turn, we see that large deviations between
the gph values lead to large deviations between the strength
functions.

As can be seen in Fig. 6, for A = 128 the large, about 30%,
deviations in gph values lead to large deviations in the strength
functions calculated using the sp basis. The small, about 4%,
difference between the gph values, on the other hand, leads to
small differences in the strength functions calculated using the
WS basis.
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FIG. 4. The same as Fig. 3 for A = 100.
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FIG. 5. The same as Fig. 3 for A = 116.

For A = 96 the strength functions were almost identical,
so the corresponding spectra are not presented here. The
cases A = 130 and 136 were almost identical with A = 128,
with slightly more moderate deviations between the different
spectra, so the figures are omitted here.

C. Matrix elements for neutrinoless ββ decay

We present our final results for the nuclear matrix elements
(M (0ν)) of the light-Majorana-mediated neutrinoless ββ decay
using the two sets of single-particle bases discussed in Sec. II A.
Furthermore, we investigate the impact of using the gph(2−)
value in the evaluation of the 0νββ NME by using three
different methods. That is, for both sets of bases we compute
M (0ν) [Eq. (12)] first by using the common parameter gph =
gph(1+) for each multipole (Model 1), then change the gph

value into gph(2−) for the multipole Jπ = 2−, and keep gph =
gph(1+) for the other multipoles (Model 2). Furthermore, we
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FIG. 6. The same as Fig. 3 for A = 128.
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FIG. 7. Multipole decomposition of the total 0νββ matrix element
M (0ν ) of (a) 76Ge (b) 128Te.

perform the calculations using gph(1+) for the 1+ channel
and gph(Jπ ) = gph(2−) for Jπ 	= 1+ (Model 3). The gT =0,1

pp
values of Table III are used for each multipole. We adopt the
effective axial-vector coupling geff

A = 1.00 for our 0νββ NME
calculations. We use the effective gA to incorporate the nuclear
medium and non-nucleonic correlations, but we use gV = 1.0
on the basis of the CVC.

The relative importance of the 2− contributions in the 0νββ
NMEs has been illustrated in Fig. 7. For a medium-heavy
nucleus, like 76Ge [panel (a) of Fig. 7)], the contributions
from the 2− states can be considerable. For a heavier nucleus,
like 128Te [panel (b) of Fig. 7], the contribution is not that
conspicuous. Nevertheless, it is worth studying the effect of
the spin-dipole states on the values of the 0νββ NMEs.

We present our final NMEs of Eq. (12) in Ta-
bles V and VI, and compare them with the results
of Hyvärinen et al. [29] for geff

A = 1.00. In Ref. [29]
smaller single-particle bases were used, i.e., the orbitals
1p–0f –2s–1d–0g–0h11/2 for the A = 76, 82 systems, the

orbitals 1p–0f –2s–1d–0g–0h for the A = 96, 100 systems,
and the orbitals 1p–0f –2s–1d–0g–2p–1f –0h for the A =
116, 128, 130, 136 systems. The same orbitals were used
for both neutrons and protons. The gT =0,1

pp parameters were
determined in the same manner as in the present study, and the
gph parameter was adjusted to the GTR in the traditional way.

If we compare the content of Tables II and V with the
differences shown in Fig. 8 and with the IVSD Jπ = 2−
strength functions in Figs. 3–6, we can draw the following
conclusions.

A = 76: There is a large, about 30%, difference between the
IVSD- and GT-determined gph values for the WS basis. This
is reflected as a large difference in both the strength functions,
Fig. 3, and 0νββ NMEs, Table V. Increasing the impact of
gph(2−) on the NMEs (Model 3) increases the difference
even more. For the sp basis the differences are smaller for
all quantities and, in particular, the deviations from the NME
computed in the smaller single-particle space [29] are on the
percent level.

A = 96: The deviations in the gph values, and 0νββ NMEs
are small, at the few-percent level. However, there is a notable
deviation from the small-basis 0νββ NME [29].

A = 100: The adjusted gph values differ by some 20%, and
also the strength functions (cf. Fig. 4) change correspondingly.
There is a negligible difference in the values of the 0νββ NMEs
between Model 1 and Model 2, but a notable difference when
going to Model 3. There is also a notable deviation from the
NME value obtained in the smaller basis [29].

A = 116: The determined gph values deviate by some 20%,
producing slight differences in the strength functions, as seen
in Fig. 5. As a result, the values of the 0νββ NMEs do not
differ from each other between Model 1 and Model 2, and only
slightly when going to Model 3. However, there is a notable
deviation from the one computed in the smaller basis [29].

A = 128: There are notable, about 30%, deviations in
the gph values for the sp basis and this is reflected in the
deviations in the strength functions, Fig. 6, for the sp-basis
based calculations. Deviations in the values of the 0νββ NMEs
between Model 1 and Model 2 are moderate, less than a percent
within a given basis, but there are few-percent deviations when
going from the WS-computed to the sp-computed NMEs. The
sp-computed NMEs of Model 1 and Model 2 are consistent
with the one produced in the smaller basis [29]. However,
using Model 3 causes again some 10% deviations from the
small-basis NME when using the sp basis.

A = 130: The situation is similar to the A = 128 case,
except that all the sp-computed 0νββ NMEs deviate by
10–20% from that computed in the smaller basis [29].

A = 136: There are 20–30% differences in the gph values
for both bases but the differences in the strength functions are
moderate. Except for the NME computed in Model 3 in the
sp basis, there are only some 10% differences in the values
of the WS-computed and the sp-computed 0νββ NMEs, and
less than 7% deviations from the NME obtained in the smaller
basis [29].

Table V shows that the adoption of the IVSD Jπ = 2−-fitted
value of gph for the 2− channel of the 0νββ NMEs (Model 2)
affects the NMEs negligibly for all of the cases (blue dots
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TABLE V. Values of the 0νββ NMEs for geff
A = 1.00. The first column indicates the transition, the second column the basis used in the

calculation, and the third one the model adopted for the gph values. Model 1: gph(1+) used for all J π ; Model 2: gph(2−) used for J π = 2−, for
the rest gph(1+) is used; Model 3: gph(1+) used for J π = 1+, for the rest gph(2−) is used. The columns 4 to 6 show the decomposition of the total
NMEs (column 7) in terms of the Fermi, Gamow-Teller, and tensor contributions. The last row for each transition corresponds to the earlier
calculations performed in Ref. [29]. The quoted errors only take into account uncertainties due to the strength of the particle-hole interaction.

Nuclear transition Basis Model M
(0ν )
F M

(0ν )
GT M

(0ν )
T M (0ν )

76Ge −→ 76Se WS 1 −1.76 ± 0.06 5.4 ± 0.2 −0.356 ± 0.013 6.8 ± 0.3
WS 2 −1.76 ± 0.05 5.5 ± 0.2 −0.357 ± 0.012 6.9 ± 0.3
WS 3 −1.95 ± 0.11 5.8 ± 0.3 −0.31 ± 0.03 7.4 ± 0.4
sp 1 −1.99 ± 0.08 5.3 ± 0.2 −0.390 ± 0.015 6.9 ± 0.3
sp 2 −1.99 ± 0.08 5.2 ± 0.2 −0.389 ± 0.014 6.8 ± 0.3
sp 3 −1.90 ± 0.13 5.1 ± 0.3 −0.41 ± 0.03 6.6 ± 0.4

sp, small [29] 1 −1.74 5.07 −0.28 6.54
96Zr −→ 96Mo sp 1 −1.64 ± 0.06 3.95 ± 0.12 −0.254 ± 0.014 5.3 ± 0.2

sp 2 −1.64 ± 0.06 3.97 ± 0.14 −0.255 ± 0.013 5.3 ± 0.2
sp 3 −1.68 ± 0.13 4.0 ± 0.3 −0.24 ± 0.04 5.5 ± 0.4

sp, small [29] 1 −1.44 3.26 −0.23 4.47
100Mo −→ 100Ru sp 1 −2.30 ± 0.05 3.74 ± 0.04 −0.500 ± 0.010 5.54 ± 0.10

sp 2 −2.30 ± 0.05 3.76 ± 0.05 −0.503 ± 0.009 5.55 ± 0.11
sp 3 −2.43 ± 0.15 3.9 ± 0.2 −0.47 ± 0.03 5.9 ± 0.4

sp, small [29] 1 −1.63 3.62 −0.27 4.98
116Cd −→ 116Sn WS 1 −1.76 ± 0.07 4.11 ± 0.12 −0.171 ± 0.012 5.7 ± 0.2

WS 2 −1.76 ± 0.07 4.08 ± 0.11 −0.168 ± 0.013 5.7 ± 0.2
WS 3 −1.64 ± 0.05 3.94 ± 0.08 −0.191 ± 0.008 5.39 ± 0.13

WS, small [29] 1 −1.50 3.61 −0.17 4.93
128Te −→ 128Xe WS 1 −1.65 ± 0.04 4.68 ± 0.08 −0.523 ± 0.010 5.81 ± 0.12

WS 2 −1.65 ± 0.04 4.67 ± 0.10 −0.523 ± 0.009 5.81 ± 0.14
WS 3 −1.64 ± 0.08 4.7 ± 0.2 −0.53 ± 0.03 5.8 ± 0.3
sp 1 −1.77 ± 0.05 4.27 ± 0.09 −0.523 ± 0.011 5.52 ± 0.15
sp 2 −1.77 ± 0.05 4.22 ± 0.09 −0.519 ± 0.011 5.47 ± 0.15
sp 3 −1.55 ± 0.08 3.89 ± 0.13 −0.59 ± 0.03 4.9 ± 0.3

sp, small [29] 1 −1.78 4.40 −0.43 5.74
130Te −→ 130Xe WS 1 −1.46 ± 0.03 4.04 ± 0.07 −0.468 ± 0.008 5.03 ± 0.10

WS 2 −1.46 ± 0.03 4.03 ± 0.08 −0.468 ± 0.007 5.02 ± 0.12
WS 3 −1.42 ± 0.07 3.97 ± 0.15 −0.48 ± 0.03 4.9 ± 0.3
sp 1 −1.53 ± 0.04 3.70 ± 0.08 −0.460 ± 0.009 4.77 ± 0.12
sp 2 −1.53 ± 0.04 3.65 ± 0.08 −0.456 ± 0.009 4.72 ± 0.12
sp 3 −1.30 ± 0.06 3.31 ± 0.09 −0.53 ± 0.02 4.1 ± 0.2

sp, small [29] 1 −1.52 4.12 −0.38 5.27
136Xe −→ 136Ba WS 1 −0.683 ± 0.010 2.83 ± 0.06 −0.227 ± 0.004 3.28 ± 0.07

WS 2 −0.683 ± 0.010 2.90 ± 0.09 −0.229 ± 0.003 3.35 ± 0.10
WS 3 −0.683 ± 0.010 2.93 ± 0.10 −0.231 ± 0.003 3.38 ± 0.12
sp 1 −1.01 ± 0.03 2.96 ± 0.06 −0.249 ± 0.005 3.72 ± 0.09
sp 2 −1.01 ± 0.03 3.01 ± 0.08 −0.251 ± 0.005 3.76 ± 0.10
sp 3 −1.12 ± 0.06 3.21 ± 0.15 −0.220 ± 0.014 4.1 ± 0.3

sp, small [29] 1 −0.89 2.82 −0.22 3.50

in Fig. 8). Adoption of gph(2−) for all multipoles Jπ 	= 1+
(Model 3), however, causes larger deviations in all cases (red
squares and open triangles in Fig. 8).

The results obtained in the WS bases deviate from those
obtained in the sp bases by about 12% in the case of A = 136,
and by less than 10% in the other cases for Model 1 and Model
2, as seen in Fig. 9, blue dots and red squares. However, for
Model 3 the differences between the different single-particle
bases are 15–21% for A = 128, 130, 136 and about 11% for
A = 76. Hence, the features of the single-particle valence
spaces affect notably the values of the NMEs.

The present results are summarized in Table VI where we
quote the combined no-core 0νββ NMEs of Model 2 and
Model 3. Comparing the NME values of Table VI with the
NMEs of [29] shows that the present results deviate from
those obtained in the smaller basis [29] by less than 4% for
A = 76, 136, and about 10–18% for the rest (see also the black
asterisks in Fig. 8). Hence, the numbers of Table VI indicate
that the NME results of Hyvärinen et al. [29] deviate by at most
18% from the present results, the differences emerging from
variations in the nuclear mean field, size of the single-particle
valence space, and variations in the value of gph.
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TABLE VI. Computed no-core nuclear matrix elements for geff
A =

1.00 (column 2); combined results of Model 2 and Model 3 are
adopted. Given are also the single-particle bases (column 3) and the
nuclear-structure coefficients of Eq. (27) (column 4). The phase-space
factors are taken from [42].

Nuclear transition 0νββ NME Basis C (0ν )

76Ge −→ 76Se 6.7 ± 0.3 sp 0.25 ± 0.03
96Zr −→ 96Mo 5.4 ± 0.3 sp 0.044 ± 0.005
100Mo −→ 100Ru 5.7 ± 0.3 sp 0.050 ± 0.006
116Cd −→ 116Sn 5.55 ± 0.12 WS 0.051 ± 0.003
128Te −→ 128Xe 5.2 ± 0.2 sp 1.64 ± 0.13
130Te −→ 130Xe 4.41 ± 0.12 sp 0.094 ± 0.006
136Xe −→ 136Ba 3.9 ± 0.2 sp 0.118 ± 0.013

The expression for the half-life, Eq. (10), can be written in
an easily usable form,

t
(0ν)
1/2 (0+

i −→ 0+
f ) = C (0ν)

(|〈mν〉|[eV])2
× 1025 yr, (27)

where the effective electron neutrino mass is given in eV. From
this expression it is easy to derive the values of the half-lives
once the value of the neutrino mass is known. We list the
nuclear-structure coefficients C (0ν), together with the adopted
NMEs, in Table VI.
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IV. CONCLUSIONS

In this work we calculated the nuclear matrix elements of the
neutrinoless ββ decays mediated by the light Majorana neu-
trino. The matrix elements were computed for seven key decays
of immediate experimental interest, and for which experimen-
tal data on isovector spin-dipole Jπ = 2− giant resonances
have become available. The calculations were performed using
realistic two-body interactions and two different sets of no-core
single-particle bases, the bare Woods-Saxon bases and their
slightly modified versions, to better reproduce the experimental
quasiparticle spectra of relevance to this study. In addition, we
include up-to-date nucleon-nucleon short-range correlations,
nucleon form factors, induced weak nucleonic currents, and
partial restoration of isospin. We adjusted the gph parameter
of the pnQRPA in two different ways: by fitting it to the
location of the GT giant resonance (GTR) in the traditional
way, and by fitting it to the location of the IVSD Jπ = 2− giant
resonance as a new method which has become possible because
of new experimental data. We calculated the 0νββ NMEs
using three methods: adopting the gph adjusted to GTR for
each multipole, adjusting the gph(2−) separately to the IVSD
Jπ = 2− giant resonance, and adopting the gph(2−) for each
multipole Jπ 	= 1+. Finally we compared the obtained results
against each other and against a previous study of Hyvärinen
et al. in which smaller single-particle model spaces were used.

The 0νββ NMEs computed in the present no-core modified-
WS single-particle bases, using the IVSD Jπ = 2− fitted
gph values, deviate from the previously computed NMEs of
Hyvärinen et al. [29], based on the gph adjusted by the empirical
GT resonance energies, by less than 4% for the decays of
76Ge and 136Xe, and by some 10–18% for the rest of the
cases. Most of the deviations are due to the extension of the
single-particle space of pnQRPA, while the effect of adjusting

024608-10
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the particle-hole interaction to data on spin-dipole resonances
is relatively smaller. Table VI summarizes our results for the
nuclear-structure coefficients that reflect the improvements of

the 0νββ NMEs achieved in the present work. The quoted
errors only take into account the uncertainties due to the
strength of the particle-hole interaction.
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