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Systematic investigation of the Hoyle-analog states in light nuclei
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We investigate resonance states in three-cluster continuum of some light nuclei, 9Be, 9B, 10B, 11B, and 11C.
These nuclei are considered to have a three-cluster configuration consisting of two α particles and a neutron,
proton, deuteron, triton, and nucleus 3He, respectively. In this study, we make use of two different microscopic
three-cluster models. The first model employs the hyperspherical harmonics basis to enumerate channels and
describe three-cluster continuum. The second model is the well-known complex scaling method. The nucleon-
nucleon interaction is modeled by the semirealistic Minnesota and Hasegawa-Nagata potentials. Our main aim is
to find the Hoyle-analog states in these nuclei or, in other words, whether it is possible to synthesize these nuclei
in a triple collision of clusters. We formulate the criteria for selecting such states and apply them to resonance
states, emerged from our calculations. We found that there are resonance states obeying the formulated criteria
which make possible syntheses of these nuclei in a stellar environment.
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I. INTRODUCTION

We are going to search for and analyze properties of the
Hoyle-like states in light nuclei. It is necessary to recall that
the Hoyle state is a very narrow resonance state in 12C, which
was predicted by Fred Hoyle in 1954 [1]. Three years later this
state was experimentally observed by studying β decays of
12B [2]. It is interesting to note that Hoyle predicted the energy
of the 0+ resonance state at E = 0.33 MeV above the three α
particles threshold, and Cook et al. in Ref. [2] determined the
position of the resonance state at E = 0.372 ± 0.002 MeV.
Compare this to the modern value of the energy, which is E =
0.3796 ± 0.0002 MeV [3]. This resonance state, created by
a triple collision of three α particles, is the key element in
syntheses of atomic nuclei starting from 12C. The Hoyle state
indicates a way for the nucleosynthesis of carbon in helium-
burning red giant stars, which are rich in α particles. Actually,
Hoyle was the first to proclaim that nuclear synthesis can take
place in a triple collision of light nuclei, namely α particles.
Such processes are very difficult to acheive in the laboratory,
but natural conditions inside stars enable such processes. One
can find more interesting historical facts and scientific results
about the Hoyle state in the review [4].

We consider two important quotations from the Hoyle
paper [1]:
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(1) “It was pointed out some years ago by H. Bethe [5] that
effective element-building inside starts must proceed,
in the absence of hydrogen, by triple collisions as a
starting point:

3α → 12C + γ.” (1)

(2) “It is convenient to replace reaction (1) by

α + α → 8Be, 8Be + α → 12C + γ. (2)

This is a permissible step, since the lifetime of the unsta-
ble 8Be is appreciably longer than the time required for
nuclear collision of two α particles; that is, longer than
the α particle radius divided by the relative velocity.”

These two equations (1) and (2) represent two different ways
of excitation of the Hoyle resonance state and two different
ways of synthesis of 12C. However, in both scenarios the very
narrow 0+ resonance state is the key factor in creation of the
carbon-12.

There are a very large number of publications devoted to
the 0+ and other resonance states in 12C. Different methods
have been used to determine parameters of the Hoyle state
and to shed some light on the nature of this states and other
resonances states, residing in the three-cluster continuum in
12C. However, only a few publications [6–13] have been
aimed at finding the Hoyle-analog states in light nuclei.
They are mainly concentrated on the closest neighbors of
the 12C nucleus, namely 11B, 11C, and 13C. In Refs. [7] and
[10] the structure of 1/2+ and 3/2− states in 11B has been
investigated within the three-cluster orthogonality condition
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model (OCM) combined with the Gauss expansion method. In
these papers, parameters of resonance states were obtained by
using the complex scaling technique. By analyzing properties
of wave functions, the authors of the Refs. [7,10] came to the
conclusion that for the 1/2+ resonance state the parameters
E = 0.75 MeV and � = 190 keV can be considered as the
Hoyle-analog states. Antisymmetrized molecular dynamics
(AMD) was used to study the excited states of the negative
parity in 11B and 11C in Refs. [6,8]. It was concluded that the
third excited states in 11B and 11C have dilute cluster structures
α + α + t and α + α + 3He, respectively, and can be treated
as the Hoyle-analog states.

In the present paper we consider these nuclei and also 9Be,
9B, and 10B. We also consider a large number of states with
different values of the total momentum J and both negative and
positive parities. Before starting to search for the Hoyle-analog
states, one needs to formulate clear criteria for selecting such
states. By analyzing properties of the Hoyle state, one may
suggest the following criteria for the Hoyle-analog states in
three-cluster systems:

(1) very narrow resonance state;
(2) resonance state which lies close to three-cluster thresh-

old;
(3) resonance state which has the total orbital momentum

L = 0.

We consider the first criterion as the most important be-
cause, in the case of very narrow (long-lived) resonance states,
a compound system has more chances to be reconstructed and
transformed in to a bound state. However, we will analyze all
resonance states from the point of view of the three criteria.

Our main aim is to find the Hoyle-analog states in light
nuclei 9Be, 9B, 10B, 11B and 11C. In other words, we are going
to study whether light nuclei can be created in triple collision
of clusters. The necessary condition for such a process is the
existence of a very narrow resonance state in the three-cluster
continuum. Actually we consider a chain of reactions

A1 + A2 + A3 = A∗ ⇒ A + γ,

which consists of two steps. In the first step, an excited state
(very narrow resonance state) of a compound nucleus is created
in a triple collision of clusters consisting of A1, A2, and A3 nu-
cleons. In the second step, the compound nucleus, by emitting a
photon, transitions from the resonance state to the bound state.
The narrower a resonance state is in the first step, the higher the
probability is of transitioning from the resonance to the bound
state. For each nucleus we determine energy and width of
resonance states. We select a resonance state with a very small
width. We also analyze the wave function of selected resonance
states. These investigations will be performed within a mi-
croscopic three-cluster model which involves hyperspherical
harmonics to distinguish channels of the three-cluster system.
For this model, which was formulated in Ref. [14], we use the
abbreviation AMHHB, which means the algebraic model of
scattering making use of the hyperspherical harmonics basis. In
Ref. [15] this model was applied to study bound and resonance
states in 12C. It fairly well reproduced the energy and width
of the Hoyle state in 12C. It was demonstrated that this model
is also in good agreement with other alternative models, for

instance, the complex scaling method. Note that the most
effective methods, among the others that are used to study reso-
nance states in three-cluster and many-channel systems, are the
complex scaling method and hyperspherical harmonics method

We present results obtained with both methods. The
AMHHB method, which employs hyperspherical harmonics
to enumerate channels of three-cluster continuum, allows us
to determine energy and width of a resonance state, reveals
the dominant decay channels, and sheds more light on the
nature of the resonance state by analyzing its wave functions.
This model correctly treats the Pauli principle and makes uses
of the semi-realistic nucleon-nucleon potential. The complex
scaling method (CSM), which also uses this type of the
nucleon-nucleon interaction, is more a advanced and model
independent method to determine the poles of the S matrix in
two- and three-cluster systems. Note that both methods give
very close results for narrow resonance states and different
resonance parameters for wide resonance states.

The preliminary analysis of three-cluster resonance states
in 9B and 9B was carried out in Ref. [16], and resonance states
were investigated in the mirror nuclei 11B and 11C in Ref. [17].
In Ref. [18] the AMHHB model was applied to study the
spectrum of bound states in 10B. To make a systematic analysis
of resonance states and to discover the Hoyle-analog states
in 9Be, 9B, 10B, 11B, and 11C we have to make additional
calculations and thorough investigations of peculiarities of
resonance wave functions.

The present paper is organized in the following way. In
Sec. II we briefly explain the main idea of the microscopic
method, which involves hyperspherical harmonics for de-
scription of bound and scattering states of a three-cluster
system. Results of numerical calculations and discussions of
the results obtained are presented in Sec. III. We start with
the reexamination of properties of the Hoyle state. We also
consider other resonance states in 12C to display similarities
and differences between them. This is done within the AMHHB
and CSM in order to formulate clearer criteria for selecting
the Hoyle-analog states. Then we proceed with analysis of
resonance states in the three-cluster continuum of nuclei 9Be,
9B, 10B, 11B, and 11C. By applying the formulated criteria, we
select the Hoyle-analog states and describe their properties.
Section IV presents a summary of our investigations.

II. METHOD

A. Three-cluster wave function

To study three-cluster systems we exploit a microscopic
model which incorporates the resonating group method, the J -
matrix method, or the algebraic version of the resonating group
method (RGM) and the hyperspherical harmonics method.
Details of the model and its application to the study of bound
and continuous spectrum states of light nuclei can be found in
Refs. [14,15,17,19–22].

The standard ansatz of the RGM for representing the wave
function of a three–s-cluster system is used:

�E,J =
∑
S,L

Â{[�1(A1)�2(A2)�3(A3)]SψE,LJ(x, y)}J , (3)
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where the wave function ψE,LJ(x, y) describes relative motion
of clusters and the antisymmetric functions �ν (Aν ) (ν =
1, 2, 3) describe internal motion of nucleons inside the cluster
with index ν. Two vectors x and y denote a possible set of
the Jacobi vectors. Within this paper, the vector x determines
the distance between two selected clusters, while the vector
y represents displacement of the third cluster with respect to
the center of mass of the two selected clusters. The antisym-
metrization operator Â provides full antisymmetrization of the
wave function of a compound system. By assuming Â = 1 and
the orthogonality condition to the Paul-forbidden states, one
transitions to the OCM.

It is very convenient to use the LS coupling scheme for
three interacting s clusters. In this scheme, the total spin S
is a vector sum of individual spins of clusters, and the total
orbital momentum L is also a vector sum of the partial orbital
momenta l̂x and l̂y , associated with the Jacobi vectors x and y,
respectively. The total angular momentum J is a vector sum
of the total orbital momentum L and the total spin S.

To simplify obtaining wave functions of discrete and contin-
uous spectrum states and scattering parameters, we transform
from the Jacobi vectors x and y to the hyperspherical coordi-
nates, which consist of hyperradius ρ and five hyperspherical
angles which we denote as �5. The hyperradius ρ is defined
in the unambiguous way

ρ =
√

x2 + y2, (4)

while there are several different ways to define of the hy-
perspherical angles (see, for instance, [23–25]). We make
use of the most popular set of hyperspherical angles, which
was suggested by Zernike and Brinkman in 1935 [26]. This
set consists of the hyperspherical angle θ which determines
relative lengths of the Jacobi vectors

x = ρ cos θ, y = ρ sin θ, (5)

two angles θx and φx , determining orientation of vector x,
and two other angles θy and φy , determining orientation of
vector y in the space. Note, that the angles {θx, φx} describe
rotation of a two-cluster subsystem and the angles {θy, φy}
describe rotation of the third cluster around center of mass of
the two-cluster subsystem. Five hyperspherical angles are able
to describe any shape and any orientation (i.e., rotation) of a
triangle connecting centers of mass of three clusters, and the
hyperradius determines any size of that triangle.

Having introduced the hyperspherical coordinate, we can
represent the three-cluster wave function (3) in the following
form:

�E,J =
∑

c

Â{[�1(A1)�2(A2)�3(A3)]S

× ψE,c(ρ)Yc(�5)}J , (6)

where c is a multiple index c = {K; λ, l; L, S} classifying
channels of the three-cluster system and involving the hyper-
momentum K , partial orbital momenta λ and l associated with
the Jacobi vectors x and y, respectively, and the total orbital
momentum L. The hyperspherical harmonics Yc(�5) form
a complete set of functions on a five-dimension sphere and
thus account for all kinds of motion of a three-cluster system.

Components of the many-channel hyperradial wave function
{ψE,c(ρ)} have to be determined by solving the Schrödinger
equation with the selected nucleon-nucleon potential.

B. Three-cluster equation

For three structureless particles one obtains the infinite set
of differential equations∑

c̃

[δc,̃cT̂K + Vc,̃c(ρ)]ψE,̃c(ρ) = EψE,c(ρ), (7)

where

T̂K = − h̄2

2m

[
∂2

∂ρ2
+ 5

ρ

∂

∂ρ
− K (K + 4)

ρ2

]
. (8)

Matrix‖Vc,̃c(ρ)‖of the effective potential energy is determined
as matrix elements of interaction V̂ between the hyperspherical
harmonics

Vc,̃c(ρ) = 〈Yc|V̂ |Yc̃〉, (9)

where integration is performed over all hyperspherical angles
�5. If particles have electric charges, then we have the
contribution

V
(C)
c,̃c (ρ) = Zc,̃ce

2

ρ
(10)

from the Coulomb interaction to the potential energy Vc,̃c(ρ)
(9). The quantity Zc,̃c can be called the effective charge.
Assuming that at a large values of hyperradius the effective po-
tential Vc,̃c(ρ) originating from a short range particle-particle
interaction is negligibly small, and omitting nondiagonal ele-
ments of the effective charge (that is putting Zc,̃c =0 for c �= c̃),
we obtain an asymptotic part of the channel Hamiltonian,

Ĥ (A)
c =

{
− h̄2

2m

[
∂2

∂ρ2
+ 5

ρ

∂

∂ρ
− K (K + 4)

ρ2

]
+ Zc,ce

2

ρ

}
.

(11)

Eigenfunctions of this Hamiltonian describing incoming and
outgoing hyperradial waves can be easily found and expressed
through the Whittaker functions (see Chap. 13.1 in Ref. [27])

ψ (±)
c (ρ, ηc ) =

√
π

2

1

ρ5/2
W∓iηc,K+2(∓2ikρ), (12)

where

k =
√

2mE

h̄2 ,

and ηc is the Sommerfeld parameter for the three-cluster
system,

ηc = m

h̄2

Zc,ce
2

k
.

Thus, the boundary conditions or the asymptotic form of many-
channel wave functions can be expressed in the form

ψE,c(ρ) = δc0,cψ
(−)
c (ρ, ηc ) − Sc0,cψ

(+)
c (ρ, ηc ),

where c0 stands for an incoming channel and Sc0,c is an element
of the scattering S matrix.
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For three-cluster systems, when the internal structure of
clusters and the Pauli principle are taken into account, we
obtain the set of integrodifferential equations∑

c̃

[
δc,̃cT̂KψE,̃c(ρ) +

∫
dρ̃ ρ̃5Vc,̃c(ρ, ρ̃ )ψE,̃c(ρ̃ )

]

= E
∑

c̃

∫
dρ̃ ρ̃5Nc,̃c(ρ, ρ̃ )ψE,̃c(ρ̃). (13)

This system of equations can be obtained from the many-
particle Schrödinger equations with the help of the projection
operator

P̂c(ρ) = Â{[�1(A1)�2(A2)�3(A3)]Sδ(ρ − ρ)Yc(�5)}. (14)

Applying this operator to the unit operator, we obtain the norm
kernel Nc,̃c(ρ, ρ̃ ):

Nc,̃c(ρ, ρ̃ ) = 〈P̂c(ρ)|P̂c̃(ρ̃)〉. (15)

In this expression integration is performed over all spacial
coordinates (the Jacobi vectors) and over all spin and isospin
coordinates as well. The matrix of the potential energy is
related to matrix elements of the microscopic Hamiltonian Ĥ
by the relation

Vc,̃c(ρ, ρ̃ ) = 〈P̂c(ρ)|Ĥ |P̂c̃(ρ̃)〉 − δc,̃cT̂Kδ(ρ − ρ̃ ). (16)

The system of Equations (13) can be directly solved by reduc-
ing to the reasonable finite number of involved three-cluster
channels Nc and with the boundary conditions determined
above. Solutions of the system yield the definite set of matrix
elements of the S matrix. They describe all kinds of elastic and
inelastic processes in a three-cluster system.

Note that the operator (14) is a straightforward generation
of the projection operator that has been used for two-cluster
systems (see Ref. [28]). In three-cluster systems, we can easily
perform this operation, though we do not explain the details
here.

Within the present model a wave function (3) of a three-
cluster system is expanded over an infinite set of cluster
oscillator functions |nρ, c〉,

�E,LJ =
∑
nρ,c

CE,J
nρ,c|nρ, c〉,

where

|nρ, c〉 = |nρ,K; λ, l; L〉
= Â{�1(A1)�2(A2)�3(A3)RnρK (ρ, b)Yc(�5)},

(17)

Yc(�5) is a hyperspherical harmonic with the quantum num-
bers c = {K, lx, ly, L}, Rnρ,K (ρ, b) is an oscillator function,

Rnρ,K (ρ, b) = (−1)nρNnρ,KrK exp

{
−1

2
r2

}
LK+3

nρ
(r2),

r = ρ/b, Nnρ,K = b−3

√
2�(nρ + 1)

�(nρ + K + 3)
, (18)

and b is an oscillator length.

In this case, a set of the integro-differential equations is
reduced to a set of the algebraic (matrix) equations,∑

ñρ ,̃c

[〈nρ, c|Ĥ |̃nρ, c̃〉 − E〈nρ, c|̃nρ, c̃〉]CE,J
ñρ ,̃c = 0, (19)

which can be more easily solved by the numerical methods than
the set of Eq. (13). For continuous spectrum states one has to
impose proper boundary conditions for expansion coefficients
{CE,J

nρ,c}. These conditions have been discussed in Ref. [14],

where relations between the discrete {CE,J
nρ,c} and continuous

{ψE,c(ρ)} wave functions were established. By including the
asymptotic form of expansion coefficients {CE,J

nρ,c}, which is
valid for large values of hyperradial excitations nρ 
 1, we
obtain in a closed form the system of equations determining
both wave functions of a continuous spectrum and the corre-
sponding S matrix.

C. Supplementary quantities

Having obtained the expansion coefficients for any state of
the three-cluster continuum, we can easily construct its wave
function in the coordinate space. It can be done, first of all, for
the total hyperradial wave function

ψE,c(ρ) =
∑
nρ

CE,J
nρ,cRnρ,K (ρ, b). (20)

It can be also done for the wave function

ψE,LJ(x, y) =
∑
nρ,c

CE,J
nρ,cRnρ,K (ρ, b)Yc(�5). (21)

To get more information about the state under consideration,
we will study different quantities that can be obtained with
the wave function in discrete or coordinate spaces. With
wave functions in the discrete oscillator quantum number
representation we can determine a weight Wsh of the oscillator
function belonging to the oscillator shell Nsh in this wave
function:

Wsh(Nsh ) =
∑

nρ,c∈Nsh

∣∣CE,J
nρ,c

∣∣2
, (22)

where the summation is performed over all hyperspherical
harmonics and hyperradial excitations obeying the condition

Nos = 2nρ + K.

Here Nos is fixed. Basis wave functions (18) belong to the
oscillator shell with the number of oscillator quanta Nos =
2nρ + K . It is convenient to enumerate the oscillator shells by
Nsh (= 0, 1, 2, . . .), which we determine as

Nos = 2nρ + K = 2Nsh + Kmin,

where Kmin = L for normal parity states π = (−1)L and
Kmin = L + 1 for abnormal parity states π = (−1)L+1. Thus
we account oscillator shells starting from a “vacuum” shell
(Nsh = 0) with the minimal value of the hypermomentum Kmin

compatible with a given total orbital momentum L.
The weights Wsh we will calculate both for bound and

resonance states. For a bound state, the wave function is
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normalized by the condition

〈�E,J |�E,J 〉 =
∑
nρ,c

∣∣CE,J
nρ,c

∣∣2 = 1, (23)

and this quantity Wsh determines the probability. For the con-
tinuous spectrum state, when the wave function is normalized
by the condition

〈�E,J |�Ẽ,J 〉 =
∑
nρ,c

CE,J
nρ,cC

Ẽ,J
nρ,c = δ(k − k̃), (24)

this quantity has a different meaning. It determines the relative
contribution of the different oscillator shells and also the shape
of the resonance wave function in the oscillator representation.

It is worthwhile to notice that oscillator functions have some
important features. Oscillator functions belonging to an oscil-
lator shell Nsh allow one to describe a many-particle system
in a finite range of hyperradius 0 < ρ � b

√
4Nsh + Kmin + 3.

Outside this region, these oscillator functions give a negligibly
small contribution to the many-particle wave function. This
statement is, for example, demonstrated in Ref. [29]. Thus,
oscillator functions with a small value of Nsh describe very
compact configurations of a three-cluster system with all
clusters being close to each other. When Nsh is large, the
oscillator functions represent dispersed (dilute) configurations.
There are two principal regimes in these configurations. The
first regime is associated with a two-body type of asymptotic
when two clusters are at a small distance and the third cluster
is moved far away. The second regime accounts for the case
when all three clusters are well separated. Taking these into
account, we will deduce from an analysis of shell weights
Wsh whether a wave function of a bound or resonance state
describes a compact or dispersed three-cluster configuration.

It is necessary to add another important remark. There is a
strict correspondence between wave functions in the oscillator
and coordinate spaces [30,31]. In Ref. [14] a correspondence
was established between the expansion coefficients {CE,J

nρ,c} and
coordinate wave function ψE,c(ρ) for three-cluster systems. It
reads as

CE,J
nρ,c ≈

√
2ρ2

nψE,c(ρn), (25)

where

ρn = b
√

4nρ + 2K + 3

is a coordinate of the classical turning point in the six-
dimension harmonic oscillator. Formally, this correspondence
is valid for a large values of nρ ; however, in real cases
this correspondence is also valid for moderate values of nρ .
One may deduce from this correspondence that the weights
Wsh(Nsh ) for large values of Nsh are proportional to the squared
modulus of the wave function �E,J [Eq. (3)] at a discrete value
of hyperradiusρ = b

√
4Nsh + 2Kmin + 3. From the other side,

the correspondence (25) confirms the above statement that
the weights Wsh(Nsh ) with a small values of Nsh describe
a compact configuration of a three-cluster system, while the
weights Wsh(Nsh ) for a large values of Nsh determine the
probability of a dispersed configuration of the three-cluster
system.

By employing the wave function in the coordinate space,
we determine the correlation function

D(x, y) = x2y2
∫

|ψE,LJ(x, y)|2dx̂dŷ (26)

and average distances R1 and R2 between clusters,

R1 =
√

A
(A1+A2 )A3

√∫
y2|ψE,LJ(x, y)|2dx dy, (27)

R2 =
√

(A1+A2 )
A1A2

√∫
x2|ψE,LJ(x, y)|2dx dy. (28)

In our notations, R2 determines an average distance between
α particles, while R1 determines a distance of the third cluster
to the center of mass of two α particles. Note that in Eq. (26)
integration is performed over unit vectors x̂ and ŷ, while in
Eqs. (27) and (28) integration is carried out over all Jacobi
vectors or all hyperspherical coordinates.

It is obvious that the correlation function D(x, y) can be
determined both for bound and resonance states. However,
the average distances R1 and R2 can be calculated for the
bound state only, since for resonance states the integrals in
Eqs. (27) and (28) diverge. In Ref. [16] we suggested to extend
to resonance states the definition of average distances R1 and
R2. For this aim we restricted the integration within the internal
part of the resonance wave functions, which was normalized
to unity. Recall that the internal part of a wave function is
represented in the region (0 � ρ � ρmax in the coordinate
space or 0 � nρ � N (i) in the oscillator space) where distances
between clusters are relatively small and effects intercluster
interactions are very strong. Such a definition of R1 and R2

allows us to study the shape of the triangle composed by three
interacting clusters, but not its size. By comparing average
distances R1 and R2 for different resonances of the same or
other nucleus, we obtain more information on the structure of
the resonance wave functions.

It is important to note that the oscillator basis (17) can
be used to determine parameters of resonance states within
the methodology of the complex scaling method. This will be
demonstrated in another paper. However, it is more expedient
to use the Gaussian basis in the six-dimension space to perform
this type of calculations, as this basis provides more rapid
convergence of results than the oscillator basis.

III. RESULTS AND DISCUSSIONS

For all nuclei under consideration we employ the Minnesota
potential [32,33] (MP) or the modified Hasegawa-Nagata
potential [34,35] (MHNP). Both the central and spin-orbital
components of these potentials are taken into account.

In such calculations we have only one free parameter to be
selected. This is the oscillator length b which is common for all
clusters of a compound nucleus and effectively determines the
spatial distribution of nucleons in clusters. In our calculations
the oscillator length b is fixed by minimizing the energy of
the three-cluster threshold. For 9Be, 9B, and 12C, the oscillator
length b minimizes the energy of an α particle.

The Majorana parameter m of the MHNP and the exchange
parameter u of the MP are very often used as an adjustable
parameter. If one adjusts these parameters to reproduce phase
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TABLE I. List of nuclei investigated within microscopic three-
cluster compound (3CC) models and different input parameters; b is
the oscillator length, m or u are exchange parameters of the nucleon-
nucleon interaction.

Nucleus 3CC Potential u or m b (fm)

9Be α + α + n MHNP 0.0332 1.317
9B α + α + p MHNP 0.0332 1.317
10B α + α + d MP 0.915 1.395
11B α + α + 3H MP 0.920 1.322
11C α + α + 3He MP 0.920 1.322
12C α + α + α MP 0.940 1.285

shifts of the α-α scattering and parameters of resonance
states in 8Be, one obtains the overbound 0+ and 2+ states
in 12C, and also the 4+ bound state, which contradicts the
experimental data. This problem was discussed in Ref. [15]
where the MP was used to calculate the spectrum of bound
and resonance states in 12C. Such a problem also appears for all
nuclei under consideration. This problem has been discussed in
Refs. [16,22], where spectra of 9B and 9Be were investigated.
To avoid the appearance unphysical bound states, we adjust
parameters m and u to reproduce the energy of the ground
state measured from the three-cluster threshold. For mirror
nuclei 9Be, 9B and 11B, 11C we adjust these parameters only
for one nucleus of these pairs; for 9B and 11B. This is done in
order to study effects of the Coulomb interaction on parameters
of bound and resonance states. In Table I we collected input
parameters for each nucleus.

In Table II we display energies of the ground state of
two-cluster subsystems for all selected nuclei. These results are
obtained with the input parameters indicated in Table I. For nu-
clei 6Li, 7Li, and 7Be we show the bound state energies, while
for nuclei 5He, 5Li, and 8Be we present energies and widths
of the resonance states, which are usually considered as the
ground states. One can see that, by selecting the optimal values
of the parameters u and m of the nucleon-nucleon interactions,
we make the very broad 0+ resonance state in 8Be. We can
also see in Table II that the nucleon-nucleon interactions with
the selected parameters give the overbound ground states of
5He (0.348 MeV) and 5Li (1.236 MeV) for the observed 3/2−
resonance energies 0.798 and 1.69 MeV, respectively. These

TABLE II. Ground states of the binary subsystems. Here 3CC
stands for the three-cluster compound system and 2CC indicates
two-cluster subsystem. Energy E is given in MeV and the width of
resonance states � is in keV. Energy E of a two-cluster system is
determined with respect to the two-cluster threshold.

3CC Binary subsystem 8Be = α + α

2CC J π E � J π E �

9Be 5He = α + n 3/2− 0.384 209 0+ 0.859 958
9B 5Li = α + p 3/2− 1.236 725 0+ 0.859 958
10B 6Li = α + d 1+ − 1.183 0+ 0.426 69
11B 7Li = α + t 3/2− − 1.749 0+ 0.317 20
11C 7Be = α + 3He 3/2− − 0.941 0+ 0.317 20

input parameters also underbind the energies of the ground
states in 6Li, 7Li, and 7Be. The largest difference between
experimental and theoretical results is observed for 7Li and
equals 0.72 MeV, and the smallest difference equals 0.29 MeV
for 6Li.

Having determined the oscillator length b and the parameter
of the nucleon-nucleon forces, we have to select a part of
the total Hilbert space which takes part in construction of
the wave function of three-cluster continuous states. This part
is restricted by the number of three-cluster channels c and
the number of hyperradial excitations or, in other words, the
maximal number of oscillator shells. In all our calculations
we use a standard set of the hyperspherical harmonics and
hyperradial excitations. Positive parity states are calculated
with the hyperspherical harmonics Kmin � K � Kmax, where
Kmax = 14 for the positive parity states and Kmax = 13 for
the negative parity states. The minimal value of the hyper-
momentum Kmin equals the total orbital momentum L for
normal parity states π = (−1)L and Kmin = L + 1 for the
non-normal parity states. The total number of channels Nch

depends on the total angular momentum J , the possible values
of the total orbital moment L, and symmetry properties of the
three-cluster system. To achieve the asymptotic region and to
provide sufficient precision of our calculations, we take into
account the hyperradial excitation up to 70. This value of
hyperradial excitation and the number of the hyperspherical
channels cover a large range of intercluster distances and
different shapes of the three-cluster triangle.

In this paper we will not discuss the dependence of
parameters of resonance states on Kmax and Nch, and the
convergence of the obtained results, as they were addressed in
Refs. [15–18,22].

Within our models, the total spin S of odd nuclei 9Be, 9B,
11B, and 11C equals 1/2, thus the two following values of the
total orbital momentum are involved in calculations:

L = J − 1/2, J = L + 1/2.

The total spin S of the odd-odd nucleus 10B equals 1, therefore
bound and resonance states of the nucleus are constructed by
three values of the total orbital momentum,

L = J − 1, J = L, J = L + 1.

An interesting feature of description of 10B within the hyper-
spherical harmonics is that it includes almost two times more
hyperspherical channels c than nuclei 9Be, 9B, 11B, and 11C.
Note that the coupling of states with different values of the total
orbital momentum L is totally determined by the spin-orbital
interaction of nucleons.

A. 12C: Hoyle state

In this section we are going to reexamine some results
obtained in previous papers, concentrating our attention on
properties of the Hoyle state in 12C.

In Table III we compare parameters of resonance states
obtained within AMHHB [15] and CSM [36]. There are some
consistencies in these two different methods of obtaining
resonance states in the three-cluster continuum. Energy and
total width of the first 0+ resonance state (the Hoyle state) are
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TABLE III. Low-lying resonance states in 12C calculated within
the AMHHB and CSM.

J π CSM [36] AMHHB [15]

E (MeV) � (keV) E (MeV) � (keV)

0+ 0.76 2.4 0.68 2.9
1.66 1480 5.16 534

2+ 2.28 1100 2.78 10
5.14 1900 3.17 280
6.82 240 5.60 0.6

1− 3.65 0.30 3.52 0.21
3− 1.51 2.0 × 10−3 0.67 8.34

very close in both methods. The same is observed for other
narrow 1− resonance states in 12C.

In Fig. 1 we display the weights Wsh which represent the
structure of the wave function of the Hoyle state. As we see,
the weights of oscillator shells have very large amplitudes,
and the main contribution to the wave function in the internal
region comes from the oscillator shells 0 � Nsh � 30. In the
asymptotic region, this function has an oscillatory behavior
with much smaller amplitude. We consider such a behavior of
a resonance wave function as a “standard” or pattern for the
Hoyle-analog states.

It is interesting to compare the wave function of the Hoyle
state with wave functions of other resonance states in 12C.
We selected the second 0+ resonance state and 1− resonance
state. As it follows from Table III, the second 0+ resonance
state is a broad resonance state (� = 534 keV) while the 1−
resonance state is a narrow resonance state (� = 0.21 keV).
The presented weights Wsh for these two states (Fig. 2)
demonstrate that the wave function of the narrow 1− state has
a behavior which is close to the standard behavior of the Hoyle
state, as it has very large amplitudes of the oscillator shells
0 � Nsh � 30. Contrary to this case, the wave function of the
second resonance 0+ state has rather small amplitudes of the

FIG. 1. Weights of different oscillator shells in the wave function
of the first 0+ resonance state in 12C.

FIG. 2. Structure of wave functions of the second 0+ (a) and first
1− (b) resonance states in 12C.

lowest oscillator shells. It is naturally to assume that the 1−
resonance state is the Hoyle-analog state in 12C. We will use
the standard behavior of the wave function of the Hoyle state,
displayed in Fig. 1, as the additional criterion for selecting the
Hoyle-analog states.

In Fig. 3 we compare the resonance wave function with
the wave function of the pseudo-bound state, which was
calculated in the bound state approximation with Nmax = 70.

FIG. 3. Comparing wave functions of the 0+ resonance state (RS)
and the 0+ pseudo-bound state (BS) in 12C.
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TABLE IV. The energy, width and average distances R1, R2

between clusters for the ground states and for the 0+ and 1− resonance
states in 12C.

J π E (MeV) � (keV) R1 (fm) R2 (fm)

0+ − 11.37 3.12 3.60
0.68 2.9 6.95 8.02
5.16 534 6.43 7.43

1− 3.52 0.21 6.07 7.00

Both states have approximately the same energy; the energy
of the resonance state is 0.536 MeV, while the pseudo-bound
state has the energy 0.529 MeV.

It is worthwhile to notice that approximately such a structure
of the Hoyle state wave function has been obtained within
the complex scaling method in Ref. [37] and within fermion
molecular dynamics in Ref. [38].

We determined the shape of the triangle composed of three α
particles in bound and resonance states. The average distances
between clusters are displayed in Table IV.

The shape and size of triangles for the ground and the first 0+
resonance states are consistent with the corresponding density
distributions displayed in Figs. 8 and 9 of Ref. [15]. It is
interesting to note that the shape of resonance states, shown
in Table IV, is almost independent of the energy and total
width of the resonance state, and the structure of resonance
wave functions shown in Figs. 1 and 2. The main conclusion
one may deduce from Table IV is that the average distances
between α particles are rather large. The ground state of 12C
shows a compact three-cluster configuration, as expected.

Having reanalyzed properties of the Hoyle state and other
resonance states in 12C, we suggest the following criteria for
the Hoyle-analog states:

(1) The Hoyle-analog state is a very narrow resonance state
in the three-cluster continuum.

(2) The wave function of the Hoyle-analog state has large
values of amplitudes Wsh in the internal region.

As we pointed out above, we consider the first criterion is
the most important one. We believe that the more long-lived
resonance state has more chances for the system to transit
from a resonance state into a bound states, and vice versa.
It is well-known that a resonance state could substantially
increase a cross section of a process if the total width of this
resonance state is very small. To quantify the “narrowness” of a
resonance state we will calculate the ratio �/E. For the original
Hoyle state this ratio is 2.24 × 10−7. Such resonance states
are also called quasistationary states. As an additional and
important criterion we will use the behavior of the weights Wsh

of oscillator shells in the wave function of the resonance state.
Considering candidates of the Hoyle-analog states, we

are also going to check other criteria formulated in the
Introduction.

B. 9Be and 9B

As was pointed out above, spectra of resonance states in
9Be and 9B have been investigated within the present model

TABLE V. Spectra of resonance states of 9Be and 9B calculated
within the AMHHB model with MHNP.

9Be 9B

J π E (MeV) � (MeV) J π E (MeV) � (MeV)

3/2− − 1.574 3/2− 0.379 1.08 × 10−6

1/2+ 0.338 0.17 1/2+ 0.636 0.48
5/2− 0.897 2.36 × 10−5 5/2− 2.805 0.02
5/2+ 2.086 0.11 3/2+ 2.338 2.80
3/2−

2 2.704 2.53 1/2− 3.398 3.43
1/2− 2.866 1.60 5/2+ 3.670 0.42
3/2+ 4.062 1.22 3/2−

2 3.420 3.36
7/2− 4.766 4.04 5/2−

2 5.697 5.15
9/2+ 4.913 1.27 9/2+ 6.503 2.01
5/2−

2 5.365 4.38 7/2− 6.779 0.90

in Refs. [22] and [16]. In Ref. [16] we have discovered several
resonance states that can be considered as the Hoyle-analog
states. For completeness of the explanation we briefly present
the main results relevant to the subject of the present paper.

Energies and widths of the resonance states in 9Be and 9B
presented in Ref. [16] were obtained with the modified version
of the Hasegawa-Nagata potential, which is often used in
calculations of two- and three-cluster structures of light nuclei.
It was shown that our three-cluster model with such a potential
reproduces fairly good spectra of resonance states in both
nuclei. It was also demonstrated that the Hasegawa-Nagata
potential provides a more adequate description of resonance
states in 9Be and 9B than the Minnesota potential (see details
in Ref. [22]).

In Table V we collect energies and widths of resonance
states in 9Be and 9B.

There is only one very narrow resonance state in each
nucleus. This is the 5/2− resonance state in 9Be and the
3/2− resonance state in 9B, which is the “ground state” of the
nucleus. We considered these resonance states to be candidates
for the Hoyle-analog states. We also added the 1/2+ resonance
states to that list of resonance states, as they lie close to the
three-cluster threshold. Other resonance states in 9Be and 9B
have a large total width and they were disregarded.

In Fig. 4 we display the structure of wave functions of
the 5/2− resonance states in 9Be and 9B. The total width
of the 5/2− resonance states in 9Be is 24 eV and amplitudes of
the dominant shell weights Wsh are of 105 order of magnitude.
The same resonance state in 9B is wider (� = 18 keV) and
thus amplitudes of the dominant shell weights Wsh are less than
1000. One can see that the oscillator shells with 0 � Nsh < 20
give the main contribution to the wave functions of the 5/2−
resonance states. In Fig. 4 we also display Wsh in a logarithmic
scale to demonstrate their behavior in the internal region.
Within the internal region, wave functions are decreasing
exponentially like wave functions of bound states. Such a
behavior of wave functions of the 5/2− resonance states in
9Be and 9B allows us to consider these resonance states as the
Hoyle-analog states.

In Ref. [16] we have also considered the 1/2+ resonance
states in 9Be and 9B as possible candidates to the Hoyle-analog
states. These resonances lie very close to the three-cluster
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FIG. 4. Weight Wsh as a function of oscillator shell Nsh for the
5/2− resonance state in 9Be (a) and 9B (b).

threshold; however, the 1/2+ resonance states are rather wide
resonances and their wave functions both in coordinate and os-
cillator representations indicate a very dispersed three-cluster
configuration (see the wave functions in coordinate space in
Fig. 5). The latter result is also confirmed by the average
distances R1 and R2.

We also analyze all resonance states in 9Be in order to find
the Hoyle-analog state. We suggested that the 5/2− resonance

FIG. 5. Weights of different oscillator shells in wave functions of
the 1/2+ resonance states in 9Be (red color) and 9B (blue color).

TABLE VI. The spectrum of positive- and negative-parity res-
onance states in 11B. Energy is in MeV and measured from the
three-cluster α + α + t threshold.

J π E (MeV) � (keV) J π E (MeV) � (keV)

3/2− 0.755 0.58 1/2+ 0.437 15.26

1.402 185.18 0.702 12.30
1.756 143.72 1.597 15.95

1/2− 1.436 374.64 3/2+ 1.147 1.498
1.895 100.95 1.367 8.58
2.404 450.07 1.715 41.24

5/2− 0.583 5.14 × 10−4 5/2+ 1.047 1.54
1.990 32.63 1.951 40.20
2.251 138.87 2.265 54.73
2.905 120.46 2.748 167.61

7/2− 1.591 4.14 7/2+ 1.076 2.04 × 10−2

1.778 3.04 2.119 26.32
2.471 20.18 2.536 100.47

state can be considered as the Hoyle-analog state as this is
a very narrow resonance state. It lives long enough and may
transform to the 3/2− ground state of 9Be by emitting the
quadrupole γ quanta. This reaction, which involves the triple
collision of two α particles and a neutron and a subsequent
radiation of γ quanta, can be considered as an additional path
for the synthesis of 9Be nuclei.

It was shown in Ref. [16] that such behavior of the wave
function (Fig. 5) is typical for a low-lying resonance state with
a relatively large value of the total width.

C. 11B and 11C

Now we consider the spectra of resonance states in 11B and
11C. In Table VI we display the energy and width of resonance
states in the three-cluster α + α + t continuum of 11B, which
were calculated in Ref. [17].

In a small range of energies 0 < E < 3 MeV we observed
26 resonance states. The large part of these resonances are
narrow resonance states with the total width less than 50 keV.
A similar picture is observed in 11C. The energy and width
of positive- and negative-parity states are shown in Table VII.
Details of these calculations can be found in Ref. [17].

By using the criteria for selecting the candidates for the
Hoyle-analog states, formulated above, we selected four res-
onance states in 11B and four resonance states in 11C. In
Table VIII we display the properties of the selected resonance
states in 11B and 11C, and compare them with some bound
states. We did not include the 1/2+ resonance state in 11C as
it has a relatively large total width.

Figures 6 and 7 demonstrating wave functions of the 5/2−
resonance states in 11B and 11C explicitly indicate that these
resonance states can be considered as the Hoyle-analog state.
Both resonance states have very large amplitudes of weights
Wsh. The structure of the wave functions of the 5/2− resonance
states in 11C looks like a wave function of a bound state. These
results also show that the average distances between clusters
R1 and R2 in these resonance states are very close to average
distances for bound states, for instance, for the first excited
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TABLE VII. The spectrum of positive- and negative-parity res-
onance states in 11C. Energy is in MeV and measured from the
three-cluster α + α + 3He threshold.

J π E (MeV) � (keV) J π E (MeV) � (keV)

3/2− 0.805 9.93 × 10−3 1/2+ 0.906 162.94
1.920 105.08 1.930 59.88
2.324 619.76 2.679 86.69

1/2− 1.142 0.708 3/2+ 2.268 34.25
2.266 790.98 2.478 159.28
3.014 366.15 2.850 115.19

5/2− 0.783 9.64 × 10−5 5/2+ 1.460 0.90
1.897 5.77 2.346 82.72
3.026 182.69 3.179 122.75
3.491 392.96 7/2+ 1.765 7.40 × 10−2

7/2− 2.700 66.63 2.542 8.19
3.538 21.18 3.237 119.13

3/2− state in 11C. From the average distances R1 and R2 for
the resonance states in 11B and 11C in Table VIII, we see that the
most narrow 5/2− resonance state in 11C has the most compact
configuration of three clusters. In contrast to this resonance
state, the narrowest 5/2− resonance state at E = 0.583 MeV
in 11B, the total width of which is five time larger than the
width of the 5/2− resonance state in 11C, has a rather dispersed
structure with the average distance between α particles being
equal to 7.2 fm.

It is interesting to note that the Coulomb interaction makes
the 5/2− resonance state in 11C more narrow than that in
11B. As one may expect, it also increases the energy of the
resonance in 11C comparing to its position in 11B. The same
picture is observed for the 3/2− resonance states in 11B and
11C. The larger Coulomb barrier in 11C leads to the very large
amplitudes of Wsh for the 3/2− resonances state. One can
compare amplitudes of Wsh for 3/2− resonance states in 11B
and 11C in Figs. 8 and 9, respectively.

We do not show wave functions of the 1/2+ resonance
states in 11B and 11C here as they are very similar to the wave

TABLE VIII. Parameters of resonance states in 11B and 11C se-
lected as candidates to the Hoyle-analog states. The average distances
R1 and R2 are presented both for resonance states and for bound states.

Nucleus J π E (MeV) � (keV) �/E R1 (fm) R2 (fm)

11B 3/2− − 11.055 2.60 2.88
3/2− − 5.667 2.90 3.38
3/2− − 0.589 4.83 6.79
1/2+ 0.437 15.26 3.49 × 10−2 10.48 6.77
5/2− 0.583 5.14×10−4 8.81 × 10−7 4.71 7.20
3/2− 0.755 0.58 7.7 × 10−4 5.36 7.75
5/2+ 1.047 1.54 1.47 × 10−3 4.98 7.47

11C 3/2− − 9.073 2.64 2.90
3/2− − 3.835 2.97 3.43
1/2+ 0.906 162.94 10.75 7.08
5/2− 0.783 9.64×10−5 1.23 × 10−7 3.20 3.87
3/2− 0.805 9.93×10−3 1.23{ × 10−5 5.02 6.86
5/2+ 1.460 0.90 6.16 × 10−4 5.00 6.69

FIG. 6. Weights of oscillator shells in the wave functions of the
5/2− resonance state (E = 0.58 MeV � = 0.5 eV) in 11B.

functions of these resonance states in 9Be and 9B. Moreover,
the shape of three-cluster triangles in those pairs of nuclei is
also similar.

As we pointed out in the Introduction, there are few
publications which are devoted to the Hoyle-analog states in
11B and 11C. In Refs. [6] and [8], the spectra of 11B and 11C
were obtained within the antisymmetrized molecular dynamics
(AMD) model. The excited states have been treated as bound
states, which means that the widths and energies of these
states with respect to the three-cluster thresholds were not
determined. By analyzing the probability of electromagnetic
transitions, the authors came to the conclusion that the 3/2−
excited states have dilute cluster structures α + α + t and
α + α + 3He, and thus can be considered as the Hoyle-analog
states. It was also claimed by the authors that the 5/2− states
do not have a well-developed cluster structure and therefore
cannot be considered as the Hoyle-analog states.

FIG. 7. Structure of the wave function of the very narrow 5/2−

resonance state in 11C.
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FIG. 8. The shape of the wave function of the 3/2− resonance
state in 11B.

In Refs. [7] and [10], resonance states in the two- and
three-body continuum of 11B and 11C were determined with the
complex scaling method. The 3/2− resonance state is located
below the α + α + t threshold and has a compact cluster
configuration, as was shown by the authors of Refs. [7,10],
and therefore was not considered as a candidate for the Hoyle-
analog states. The wave function of the 1/2+ resonance state,
which has “the gas-like structure with a large nuclear radius,”
as stressed by the authors, thus can be considered as the
Hoyle-analog state. It is interesting to note that the parameters
(E = 0.75 MeV, � = 190 keV) of the 1/2+ resonance state,
determined in Refs. [7,10], are rather different from those
(E = 0.44 MeV, � = 15 keV) displayed in the present paper.
This difference can be ascribed to the different types of
nucleon-nucleon potentials involved in these two calculations.
The 1/2+ resonance state, obtained in our calculations, has

FIG. 9. The shape of wave function of the 3/2− resonance state
in 11C.

TABLE IX. Parameters of resonance states in 10B. The average
distances R1 and R2 are calculated for the candidates for the Hoyle-
analog states.

J π E (MeV) � (keV) �/E R1 (fm) R2 (fm)

1+ 0.604 232.30 0.384
0.987 7.08 7.17×10−3 6.67 10.67
1.536 196.36 0.128

2+ 1.055 12.063 11.43×10−3 6.64 10.83
2.810 170.74 60.76×10−3

3+ 1.062 11.73 11.05×10−3 6.43 10.35
2.202 526.47 0.239

1− 1.100 76.75 69.77×10−3 9.31 10.84
1.820 562.71 0.309

also a large nuclear radius; however, it is not considered as the
Hoyle-analog state under our criterion.

D. 10B

In Table IX we show the three-cluster resonance states in
10B calculated with the MP. Details of these calculations can be
found in Ref. [18], where the spectrum of bound states of 10B
has been discussed. Here, we use the same input parameters to
calculate the spectrum of resonance states in the three-cluster
α + α + d continuum. As we can see in Table IX, there are a
few narrow resonance states which can be considered as the
Hoyle-analog states. Three resonance states have a total width
less than 12 keV, and the ratio�/E does not exceed 11.5×10−3.

In Table IX we also show the average distances between
interacting clusters. It is necessary to recall that R2 stands
for the distance between two α particles, and R1 denotes the
distance between the deuteron and the center of mass of two
α particles. It is interesting to compare the average distance
between clusters for resonance states with those for the bound
states. For the ground 3+ state we obtained R1 = 2.60 fm
and R2 = 3.10 fm. This is a compact configuration despite
the fact that the binding energy is −5.95 MeV accounted
from the three-cluster threshold α + α + d, which is not very
small. The first excited 3+ state is a weakly bound state as
its energy is −0.95 MeV; however, it is also a rather compact
configuration with the average distances R1 = 4.07 and R1 =
5.35 fm. As we see in Table IX, all resonance states selected
as the candidates for the Hoyle-analog states have a dispersed
configuration with a large distance between α particles.

Let us turn our attention to the wave functions of the selected
resonance states. In Fig. 10 we display shell weights in wave
functions of the narrow 3+ and 1+ resonance states in 10B.
These resonance state have the smallest total width among all
resonances in 10B. One notices that the compact three-cluster
configuration (Nsh = 0) has a relatively large contribution to
these wave functions. The shapes of the curves are similar to
the shape of the Hoyle state (Fig. 1); however, the amplitudes
are much more smaller.

We assume that the interplay of the attractive potential,
created by the central and spin-orbital parts of the nucleon-
nucleon interaction, and the repulsive potential, formed by the
Coulomb interaction, does not create a favorable situation for
very narrow resonance states in 10Be.
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FIG. 10. Weights of different oscillator shells in wave functions
of the 3+ (a) and 1+ (b) resonance states in 10B.

IV. CONCLUSION

We have performed a systematic investigation of the three-
cluster resonance states in light nuclei 9Be, 9B, 10B, 11B,
11C, and 12C. These nuclei have been considered to have
a three-cluster structure composed of two α particles and
an s-shell nucleus. A microscopic three-cluster model was
applied to search for and to study resonance states embedded
in the three-cluster continuum. This model imposes proper
boundary conditions by employing hyperspherical coordinates
and hyperspherical harmonics. Having reanalyzed properties
of the Hoyle state, we formulated criteria for the Hoyle-analog
states. Among these resonances, we found the Hoyle-analog
states in these nuclei. The Hoyle-analog states are created by

TABLE X. Parameters of the Hoyle-analog states in light nuclei
9Be, 9B, 11B, and 11C.

Nucleus Configuration J π E (MeV) � (keV) �/E

9Be α + α + n 5/2− 0.897 2.36×10−2 2.63×10−5

9B α + α + n 3/2− 0.379 1.08×10−3 2.84×10−6

5/2− 2.805 18.0×10−3 6.42×10−6

11B α + α + 3H 5/2− 0.583 5.14×10−4 8.87×10−7

3/2− 0.755 0.58 7.70×10−4

5/2+ 1.047 1.54 1.47×10−3

11C α + α + 3He 5/2− 0.783 9.64×10−5 1.23×10−7

3/2− 0.805 9.93×10−3 1.23×10−5

5/2+ 1.460 0.90 6.16×10−4

FIG. 11. Spectrum of the Hoyle-analog states in 9Be, 9B, 11B, and
11C.

a collision of two α particles and a nucleus X (X = neutron,
proton, 3H, 3He). These resonance states have very small width.
We discussed an alternative way for the synthesis of light nuclei
in a triple collision, in the same manner as was suggest by Hoyle
for 12C. We found several resonance states having a total width
of a few eV. Most of the obtained resonance states have a width
of a few dozens of keV.

In Table X we collect the parameters of the Hoyle-analog
states in the light nuclei under consideration. Results presented
in this table allow us to formulate the criteria for selecting the
Hoyle-analog states. A three-cluster resonance state can be
treated as the Hoyle-analog state if the ratio �/E < 2×10−3

for this resonance state.
Figure 11 visualizes the results presented in Table X.

This figure explicitly demonstrates effects of the Coulomb
interaction on the energy of three-cluster resonance states in
mirror nuclei 9Be, 9B and 11B, 11C. One can see that the
Coulomb interaction has a stronger impact on the position of
the 5/2− resonance states in 9Be and 9B than on the position
of the 3/2−, 5/2−, and 5/2+ resonance states in 11B and 11C.

In Table XI we collect all resonance states for the total
momentum J and positive parity, where the zero value of the
total orbital momentum (L = 0) is dominant. This is the case
for 9Be, 9B, 11B, and 11C. The continuous spectrum states with
L = 0 can be interpreted as a head-on collision of the third
cluster with the 8Be nucleus being in the 0+ state. As one

TABLE XI. The energy and width of resonance states created
by the three-cluster configuration with the total orbital momentum
L = 0.

Nucleus J π E (MeV) � (keV)

9Be 1/2+ 0.338 168
9B 1/2+ 0.636 477
10B 1+ 0.604 232
11B 1/2+ 0.437 15
11C 1/2+ 0.906 163
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FIG. 12. Shape of triangles for some selected resonance states in
9Be and the Hoyle state (J π = 0+).

can see, all these resonance states lie rather close to the three-
cluster threshold and they are fairly wide, as the total widths
are � = 15 keV or more. Therefor they cannot be considered
as the Hoyle-analog states.

Figures 12, 13, and 14 of average distances R1 and R2

demonstrate the most probable shapes of triangles of three-
cluster resonance states in 9Be, 11B, and 11C, respectively.

FIG. 13. Shape of triangles of some resonance states in 11B and
the Hoyle resonance state (J π = 0+).

FIG. 14. Shape of triangles of some resonance states in 11C
compared to the Hoyle resonance state (J π = 0+).

In all these figures we also show the triangle composed of
three α particles in the Hoyle resonance state in 12C. The 1/2+
resonance states in 9B, 11B, and 11C have very large triangles
where a neutron, triton, and 3He nucleus are far away from two
α particles. The Hoyle-analog states in these nuclei have a tri-
angle comparable with the shape of the Hoyle state and in some
cases (for example, for Jπ = 5/2−) they are more compact.

FIG. 15. The most probable shape of three-cluster triangles for
most narrow resonance states in 10B and compared with the Hoyle
state (J π = 0+).
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Figure 15 demonstrates the shape of triangles for resonance
states in 10B. They are the narrowest resonance states; however,
the amplitudes of Wsh, as shown above, are fairly small and the
ratios �/E for these states are large. They do not match our
criteria for the Hoyle-analog states. As we see, the distance
between α particles is greater than this distance in the 0+
resonance state in 12C and all other nuclei considered in the
present paper. To this end, the 1/2+ resonance states in 9Be, 9B,
11B, and 11C, which are considered as candidates for the Hoyle
states and did not match our criteria, have an average distance
between two α particles comparable with the Hoyle state;
meanwhile the average distance of the third cluster (neutron,

proton, triton, and 3He, respectively) to the center of mass of
two α particles is very large.
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