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Taylor approximation to treat nonlocality in the scattering process
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Study of the scattering process in the nonlocal interaction framework leads to an integro-differential equation.
The purpose of the present work is to develop an efficient approach to solve this integro-differential equation with
high degree of precision. The method developed here employs a Taylor approximation for the radial wave function
which converts the integro-differential equation into a readily solvable second-order homogeneous differential
equation. This scheme is found to be computationally efficient by a factor of 10 when compared to the iterative
scheme developed in Upadhyay et al. [J. Phys. G: Nucl. Part. Phys. 45, 015106 (2018)]. The calculated observables
for neutron scattering off 24Mg, 40Ca, 100Mo, and 208Pb with energies up to 10 MeV are found to be within at most
8% of those obtained with the iterative scheme. Further, we propose an improvement over the Taylor scheme that
brings the observables so close to the results obtained by iterative scheme that they are visually indistinguishable.
This is achieved without any appreciable change in the run time.
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I. INTRODUCTION

The nonlocal interaction framework finds its application in
diverse range of scientific areas such as physics and quantum
biology [1–6]. In such studies, the dynamics of the system
is modelled in terms of integro-differential equation, which
is usually difficult to solve analytically or even numerically.
Hence, one has to resort to efficient techniques that yield highly
precise solutions.

In the domain of nuclear physics, the many-body nature
of the nucleus makes it imperative to study processes such
as scattering and reaction in the nonlocal interaction frame-
work [7–10]. As a consequence the conventional Schrödinger
equation becomes an integro-differential equation, which is
written as:[

h̄2

2μ
∇2 + USOL · σ + E

]
�(r) =

∫
V (r, r′)�(r′)dr′, (1)

where USO L · σ is the local spin-orbit interaction, while
V (r, r′) is the nonlocal interaction kernel. Often this integro-
differential equation is solved by using its Fourier transform in
momentum space, which leads to a Fredholm integral equation
of the second kind. This approach has been used to study
scattering and bound states of nuclei [11,12].

Nevertheless, extensive studies in coordinate representation
have been done to develop techniques that give precise solu-
tions of Eq. (1) [9,10,13–16]. The most popular of them is the
work of Perey and Buck [13], where the authors construct a
local equivalent potential from the nonlocal nucleon-nucleus
potential, which in turn is used to solve the integro-differential
equation iteratively.

In our recent work [17], we have developed a readily
implementable technique using the second mean value theorem
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(MVT) of the integral calculus [18] to solve the integro-
differential equation. The advantage of the method is that it
converts the integro-differential equation to the conventional
Schrödinger equation. However, as shown in Ref. [17] to get
a precise solution of Eq. (1), an iterative scheme has been
employed which is initiated by solution to the homogeneous
equation. The iterative scheme, thus developed, is found to
be robust but is time consuming due to its slow convergence
rate.

In this paper we develop a very efficient technique to solve
Eq. (1) that yields results with precision comparable to those
obtained by the full iterative MVT (IMVT) scheme of Ref. [17].
For this purpose, we use a Taylor approximation for the radial
wave function which has long been known, see, for exam-
ple, Ref. [19]. This method converts the integro-differential
equation to a homogeneous second-order differential equation
that can be easily solved. Further, to test the accuracy of
the technique we have studied neutron scattering off different
targets spanning the entire periodic table in the energy range
up to 10 MeV.

The Taylor approximation approach developed to solve
Eq. (1) forms the subject matter of Sec. II. Results along with
discussions are presented in Sec. III, while the conclusions are
given in Sec. IV.

II. FORMALISM

In order to study scattering of neutrons from the spin-zero
nucleus, we start with partial wave expansion of Eq. (1). This
is done by writing scattering wave function, �(r), and the
nonlocal interaction kernel, V (r, r′) as:

�(r) =
∑
lmlms

ujl (r )

r

〈
l

1

2
ml ms

∣∣∣∣ j (ml + ms )

〉

× il Ylml
(�r ) χ 1

2 ms
, (2)
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V (r, r′) =
∑

l

(2l + 1)

4π

gl (r, r ′)
rr ′ Pl (cos θ ), (3)

with θ being the angle between r and r′ [13,17].
The resulting radial equation is

L̂ ujl (r ) = 2μ

h̄2

∫ ∞

0
gl (r, r

′)ujl (r
′)dr ′, (4)

where

L̂ ≡
[

d2

dr2
− l(l + 1)

r2
+ 2μUSO(r )

h̄2 fjl + 2μE

h̄2

]
,

fjl = 1

2

[
j (j + 1) − l(l + 1) − 3

4

]
with j = l ± 1/2,

and

gl (r, r
′) = 2πrr ′

∫ 1

−1
V (r, r′) Pl (cos θ )d(cos θ ). (5)

For the interaction kernel, V (r, r′), we use the prescription
given by Frahn and Lemmer [9,10],

V (r, r′) = 1

π3/2β3
exp

[
− |r − r′|2

β2

]
U

( |r + r′|
2

)
, (6)

where β is the nonlocal range parameter. In this work, the
energy and mass independent nucleon-nucleus potential, U ,
is taken to be of Wood-Saxon form. The parameters for this
potential are taken from Tian et al. [20]. For further details
regarding the potential, refer to Sec. 2.1 of Ref. [17]. Following
the convention adopted in Ref. [17], this potential will be
referred to as “TPM15”.

To begin with, we enlist the salient features of the IMVT
approach developed earlier in Ref. [17].

A. The IMVT approach

In the IMVT approach, using the second mean value
theorem of the integral calculus [18], the nonlocal interaction
kernel is written as∫ ∞

0
gl (r, r

′)ujl (r
′)dr ′ ≈ ujl (r )

∫ ∞

0
gl (r, r

′)dr ′, (7)

where the observation that gl (r, r ′) is strongly peaked at
r = r ′ is incorporated. Substituting this into Eq. (4), we obtain
a homogeneous equation of the form

L̂ ujl (r ) = 2μU eff
l (r )

h̄2 ujl (r ), (8)

where the dominant effect of nonlocality is contained in the
effective local potential, U eff

l (r ) = ∫ ∞
0 gl (r, r ′)dr ′. Further,

this potential is independent of energy but depends on partial
waves.

The solution of Eq. (4) is obtained by implementing an
iterative scheme. This scheme is initiated by the solution to
the above homogeneous equation [Eq. (8)] and the subsequent
iterants are obtained by solving:

L̂ui+1
j l (r ) − 2μU eff

l (r )

h̄2 ui+1
j l (r )

= 2μ

h̄2

∫ ∞

0
gl (r, r

′)ui
jl (r

′) dr ′ − 2μU eff
l (r )

h̄2 ui
jl (r ), (9)

for all i � 0. The iterations are continued until the absolute
value of the difference between the logarithmic derivatives of
the wave functions at the matching radius in the ith and the
(i + 1)th steps match within the desired precision, ε.

The scattering wave function is obtained with the radial
step size of 0.02 fm and matching radius of 20 fm. To obtain
converged logarithmic derivative with ε ∼ 10−6 at a given
energy, the typical run time required is about an hour on a single
Intel i7-6700 processor. Further, the run time scales almost
linearly with the number of partial waves and energy, making
the method time consuming. The fact that the IMVT scheme,
though robust, is time consuming limits its usability to routine
and large-scale calculations.

To partially remedy this limitation, in Ref. [17] it was
proposed that instead of a full iterative procedure, calculation
can be done with only one iteration. This results in speed-up of
calculations by a factor of 4 as compared to the IMVT scheme.
However, we would like to point out that the success of this
solution depends strongly on the choice of nucleon-nucleus
potential, the mass of the target, as well as the projectile energy.
For example, in the case of neutron scattering off 208Pb and
energies up to 2 MeV, it was found that the results for the
TPM15 potential with one iteration deviates from the IMVT
results by as much as 20%. Hence, it is important to develop
a robust and efficient scheme to obtain a precise solution to
Eq. (4).

B. The Taylor approximation approach

The principal objective of this work is to devise an efficient
method to solve Eq. (4) with precision comparable to that
obtained by the IMVT approach. To achieve this we examine
the structure of nonlocal kernel, gl (r, r ′), closely. As an
illustration, in Fig. 1 we show the nonlocal kernel for neutron
scattering off 208Pb using the TPM15 potential [20]. As can be
seen from the figure, the nonlocality is dominant around the
line r = r ′. Any appreciable deviation from this line makes the
contribution from the nonlocal kernel insignificant.

Motivated by this observation, we write r ′ = r + � and
expand the wave function ujl (r ′) about r = r ′ using Taylor’s
theorem [21] as

ujl (r
′) = Pn(r ′) + Rn(r ′) (with n � 0), (10)

where Pn(r ′) is the nth-order Taylor polynomial, written as

Pn(r ′) = ujl (r ) +
n∑

λ=1

�λ

λ!

dλujl (r )

drλ
, (11)

while the remainder term, Rn(r ′), is written as

Rn(r ′) = �n+1

(n + 1)!

dn+1ujl (ξ )

drn+1
, (12)

for some ξ between r and r ′. Since the wave functions
are guaranteed to be differentiable up to second order for
nonsingular potentials, we expand Pn(r ′) up to first order
(n = 1) and retain the remainder term, giving

ujl (r
′) = ujl (r ) + �

dujl (r )

dr
+ �2

2

d2ujl (ξ )

dr2
. (13)
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FIG. 1. Behavior of (a) real part and (b) imaginary part of gl (r, r ′) as a function of distance for different l. Calculations are done for neutron
scattering off 208Pb using the TPM15 potential [20].

As the kernel is sharply peaked around r = r ′ (see Fig. 1), we
take ξ ≈ r . Thus, the integral on the right-hand side of Eq. (4)
can be written as:

2μ

h̄2

∫ ∞

0
gl (r, r

′)ujl (r
′)dr ′ = ujl (r )Il0(r ) + dujl (r )

dr
Il1(r )

+ d2ujl (r )

dr2
Il2(r ), (14)

where Iln(r ) = 2μ

h̄2

∫ ∞

0

�n

n!
gl (r, r

′)dr ′, (15)

with 0 � n � 2. Substituting this into Eq. (4) and rearranging
the terms, we get a homogeneous second-order differential
equation written as

Ôujl (r ) = 0, (16)

where

Ô ≡ d2

dr2
− Xl (r )

d

dr
+ Wl (r )

[
− l(l + 1)

r2

+ 2μUSO(r )

h̄2 fjl + 2μE

h̄2 − Il0(r )

]
, (17)

Xl (r ) = Il1(r )

1 − Il2(r )
and Wl (r ) = 1

1 − Il2(r )
. (18)

The obtained equation is a simple second-order differential
equation that can be readily solved. The first-order derivative
appears explicitly in Eq. (16) and enough care has to be taken
to evaluate it accurately. For this we revisit the behavior of the
wave function near the origin.

Near the origin, Eq. (16) becomes
[

d2

dr2
− l(l + 1)

r2
+ 2μE

h̄2

]
ujl (r ) ≈ 0, (as r → 0). (19)

Redefining ujl (r ) = rl+1 φl (r ), we get

φ′′
l (r ) + 2(l + 1)

r
φ′

l (r ) + 2μE

h̄2 φl (r ) ≈ 0. (20)

To solve the above differential equation, we use the Frobenius
method [22] and obtain

φl (r → 0) =
∞∑

λ=0

(−)l (kr )2λ

2λ λ! (2l + 2λ + 1)!!
, (21)

where k = √
2μE/h̄. Retaining the first four terms of the

series (to λ = 3), the expression for ujl (r ) near the origin is
written as

ujl (r→0) ≈ rl+1

(2l + 1)!!

[
1 − r2k2

2(2l + 3)
+ r4k4

8(2l + 3)(2l + 5)

− r6k6

48(2l + 3)(2l + 5)(2l + 7)

]
. (22)

Now the first-order derivative appearing in Eq. (16) can be
calculated accurately using Eq. (22). This expression also
complies with the fact that uj0(0) = 0, u′

j0(0) = 1 for l = 0
and ujl (0) = u′

j l (0) = 0 for l 
= 0. Finally, using Eq. (22) and
its derivative as the initial conditions, we solve Eq. (16) using
the fourth-order Runge-Kutta method [23].

III. RESULTS

A. The Taylor approximation approach

To illustrate the method developed above, we consider
neutron scattering off 24Mg, 40Ca, 100Mo, and 208Pb with
energies up to 10 MeV. Calculations are done with the TPM15
potential [20]. Similarly to the IMVT calculations, the radial
step size is taken to be 0.02 fm, while the matching radius is
assumed to be 20 fm.

In order to test the accuracy of the Taylor scheme, in Fig. 2
we compare the results of the present work (labeled as Taylor)
with those obtained by the IMVT scheme (labeled as IMVT)
along with the data [24–29]. The cross sections calculated
using the Taylor scheme are found to be close to those obtained
by the IMVT scheme. Further, both calculated results are in
good agreement with the experiments.

At a finer level, the Taylor and the IMVT results slightly
differ from each other. This difference can be quantified by
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FIG. 2. Calculated total cross sections along with the data sets
for neutron scattering off 24Mg (Data76 [24]), 40Ca (Data73 [25]
and Data93 [26]), 100Mo (Data68 [27] and Data80 [28]) and 208Pb
(Data99 [29]). The Taylor results are shown by the dashed red line
while the IMVT results [17] are shown by the solid black line.
Calculations are done using the TPM15 potential [20].

studying the behavior of δ(E), defined as

δ(E) = σIMVT(E) − σTaylor (E)

σIMVT(E)
× 100 (23)

with respect to neutron energy, E. In Fig. 3 we plot the quantity
δ(E) as a function of energy for all the targets. It is seen that

0 1 2 3 4 5 6 7 8 9 10

Energy (MeV)

-15

-10

-5

0

5

δ(
E

) 
  (

%
)

n-
24

Mg

n-
40

Ca

n-
100

Mo

n-
208

Pb

FIG. 3. Quantity δ(E) as a function of energy, E, for neutron
scattering off different nuclei.

the cross sections obtained by the Taylor scheme are within at
the most 8% of those obtained by the IMVT scheme for all the
cases.

The typical run time required for the Taylor scheme is about
5 min for a given energy on a single Intel i7-6700 processor.
This demonstrates that the Taylor scheme is computationally
efficient by a factor of 10 in comparison to the IMVT approach
and at the same time yields results within 8% of the IMVT
results.

B. Iterative perturbation approach

The Taylor scheme devised in the previous section can be
improved further without any appreciable change in the run
time. This is achieved by solving Eq. (4) using an iterative per-
turbation approach (IPA). In this approach, the exact solution
is expressed as a perturbation series

ujl (r ) = u0
j l (r ) +

∞∑
k=1

uk
jl (r ), (24)

where u0
j l (r ) is the solution of Eq. (16) and uk

jl (r ) is the higher-
order correction that quantifies the deviation from the exact
solution. These higher-order corrections are obtained with the
help of following iterative scheme:

Ôui+1
j l (r ) − Wl (r ) ξ i

j l (r ) = 0, (25)

where

ξ i
j l (r ) = 2μ

h̄2

∫ ∞

0
gl (r, r

′)ui
jl (r

′)dr ′ − Ĝ ui
jl (r ), (26)

with i � 0 and Ĝ ≡ Il0(r ) + Il1(r )
d

dr
+ Il2(r )

d2

dr2
. The cor-

rected wave function, ujl (r ), thus obtained, is then matched
with the free-state wave function to calculate the S-matrix,
which in turn is employed in computation of observables.

In Fig. 4 we quantify the accuracy of the IPA cross sections
calculated after five iterations (referred as IPA5) relative to the
IMVT cross sections by plotting δ(E) as a function of energy.
The IPA5 cross sections are found to be within 2% of the IMVT
cross sections at all energies for all the cases.
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FIG. 4. Same as in Fig 3 but with δ(E) computed for IPA5 relative
to IMVT.

Further, in Fig. 5 we show the total cross sections calculated
by IPA5 for neutron scattering off different nuclei along with
the data [24–29]. Visually, the IPA5 and the IMVT results
are indistinguishable. Computationally, there is no significant
change at all in the run time when compared with that required
for the Taylor scheme.

These results demonstrate that the improved technique
IPA yields a highly precise solution to Eq. (4). Further, the
technique is highly efficient since we have achieved a speed-up
by a factor of 10 as compared to the IMVT scheme, which is
extremely significant in particular when it comes to large-scale
computations.

C. Angular distributions

For completeness, in Figs. 6 and 7 we show various
calculated angular distributions along with the experimental
data [30–36]. As observed earlier, again the IPA5 and the IMVT
results are found to be indistinguishable. For 24Mg and 40Ca
we observe that the calculated results are reasonably consistent
with the data at low energies, while those for 100Mo and 208Pb
are in good accord at all the energies. It may be mentioned that
the parameters for TPM15 potential are obtained by fitting
the nucleon scattering data on nuclei ranging from 27Al to
208Pb with incident energies around 10 to 30 MeV. Probably a
better agreement can be achieved with more appropriate choice
of potential. Further investigations along these lines are in
progress.

D. Robustness of IPA

In the present work, a separable form for the interaction
kernel [see Eq. (6)] is used, which is given as

V (r, r′) = H (|r − r′|)U
( |r + r′|

2

)
. (27)

The function H (|r − r′|) is chosen to be a Gaussian with the
range β = 0.9 fm (as given in Ref. [20]) and is normalized to
unity. To establish the robustness of the IPA, it is essential to
study its sensitivity to different forms of nonlocality.
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FIG. 5. Same as in Fig 2 but for IPA5. The IPA5 results are shown
by the starred red line.

1. Impact of different forms of nonlocality

As a first step, we explore the impact of different forms
of H (|r − r′|) with same normalization and rms radius but
different shapes. For this we consider an exponential function:

H (|r − r′|) = 1

8πα3
exp

(
−|r − r′|

α

)
, (28)

which is normalized similar to the Gaussian function. Further,
the nonlocal range α has been chosen in such a way that both
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FIG. 6. Calculated angular distributions along with the data sets for neutron scattering off (a) 24Mg (Data78 [30]) and (b) 40Ca (Data74 [31]
and Data82 [32]). The IPA5 results are shown by the starred red line while the IMVT results [17] are shown by the solid black line. Calculations
are done using the TPM15 potential [20].
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FIG. 7. Same as in Fig. 6, but calculated angular distributions are shown along with the data sets for neutron scattering off (a) 100Mo (Data75
[33] and Data79 [34]) and (b) 208Pb (Data85 [35] and Data91 [36]).
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FIG. 8. Calculated total cross sections for neutron scattering off
24Mg, 40Ca, 100Mo, and 208Pb. The results for Gaussian form of
nonlocality are shown by the solid black line while the results for
exponential form are shown by the dashed red line. Calculations are
done by IPA5 using the TPM15 potential [20]. For the exponential
form, α = 0.318 fm.

the Gaussian and exponential form factors have the same rms
radii, giving α = β/

√
8.

In Fig. 8 we show the total cross sections calculated by
using Gaussian and exponential forms of nonlocality in the
IPA5 calculations for neutron scattering off different nuclei.
As expected, different forms for H (|r − r′|) having the same
normalization and rms radius give similar results [17].
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FIG. 9. Calculated total cross sections for neutron scattering off
208Pb. Calculations are done using Gaussian form of nonlocality and
the TPM15 potential [20] for different values of β.

2. Impact of different ranges of nonlocality

Next we explore the impact of different rms radius on
Gaussian form of nonlocality. For this we consider different
values of β, namely 0.6, 0.9, and 1.2 fm in the TPM15
potential [20], and calculate total cross sections using five
iterations of the IPA (IPA5). As an illustration, in Fig. 9 we
show the calculated cross sections for neutron scattering off
208Pb. The cross sections are found to be extremely sensitive to
β. However, it should be noted that β is an additional parameter
in the TPM15 potential. Hence, in principle, any change in β
should be accompanied by refitting of the potential param-
eters [13]. Nevertheless, this study illustrates the numerical
robustness of the IPA against the range of nonlocality.

In order to test the convergence properties of the IPA, in
Fig. 9 we also show the calculated cross sections with 10
iterations of the IPA (labeled as IPA10) for different values
of β. As can be seen, irrespective of β value, convergence is
achieved with five iterations. Further, we would like to point
out that the run time required for IPA10 is only marginally
longer than that for IPA5.

Thus, it can be concluded that the IPA is a robust technique
and its validity seems to be independent of the choice of
nonlocal form factor.

IV. SUMMARY AND CONCLUSION

A very efficient and highly precise technique to solve
the integro-differential equation appearing in the scattering
problem is developed. It is achieved by employing a Tay-
lor approximation to the radial wave function. This scheme
transforms the integro-differential equation to a second-order
homogeneous differential equation which can be solved easily.

The observables obtained by the Taylor scheme for neutrons
scattering off 24Mg, 40Ca, 100Mo, and 208Pb are found to be
within 8% of those obtained by the IMVT scheme at all the
projectile energies. We have demonstrated that the precision
of solution can be improved further by using the IPA, which
calculates the successive corrections to the solution obtained
by using the Taylor scheme. With just five iterations of the
IPA the observables for all the cases and at all the energies are
found to be within 2% of those obtained by the IMVT scheme
without any appreciable change in the run time. Further, the
calculated observables are in accord with the experiments for
all the cases.
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The technique developed here is found to be robust and
numerically stable. This conclusion seems to be independent of
the choice of the form of nonlocality. Therefore, it is expected
to be useful in diverse areas of science where existence of
nonlocality leads to an integro-differential equation.

All the data sets in this paper have been sourced from the
EXFOR database [37].
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