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Relativistic quasifree scattering of hadrons
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Continuum spectra of hadrons scattered without charge exchange by complex nuclei, under conditions such
that incoherent elastic scattering from bound nucleons can be considered as quasifree, have been transformed
into relativistic single-nucleon responses, in a fashion familiar for electron spectra. These hadron responses are
subjected to tests of their scaling properties, for changes in momentum transfer, nuclear mass, and specific hadron
beams. Scaling is indeed found for some beam energies and angles, with more success for light nuclei.
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I. INTRODUCTION

Modern analyses of quasifree electron scattering on com-
plex nuclei have been presented as single-nucleon responses
with relativistic kinematics [1–4], based upon the conditions
for incoherent quasifree scattering found in Ref. [5]. These
analyses are designed to cover all nuclei, by including a
Fermi momentum which changes with nuclear mass. These
internal momenta kF have been taken from fits to quasifree
electron spectra [6], with newer data used to replace the values
inferred in Ref. [7]. Here, the corresponding intermediate
energy hadron quasifree spectra without charge exchange
(NCX) will be presented in the same relativistic response
format, for a closer comparison to electron scattering responses
and to the large body of theoretical work inspired by the
electron data. Reference [8] includes a survey of these methods
for 12C at large momentum transfers. Scaling, in which two
or more observables are combined into a single variable
whose responses agree, is a powerful demonstration that the
assumptions made for the responses are indeed valid.

The present work will explore a wide range of momentum
transfers for quasifree scattering of elementary hadrons to de-
termine the limits of the methods used, with a very wide range
of nuclear masses, from A = 6 through A = 208. Quasifree
scattering of electrons has found only small alterations for the
in-medium electromagnetic interactions [9,10], but the strong
interaction will influence the in-medium collisions of hadronic
beams with bound nucleons, and possibly alter the responses in
several ways. The wide range of data considered in the present
work will serve to examine these possibilities, in a manner
fully consistent with the electron scattering analyses. There
are other scaling systems than the one used here, compared to
one another for hadrons in Ref. [11].

The relativistic responses for electrons have been found to
scale in two fashions. The scaling variable ψ used here is the
least momentum of the bound nucleon that may scatter a beam
particle to a given energy transfer ω and momentum transfer
q (as a fraction of the Fermi momentum kF) to a single bound
nucleon; here, the response will be called �(ψ ). Scaling of the
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first kind is found for responses by a given beam on a given
nucleus that are independent of the momentum transfer to the
beam, while scaling of the second kind is noted when responses
at a given momentum transfer are the same for all nuclear
targets of mass A for a given beam and momentum transfer
q [12,13]. When both the first and second kinds of scaling
are noted, the result has been called Superscaling [2,13–15]. A
universal curve has been found to match the electron scattering
charge responses fL to demonstrate Superscaling [4,6]. A third
kind of scaling has been defined for hadron quasifree responses
when all relevant hadron beams yield the same responses at a
given momentum transfer on a given nucleus [16], and this
third kind of scaling has been used to connect electroweak
scattering of electrons to create nuclear responses for reactions
with neutrinos [17].

In addition to the requirements for quasifree scattering,
scaling also assumes that the single-nucleon spin and isospin
responses of nuclei are the same as for free-space scattering.
The wide range of beams (electrons and hadrons), beam
energies, and momentum transfers will provide a severe test of
this assumption, and perhaps open the door to understanding
nuclear response modifications.

Most of the information found in quasifree single-nucleon
responses is determined by the internal motion of the bound
nucleons, here modeled as a relativistic Fermi gas (RFG) to
generate comparison curves [1–4]. This Fermi gas is only a
simplification of the true single-particle nuclear response [18]
but allows a simple curve to seek more interesting features
of these measured responses. A recent comparison of electron
quasifree data to model predictions was able to quantify the
limits of Fermi gas models [19]. The responses of this work
will be compared to the expectations of the RFG for momentum
transfers q greater than twice the Fermi momentum kF. At
smaller momentum transfers some of the RFG response will be
blocked by the Pauli Principle, since some nuclear momentum
states are occupied, banning scattering into those states. This
blocking effect for hadron quasifree scattering has recently
been examined for hadron integrated cross sections [20].

All of the expressions to be used in this work, defining the
scaling variable ψ , the response �(ψ ), the RFG, and the Pauli
blocking, are to be found in the Appendix.
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II. THE DATA

Measured inclusive (only one outgoing particle detected)
spectra without charge exchange (NCX) for hadrons scattered
from 6Li, carbon, calcium, zirconium (or niobium), and lead
(and bismuth) will be presented as their relativistic responses
�(ψ ) for scaling of the first and third kinds. A wider range of
nuclear masses has been studied with several hadron beams,
and will be used to test scaling of the second kind. The
beams used were 500 MeV pions (of both signs) [21,22],
820 MeV π− [23], 367 MeV K+ [24], 392, 400, and 420 MeV
protons [25–29], 558 MeV protons [30], 795 MeV protons
[31], and 1014 MeV protons [32]. Summaries of trends will
be made by interpolating these responses at ψ = 0 and ψ =
−0.8, with the ψ = 0 data at the expected maximum of
the responses, and ψ = −0.8 at smaller energy losses less
subject to complications of pion production and more subject
to collective effects.

Momentum transfers q to the beam particle range from
269 [32] to 819 MeV/c [27], as computed for free elastic
scattering from protons at the scattering angles of the exper-
iments. These momentum transfers vary across a spectrum at
a fixed scattering angle, but will be cited in this work as the
free hadron-proton elastic scattering momentum transfer. The
conditions for incoherent quasifree scattering of these beams
from one-and-only-one bound nucleon become valid near q =
400 MeV/c [5]. All of the beam energies are sufficient to meet
these conditions. Only statistical uncertainties as published
will be shown; an additional systematic uncertainty near 10%
is recognized, but not included in the response data. Most
data were taken with magnetic spectrometers, normalized to
elastic scattering on free protons in a hydrocarbon sample. The
558 MeV (p, px) data were taken with scintillation counters,
with particle identification to exclude deuterons, but worse
energy resolution [30]. Using these data, it is concluded that
deuteron contamination of the proton spectra analyzed in the
present work is very small.

III. SCALING OF THE FIRST KIND

Tests of scaling of the first kind will be shown for the nuclei
of this study in order of the nuclear mass A, then the mass of the
probing beam, then by the increasing beam energy. Each case
will cover the range of experimental momentum transfers for
each hadron experiment. A figure summarizing the responses
�(ψ ) interpolated for ψ = 0 and ψ = −0.8 as the momentum
transfer q increases will summarize the responses. Reference
[33] carried out an analysis of electron spectra to test the
convergence of the interpolated nonrelativistic responses on
iron for large values of the four-momentum transfer Q2. This
work will use the three-momentum transfer q.

Figure 1 shows responses �(ψ ) computed by the expres-
sions in the Appendix for hadron data on a 6Li sample,
from negative pion [23] and proton [31] spectra. A Fermi
momentum of kF = 165 MeV/c [6] was used to compute the
RFG curves. The pion spectra were taken with a broad accep-
tance spectrometer, with several overlapping magnetic field
settings, and reported for fixed values of q. These data agree
completely, until large energy losses are encountered at large
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FIG. 1. Scaling of the first kind would imply that responses for a
given beam on a given target are independent of momentum transfer.
Two arrays of relativistic hadron beam NCX responses �(ψ ) on
6Li are shown as the three-momentum transfer q changes [23,31],
compared to the RFG curve for kF = 165 MeV/c [6], without Pauli
blocking. Open points are for negative beams, and solid points are for
positive beams.

momentum transfer, and match the RFG curve. This agreement
demonstrates scaling of the first kind for 820 MeV π− spectra
from 6Li. The 795 MeV proton data [31] increase steadily with
increasing q, perhaps due to backgrounds from processes other
than simple quasifree. The q = 503 MeV/c spectrum response
for protons, meeting the conditions for quasifree scattering, lies
near the RFG curve.

Clear quasifree peaks are found in the 500 MeV pion NCX
responses for carbon [22] and are seen to be equal for both
pion signs in Fig. 2. However, the 500 MeV data at three

−2 −1.5 −1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

ψ

Φ
(ψ

)

Carbon

500 MeV (π,πx) (+2)

820 MeV (π,πx) (+1)

367 MeV (K
+
,K

+
x)

Carbon

500 MeV (π,πx) (+2)

820 MeV (π,πx) (+1)

367 MeV (K
+
,K

+
x)

313 MeV/c
405
489
350
425
500
575
650
287
385
473
570 EEL

FIG. 2. Three data sets for meson NCX quasifree scattering on
carbon are shown [22–24] in the �(ψ ) format across a range of
momentum transfers to test scaling of the first kind. Solid lines show
the RFG expectation with kF = 228 MeV/c for q = 500 MeV/c,
and the dashed curve shows the effect of Pauli blocking at q =
350 MeV/c. The dotted curve shows the SuSAv2 nonspin isoscalar
model response from the Appendix of Ref. [13]. With the 500 MeV
pion spectra are also shown in green the q = 570 MeV/c carbon
charge (EEL) responses from electron scattering [8]. The 820 MeV
pion data are in red in the online figure.

024606-2



RELATIVISTIC QUASIFREE SCATTERING OF HADRONS PHYSICAL REVIEW C 98, 024606 (2018)

−2 −1.5 −1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

ψ

Φ
(ψ

)

392 MeV (+3)

(p,px)
Carbon

400 MeV (+2)

795 MeV (+1)

1014 MeV

392 MeV (+3)

(p,px)
Carbon

400 MeV (+2)

795 MeV (+1)

1014 MeV

392 MeV (+3)

(p,px)
Carbon

400 MeV (+2)

795 MeV (+1)

1014 MeV

392 MeV (+3)

(p,px)
Carbon

400 MeV (+2)

795 MeV (+1)

1014 MeV

323 MeV/c
400
609
725
199
263
327
450
279
329
379
503
623
739
269
328
405
450
512
599

FIG. 3. Four data sets for proton NCX quasifree scattering on
carbon are shown [25,28,31,32] in the �(ψ ) format across a wide
range of momentum transfers. Solid lines show the RFG expectation
for q = 500 MeV/c. A dotted curve shows the “universal” curve for
electron scattering [6]. The 400 MeV [28] and 1014 MeV [32] proton
data are in red in the online figure.

momentum transfers do not show scaling of the first kind. For
820 MeV pions [23], the carbon responses show better scaling
of the first kind, until pion production becomes important at
large momentum transfer. Sparse data [24] for quasifree K+
scattering scale quite well with increasing momentum transfer.

Computed responses in the SuSAv2 model were compared
to electron quasifree data in Ref. [13], with fitted shapes in the
Appendix of that work. A dotted curve for the “longitudinal”
(nonspin) isoscalar response is compared to the 820 MeV π−
responses in Fig. 2. The hadron response may contain contribu-
tions from other spin/isospin channels to explain the observed
difference.

Relativistic responses for four proton beam energies upon
carbon are shown in Fig. 3. At 392 MeV [25] the responses fail
to scale at large angles or momentum transfers, but converge
well at negative ψ . At 400 MeV for smaller q [28], the carbon
relativistic responses scale quite well. In contrast, the 795 MeV
proton responses [31] fail to scale, due to a larger contribution
from pion production at larger angles. At 1014 MeV [32], good
scaling is found except at the smallest angle.

The shape of a universal relativistic response was shown in
Ref. [6] and is reproduced as the dotted curve compared to the
392 MeV proton responses in Fig. 3. This curve is below the
RFG shape and fails to match the proton data.

For calcium, the 500 MeV pion responses seen in Fig. 4
agree for the two pion signs [22] at two momentum transfers.
At 820 MeV [23], better scaling is found except at large energy
losses at the largest momentum transfer. As for carbon, the
K+ responses on calcium scale quite well [24]. Only the K+
responses agree with the RFG curves for calcium.

The proton beam responses for calcium are seen in Fig. 5
at three beam energies. As for carbon, the 392 MeV responses
rise rapidly for larger angles [26], but nearly scale at negative
ψ . The 795 MeV proton responses on calcium [31] fail
to scale, but the 1014 MeV data [32] are near the RFG
curve.
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FIG. 4. Three data sets for meson NCX quasifree scattering on
calcium are shown [22–24] in the �(ψ ) format across a range of
momentum transfers. Solid lines show the RFG expectation with
kF = 241 MeV/c for q = 500 MeV/c, and the dashed curve shows
the effect of Pauli blocking at q = 350 MeV/c. The 820 MeV pion
data are in red in the online figure.

Charge symmetry in cross sections is not expected for the
zirconium (A = 91) sample, but the 500 MeV pion responses
[22] agree in Fig. 6, since the elementary cross sections have
been adjusted for the neutron excess. Scaling of the first kind
is not noted except at very negative values of ψ . By 820 MeV,
the pion responses scale more closely [23]. Proton responses at
392 MeV on niobium (A = 93) [27] are similar to those for the
lighter nuclei, with a failure to scale except at very negative ψ ,
as seen in Fig. 6. This failure to scale is also noted at 795 MeV
[31].

Pion responses for lead at 500 MeV [22] are shown in Fig. 7,
but the responses are not found to be equal for the two beam
signs. Much as for the lighter samples, the 820 MeV responses
[23] nearly scale, as do the K+ responses [24]. The relativistic
responses�(ψ ) for 392 MeV and 795 MeV protons fail to scale
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FIG. 5. Three data sets for proton NCX quasifree scattering on
calcium are shown [26,31,32] in the �(ψ ) format across a wide range
of momentum transfers. Solid lines show the RFG expectation for
q = 500 MeV/c. The 795 MeV proton data [31] are in red in the
online figure.
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FIG. 6. Data arrays for both pion and proton NCX quasifree
scattering on zirconium (or niobium) are shown [22,23,27,31] in the
�(ψ ) format across a wide range of momentum transfers to test
scaling of the first kind. Solid lines show the RFG expectation for
q = 500 MeV/c and kF = 245 MeV/c [6]. The 820 MeV pion [23]
and 795 MeV proton data [31] are in red in the online figure.

in much the same fashion as for lighter nuclei, as noted in Fig. 8.
Responses computed in the coherent density fluctuation model
(CDFM) are shown for gold at q = 1000 MeV/c [34,35].

These tests of scaling of the first kind for all the hadron
quasifree data are summarized in Figs. 9 and 10, with interpo-
lated responses at ψ = 0 and ψ = −0.8. All responses � at
ψ = 0 rise with increasing momentum transfer, with best fit
slopes listed in Table I. These straight-line fits are also shown
with the ψ = 0 data in the figures. Interpolated responses at
ψ = −0.8 are remarkably constant for all nuclei, with each
consistent with an overall average of �(ψ = −0.8) = 0.361.
The RFG expectation at ψ = −0.8 is 0.27.
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FIG. 7. Three data sets for meson NCX quasifree scattering on
lead are shown [22–24] in the �(ψ ) format across a range of
momentum transfers. Solid lines show the RFG expectation with
kF = 248 MeV/c [6] for q = 500 MeV/c, and the dashed curve
shows the effect of Pauli blocking at q = 350 MeV/c. A dotted
curve shows the prediction of the coherent density fluctuation model
(CDFM) for 197Au at q = 1000 MeV/c [34]. The 820 MeV pion data
are in red in the online figure.
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FIG. 8. Two proton data sets for NCX quasifree scattering on lead
are shown [27,31]. Curves show the unblocked RFG expectation as
in Fig. 7.

Thus, quasifree NCX hadron scattering responses agree as
the momentum transfer increases with for scaling of the first
kind at ψ = −0.8, and violate this scaling in a very simple
manner at ψ = 0, with small slopes which increase with target
mass A.

IV. SCALING OF THE SECOND KIND

Scaling of the second kind will be tested only for momentum
transfers q near 500 MeV/c, without the blocking influence of
the Pauli Principle and meeting the conditions for quasifree
scattering.

Figure 11 includes the spectra for both pion signs at
500 MeV for a range of nuclear masses A [22]. These data
cluster nicely for agreement with scaling of the second kind.
For 820 MeV pions [23], this agreement is not found. Note the
spike near the maximum responses for calcium; this sample had
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FIG. 9. Interpolated responses �(ψ ) for NCX quasifree scat-
tering on five nuclear samples are shown for ψ = 0, the expected
maximum. The RFG expectation is �(ψ = 0) = 0.75. Scaling of the
first kind would imply that each response is independent of momentum
transfer q. Linear fits are shown for the 820 MeV π− responses with
q > 2kF, with parameters listed in Table I.
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FIG. 10. As Fig. 9, but as interpolated at ψ = −0.8, where
nuclear structure effects are more likely to be noted. The RFG
expectation is �RFG(y = −0.8) = 0.27 and the CDFM prediction is
0.233 [34]. Scaling of the first kind would imply that the response for
each nucleus is independent of the momentum transfer q. Linear fits
for q > 2kF are shown as q increases, with parameters in Table I.

a significant hydrogen contaminant. This figure also shows the
mass dependence for the K+ beam [24]; within large scatter,
these responses follow scaling of the second kind.

The 795 MeV proton experiment of Ref. [31] covered a
wide range of samples, with responses seen in Fig. 12. Save
for carbon, these responses scale with the nuclear mass A. This
figure also compares the two masses for the 1014 MeV proton
responses [31,32]; the data of this old experiment fail to follow
scaling of the second kind over only two nuclei. A wider range
of samples is spanned at 558 MeV [30], with general agreement
with scaling at negative ψ .

Much as for scaling of the first kind, these results for scaling
of the second kind are summarized in Fig. 13 by interpolations
at ψ = 0 and ψ = −0.8 for q near 500 MeV/c. The terbium
and tantalum proton points at 392 MeV also disagree in the
tabulated spectra [27]. These interpolated responses �(ψ ) are
nicely constant with increasing mass, and agree with scaling
of the second kind, with average responses �(ψ = −0.8) =
0.304(0.061) and �(ψ = 0) = 0.754(0.12). The relativistic
Fermi gas (RFG) responses are very near �RFG(y = −0.8) =
0.273 and �RFG(y = 0) = 0.75.

Overall, at a momentum transfer not subject to Pauli
blocking, the maxima �(ψ = 0) follow scaling of the second
kind very closely. At lower energy losses, the simple RFG is not

TABLE I. Scaling of the first kind would exhibit responses �(ψ )
that are independent of the momentum transfer q. Here are listed the
slopes b of linear fits �(ψ ) = a + bq for 820 MeV (π−, π−x) [23]
with q at least 2kF, with q as the free momentum transfer in MeV/c.

ψ = 0 ψ = −0.8

6Li 1.86 × 10−4(0.94 × 10−4) −4.8 × 10−4(0.5 × 10−4)
Carbon 6.26 × 10−4(0.97 × 10−4) 8.7 × 10−4(0.6 × 10−4)
Calcium 15.1 × 10−4(1.6 × 10−4) 8.0 × 10−4(0.9 × 10−4)
Zirconium 20.8 × 10−4(2.9 × 10−4) 8.8 × 10−4(1.9 × 10−4)
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FIG. 11. Scaling of the second kind would give responses �(ψ )
the same for all target masses A. This is tested for three meson beams
[22–24] for momentum transfers q near 500 MeV/c. The curves show
the RFG for carbon, with kF = 228 MeV/c. The calcium target for
the 820 MeV experiment had a small hydrogen contamination [23],
resulting in a sharp peak near ψ = −0.3.

adequate to account for the responses �(ψ = −0.8), which do
follow scaling of the second kind.

V. SCALING OF THE THIRD KIND

Scaling of the third kind has been defined as observing
quasifree responses that are the same for all elementary beams
on a given nuclear sample at similar momentum transfers
[16,17]; here, that momentum transfer is taken to be near
350 MeV/c or near 500 MeV/c. The two hadron beams [23,31]
used for quasifree scattering on 6Li show nearly identical
responses �(ψ ) in Fig. 14, for good agreement with this
scaling of the third kind at 500 MeV/c. At q = 350 MeV/c,
this figure also finds a close similarity between the pion data
[23] and the proton data at 13 and 15 deg. (q = 329 and
379 MeV/c) [31].
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FIG. 12. NCX scaling responses for protons are shown for three
beam energies at momentum transfers near 500 MeV/c on a range
of nuclei [30–32]. The curves show the RFG expectation with kF =
228 MeV/c, appropriate for carbon [6].
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The averages are 0.754(0.12) and 0.304(0.061) at ψ = 0 and −0.8,
respectively, in agreement with the RFG expectations 0.75 and 0.27.
These data are for momentum transfers near 500 MeV/c. Scaling
of the second kind would imply that each beam would exhibit no
dependence upon the nuclear mass A. Citations for the data can be
found in the text. Interpolated responses at ψ = −0.8 are in red in
the online figure.

Responses �(ψ ) for carbon are shown at both q near 350
and near 500 MeV/c in Fig. 15. At q near 350 MeV/c, not fully
matching the quasifree conditions, the hadron responses nearly
agree, but are stronger than expected by the Pauli-blocked RFG
curve. Some of the hadron responses near q = 500 MeV/c, but
not all, match the RFG curve.

Similar responses for calcium for five hadron beams are
seen in Fig. 16, with an apparent difference between proton and
meson results. For zirconium/niobium responses, two patterns
each agree in Fig. 16. For five hadron beams on lead or bismuth
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FIG. 14. Scaling of the third kind [16,17] would imply that for a
given nucleus at the same momentum transfer, all hadron beams would
exhibit the same responses. Relativistic responses �(ψ ) are compared
for two momentum transfers for 6Li, with data from Refs. [23,31].
For q = 350 MeV/c, the proton data are shown at both 13 deg.
(q = 329 MeV/c) and 15 deg. (q = 379 MeV/c). Curves show the
unblocked expectations of the RFG.
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FIG. 15. NCX scaling responses �(ψ ) are shown for a carbon
sample for several beams, with q near 350 and 500 MeV/c. The
curves show the carbon RFG expectation, including Pauli blocking at
q = 350 MeV/c. Citations to the data can be found in the text.

with q near 500 MeV/c, Fig. 16 finds good agreement with
scaling of the third kind, save at the lowest beam energy.

It has been suggested that K+ mesons encounter “swollen
nucleons” within nuclei [36,37]. The data shown for carbon,
calcium, and lead in Figs. 15 and 16 follow the same analysis
as for other hadron beams, with Aeff computed for 70% of the
free-space total cross sections and free off-shell beam nucleon
differential cross sections. The computed responses do not
differ from those of other hadrons.

These interpolated responses are shown in Fig. 17 plotted
against the in-medium (70% of free space) total cross sections
SGT [38,39]. The hadronic data have been fit to a linear
dependence, as shown, with parameters listed in Table II. A
carbon datum from electron scattering at q = 570 MeV/c is
also shown [8], as are (e, ex ) responses at q = 460 MeV/c
from Ref. [2].

The nuclear density dependence for scaling of the third
kind is shown for three nuclei in Fig. 18 at both ψ = 0 and
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FIG. 16. To test scaling of the third kind for heavier nuclei, NCX
scaling responses �(ψ ) are shown for three nuclei, with q near
500 MeV/c. Citations are found in the text. Curves show the RFG
expectations for q = 500 MeV/c.
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FIG. 17. Interpolated responses for several beams for four nuclei
are shown as the in-medium beam-nucleon total cross section SGT
changes; results for ψ = 0 are in solid black, and the lower open points
for ψ = −0.8 are in red in the online figures. Momentum transfers
q are near 500 MeV/c. The fitted lines use the parameters found in
Table II. Carbon points for electron scattering are at q = 570 MeV/c
[8], while three points for both ψ = 0 and ψ = −0.8 are determined
at q = 460 MeV/c [2].

ψ = −0.8. Here, the maximum nuclear density reached by
each beam in each nucleus is used as the measure. This density
is that at a radius outside of which the nuclear volume integrates
to equal Aeff . The Appendix describes the method. At ψ =
−0.8, these responses are constant to a nuclear density of
0.1 nucleons/fm3 for all targets, while at ψ = 0, the responses
indicate an increase at low densities.

VI. CONCLUSIONS

A wide range of hadron spectra that meet the formal condi-
tions for incoherent quasifree scattering have been transformed
to relativistic single-nucleon responses as familiar from many
electron scattering analyses. The methods used for the more
complex strong interactions are summarized in the Appendix.
The two types of scaling identified for electron scattering and
the third kind defined for hadron and electroweak spectra have
been tested, and the scaling conclusions will be summarized
here.

Scaling of the first kind would be recognized by responses
for scattering on a given nucleus by a given beam that are
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)

Third Kind
NCX

ψ=0

ψ=−0.8

 

 

Third Kind
NCX

ψ=0

ψ=−0.8

Calcium
Zirconium
Lead

FIG. 18. The computed effective numbers of nucleons Aeff for
three nuclei and several hadron beams were used to compute the
maximum nuclear density ρmax reached at Rmin in the Glauber method
with 70% of free-space SGT. Interpolated responses for ψ = −0.8
and ψ = 0 are plotted for several hadron beams as far as those
densities. At ψ = −0.8 the RFG expectation is �(ψ = −0.8) =
0.27, and �(ψ = 0) = 0.75. The K+ beam reaches the greatest
densities, the proton beams the least density. The electron figures
of Ref. [2] at q = 460 MeV/c at central densities of 0.171 and
0.1637 fm−3 give responses of 0.577(0.03) and 0.598(0.03) at ψ = 0
for calcium and lead, and 0.136(0.03) and 0.166(0.03) at ψ = −0.8.
These lie on smooth continuations of the hadron data.

independent of the momentum transfer q. Such scaling has
been found for electrons scattered by nucleon charges, with a
universal curve found to represent such data [4]. The hadron
beam relativistic responses �(ψ ) have been shown for pion,
K+, and proton beams in Figs. 1 –9 and summarized in Fig. 10.
Since the Fermi gas model for bound nucleons does obey
scaling of the first kind, the appropriate RFG responses have
been compared to the hadron data.

Table I summarizes a test of scaling of the first kind,
with fits for five nuclei of the responses at ψ = 0 and ψ =
−0.8 as the free elastic momentum transfer q increases for
820 MeV (π−, π−x) data [23]. Only responses with q > 2kF

were fit, and only the slopes are listed; scaling of the first kind
would find these slopes to be zero. Slopes are slightly positive
and increase slowly for heavier nuclei. Scaling of the first kind
is not found, but the data exhibit a consistent pattern.

TABLE II. Scaling of the third kind would be noted if responses �(ψ ) on a given nuclear sample at the same momentum transfer near
500 MeV/c are the same for all hadron beams. Parameters for linear fits at interpolated values of ψ are shown for changing values of SGT as
�(ψ ) = a + b SGT. This variable SGT is computed as 70% of the neutron/proton average of free-space hadron-nucleon total cross sections in
mb [38,39].

ψ = 0 ψ = −0.8

a b (mb−1) a b (mb−1)

Carbon 0.559 (0.029) 0.0154 (0.0010) 0.195 (0.014) 0.0041 (0.0005)
Calcium 0.427(0.021) 0.0122 (0.0007) 0.215(0.023) 0.0040 (0.0008)
Zr/Nb 0.275 (0.039) 0.0187 (0.0015) 0.046 (0.036) 0.0119 (0.0014)
Pb/Bi 0.411 (0.045) 0.0124 (0.0021) 0.144 (0.036) 0.0072 (0.0016)
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Scaling of the second kind would be recognized by re-
sponses that are the same for all nuclei for a given beam
at similar momentum transfers. Such scaling has been noted
for electron “longitudinal” scattering from nucleon charge
but is violated for transverse scattering, especially at large
energy losses, including pion production, for instance, as
noted in Ref. [2]. The hadron relativistic responses �(ψ )
for pions, K+, and protons have been shown in Figs. 11
and 12,

Fits to interpolated responses at ψ = 0 and −0.8 as
the nuclear mass A changes have been made using
�(ψ ) = a + b A. For ψ = 0, a = 0.8535(0.0017), and b =
−0.00165(0.00003). For ψ = −0.8, a = 0.314(0.015), and
b = −0.00065(0.00002). At both values of ψ , the slopes are
small and negative. Scaling of the second kind is closely
followed. This is a confirmation mainly of the Glauber method
used to compute Aeff . If scaling of the second kind is assumed,
the average values of the responses are 0.754(0.117) at ψ = 0
and 0.303(0.061) at ψ = −0.8.

Superscaling has been defined for those responses that
follow both scaling of the first and second kinds [3,12,14,15].
The present results find this nearly to be valid for hadrons.
Electron scattering with a spin transfer of zero does follow
Superscaling [2], but when a unit of spin is transferred, this
superscaling is lost [2].

A scaling of the third kind for quasifree spectra has been
defined [16,17], with relativistic responses for three hadrons
and five nuclei shown in Figs. 15 and 16, summarized in
Fig. 17. Within the Glauber method, these responses are shown
as a function of the maximum nuclear density reached in
Fig. 18, with differences between the responses at ψ = 0 and
ψ = −0.8.

Table II lists parameters for fits to test this scaling of the third
kind, with the total average (neutron/proton) cross sections
SGT as the variable, using 70% of the free-space total cross
sections SGT in mb [38,39] in �(ψ ) = a + b SGT. Only
hadron responses with q near 500 MeV/c were used for these
fits. Although the slopes are not zero, as expected for scaling of
the third kind, they are small. This may be due to the fact that
NCX spectra are dominated by isoscalar, nonspin interactions
[38]. The range of hadron beams allows a study of the nuclear
density reached by K+, pions, and protons, and seem to indicate
agreement with the electron scattering responses in Fig. 17. The
hadron relativistic single-nucleon responses for three nuclei
show consistent trends in Fig. 18.

If the relativistic single-particle responses for electrons and
hadrons follow all three types of scaling, one can only call this
Hyperscaling. A wide range of hadron NCX responses find this
nearly to be valid.

It is a weakness of the methods used to create the hadron
responses that the restriction to the nuclear surface is noted only
through the Glauber approximation to count single collisions.
A more effective way to see actual nuclear effects in that surface
would be to compute responses for nucleons in the surface, for
instance by RPA methods. This was shown to match the data
for two samples of early hadron quasifree spectra in the work
of Alberico et al. in Ref. [40]. It would surely be of value
to extend such work to the much richer array of hadron data
available now, both NCX and purely isovector single charge

exchange (SCX) spectra. Methods similar to the present have
examined many SCX spectra for scaling properties [41].

It is an interesting idea to suggest that failures to scale for
hadron quasifree spectra may be due to differences between
the nuclear single-nucleon responses and those in free space.
Future publications will explore a selection procedure to find
where data indeed represent these quasifree scattering events
that represent single-nucleon responses, similar to the work
with electron scattering data [42–44].

APPENDIX

In this Appendix the expressions for the quasifree scaling
relations used in this work will be defined, and the usage of
terms in these expressions will be given. The definitions and
terminology will be much the same as used for analyses of
quasifree electron scattering [2,45,46].

The scaling variable is taken to be ψ , much as defined in
Ref. [2]. This variable is the relativistic analog of the variable y
[45], which is the least momentum of the single bound moving
nucleon that can scatter a beam particle to a given energy loss
�E and momentum transfer q. This ψ is expressed as a fraction
of the Fermi momentum kF, as tabulated in Ref. [6].

The momentum transfer is that to the beam hadron, cor-
rected to be the effective momentum transfer as the charged
hadron strikes the charged nucleus Z with mass A

qeff = q(1+/−4Ze2/3Tr0A
1/3). (A1)

Here, T is the kinetic energy of the beam hadron, with the
plus sign for a negative beam, and r0 = 1.2 fm. Hereafter, this
qeff is referred to as simply q. Plots versus q cite the free
beam-nucleon elastic momentum transfer.

The energy transfer ω to the single bound nucleon includes
the least recoil energy of the other A − 1 nucleons, which is

Recoil = y2/2M (A − 1), (A2)

with y the nonrelativistic momentum of the bound nucleon
(equal to that of the rest of the A − 1 nucleons),

y = [ω(ω + 2M )]1/2 − q. (A3)

In this work, M is the free nucleon mass. Recent electron
scattering analyses have found a best fit to an effective mass of
0.8M [42–44], but hadrons interacting in the nuclear surface
seem to indicate the free mass.

A separation energy for the bound nucleon is included in
the energy loss ω, from Ref. [6]. For SCX, the mass difference
Q between the incoming and outgoing hadrons is included in
SE. Also, for SCX, a Coulomb energy CE = Ze2/r0 A1/3 is
added or subtracted to SE to form ω. For pion SCX with both
signs on bismuth, this Coulomb energy for each beam sign is
16.8 MeV. Then,

ω = �E – SE = �E-Q-CE-separation energy-Recoil. (A4)

My sign convention is that positive terms remove kinetic
energy from the beam. Overall, dropping terms with ω � 2M
simplifies this energy transfer to the single struck nucleon

024606-8



RELATIVISTIC QUASIFREE SCATTERING OF HADRONS PHYSICAL REVIEW C 98, 024606 (2018)

to

ω = {2q2 + A[2M (A − 1)(�E − SE) − q2]

+ 2q[q2 + 2MA(A − 1)(�E − SE) − Aq2]1/2}/2MA2.

(A5)

Then,

ψ = (λ − τ )/ξF
1/2{(1 + λ)τ + k[τ (τ + l)]1/2}, (A6)

with ξF = (1 + ηF
2)1/2 − 1 as the dimensionless Fermi kinetic

energy, ηF = kF/M , τ = κ2 − λ2, λ = ω/2M and κ = q/2M
[2,8,14]. The free nucleon mass is M . When the SE is included
in ω Refs. [2,13] call this variable ψ ′.

The relativistic response is formed from the measured
doubly-differential cross section data as

�(ψ ) = d2σ/d�Ed� d�E/dψ/dσ/d�Aeff . (A7)

The transformation from lab energy loss �E to the beam
hadron to the variable ψ is evaluated numerically. The op-
timum frame method [47] is used to evaluate the singly-
differential cross sections dσ/d� across the energy loss data of
the NCX spectrum, suitably averaged over nuclear protons and
neutrons. This method provides the beam energy and scattering
angle for the same momentum transfer as the experiment
for a moving bound nucleon; these optimum frame beam
energies change slowly for ψ < 0. These singly-differential
cross sections are then evaluated using the fits and compilation
of SAID [38]. Beam energies are higher and scattering angles
are lower for negative ψ . The case of ψ = 0 would correspond
to a collision with a bound nucleon at rest. For large positive
ψ these off-shell cross sections can vary rapidly, and become
unreliable, which limits the range of this scaling system. For
pion beams, where free scattering encounters resonances not
observed in pion reactions with nuclei, the off-shell cross
sections in the denominator are averaged for the beam energy
and ±18 MeV.

The large cross sections for hadron beams upon nucleons
imply that fewer than all A nucleons in a nucleus may be struck
once-and-only-once. The counting of such nucleons is accom-
plished in the Glauber model [48], as used in Ref. [49]. In-
medium pion-nucleon and proton-nucleon total cross sections
SGT are evaluated at 70% of the free-space values to account
for the anticipated decrease due to Pauli blocking [50–53].
This choice led to the best agreement of scaling relations for
hadrons on nuclei [54]. For K+-nucleon scattering, 70% of
free space cross sections are also used [39], in spite of some
beliefs that this hadron encounters “swollen nucleons” [36,37].
Matter, not charge, distributions of nuclei ρ(r ) were taken from
Ref. [55], with the same geometrical parameters for neutrons
and protons.

The expression used for the effective number of nucleons
Aeff struck once-and-only-once [48,49] is

Aeff =
∫

T (b)e–SGTT (b)2πb db, (A8)

with the profile function

T (b) =
∫

ρ(r )dz (A9)

for an impact parameter b, proceeding straight through the
target nucleus along z, with SGT as 70% of the free-space
average hadron-nucleon total cross section [38,39]. It is worth
noting that nucleon final state interactions included in electron
scattering analyses also use a similar Glauber method [8].

To estimate the radius and density reached by hadron beams,
the computed Aeff is taken to be the volume integral of the
nuclear density beyond some Rmin. The nuclear density at Rmin

is taken to be the maximum nuclear density sensed by each
hadron beam.

The resulting responses �(ψ ) are compared in the figures
to the expectation for a relativistic Fermi gas (RFG) of bound
nucleons [1–4], which includes a small term of the variable ψ
to the fourth power:

�(ψ )RFG = 0.75(1 – ψ2)�(1 − ψ2)
{
ηF

2 + ψ2
[
2 + ηF

2

− 2(1 + ηF
2)1/2

]}
/ηF

2. (A10)

This RFG response must be modified for momentum trans-
fers q less than twice kF by Pauli blocking, in which the
momentum states of the bound nucleons are filled, and recoil
into those states is forbidden. This blocking term depends upon
both the energy loss ω and momentum transfer q. The integral
of this blocking decreases the singly-differential cross section
by a factor [21]

PBFI = 3q/4kF − q3/16k3
F. (A11)

This factor has been shown to match the integrated cross
sections for quasifree hadron scattering to form sum rules [20].

The shape of the doubly differential RFG across the energy
loss spectrum is also blocked by factors given by the Lindhard
function [56]:

PBF = 2Mω/kF
2 for ω < qkF/M – q2/2M, (A12)

PBF = 1–z2 for ω > qkF/M – q2/2M, but ω < qkF/M

+ q2/2M. (A13)

Here, z = Mω/qkF – q/2kF. The PBF is zero beyond the
bounds of ω = qkF/M +/− q2/2M or for |ψ | > 1, but PBF =
1 for q > 2kF for |ψ | < 1. The Pauli-blocked relativistic Fermi
gas expectation is called PBRFG in the figures.
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