PHYSICAL REVIEW C 98, 024322 (2018)

Proton removal from °B to negative-parity states of ’Be
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I have estimated the amount of p-shell — (sd)? core excitation in '*B that involves an sd-shell proton, and
then the spectroscopic factors for proton removal from '*B to negative-parity states of '*Be. Results are S ~
1072, indicating that these states are unlikely to be populated in that reaction.
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I. INTRODUCTION

The dominant structure of all the low-lying negative-parity
states of '*Be consists of a !'Be 1/2~ or 3/2 core coupled
to s or d neutron. (Here, s refers to 2s;,, and d to 1ds,,.) The
known 1~ state at 2.7 MeV [1] and the probable 3~ state [2,3]
at 4.58 MeV are very well described [3,4] as ''Be(1/27) ® s
and d, respectively. The observed width of 107(17) keV [5]
for the 3™ state corresponds to near unit spectroscopic factor
[6] for 37 to 1/27 1ds, decay. The accompanying 0~ and 2™
states [4] have not been identified.

The next set of negative-parity states would consist of s or
d neutron coupled to the 3/2~ state of ''Be at E, = 2.65MeV
[7,8]. This coupling gives rise to 1~ and 2~ for s, and 17—4~
for d. Some mixing between the two configurations (and
the one above) could occur. Configurations involving 1ds/»
or three nucleons in the sd shell will occur at much higher
excitation energy, and I will ignore them here. My aim is to
estimate the expected strengths of these negative-parity states
in proton removal from '*B.

For states at low excitation in '*Be, components with a
1s1 /> proton hole are extremely small. Thus, to populate any
of these negative-parity states, parity conservation requires
proton removal from the 2s 1d shell. For the ground state (g.s.)
of B, excitations involving sd-shell neutrons have been
estimated to be about 30(2) [9] or 25(5)% [10]. [I interpreted
a p-shell component of 0.70-0.80 to mean 0.75(5), and hence
0.25(5) for the (sd)? component.] However, in lowest order, it
contains no sd-shell protons. I estimate this impurity here.

II. MODEL AND CALCULATIONS

To have a nonzero overlap with these negative-parity states,
the '*B impurity must contain an sd-shell neutron. As outlined
above, it must also contain an sd-shell proton (the proton that
is removed). Thus, the sd-shell pair is pn. The conservation
of angular momentum requires the total J of the impurity
configuration to be 3/2. The most likely such structure is
1Be(1 /27) ® (sd )%0, where the double subscripts denote J T
of the sd-shell pair. Thus, I write

PB(g.s.) = A'"Bj,(gs.) ® v(sd)® + B PBy,(gs.)
+e'"Be(1/27) ® (sd)k,

and I attempt to estimate €.
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In weak-coupling parlance, this core-excited configuration
has the structure 'Be(1/27) ® '8F(g.s.). Its unperturbed en-
ergy can be estimated by using the weak-coupling expressions
of Banzal-French-Zamick (BFZ) [11,12]:

"Be(1/27) ® "®F(g.s.)
= "Be(1/27) + BF(g.s.) -'°0 + 10a + 4c,

where a is the particle-hole (ph) interaction, and c is the
Coulomb ph term. The nuclide symbols refer to the mass ex-
cesses of those nuclei [13]. To get the excitation energy of this
state in 1’B, I simply subtract the g.s. mass excess of ’B. If
I use standard values of the parameters, a = 0.43, ¢ = —0.30,
both in MeV, the result is E, = 12.7 MeV. I can estimate the
magnitude of this component in the physical *B(g.s.) with
first-order perturbation. In first-order perturbation, the mixing
amplitude is given by ¢ = V/AE, where V is the potential
responsible for the mixing, and AE is the energy difference.
Even if the mixing matrix element between this core-excited
configuration and the 1p-shell g.s. is as large as 2 MeV, the
resulting wave-function amplitude ¢ is 0.16, i.e., about 0.026
in intensity. This estimate is likely to be an upper limit.

To obtain the spectroscopic factor from this component of
BB(g.s.) = ?Be(17), I need to know the amount of s> in
(sd)3:

(sdYy=ad>+bs*+cdd +...,

where d’ stands for 1d3,,. In a standard sd-shell calculation,
b? is about 0.25 [14]. Thus, the expected spectroscopic factor
for PB(g.s.) — "Be(17)is § = b*e? ~ 6.4 x 1073, with an
estimated uncertainty of about a factor of two. (In general,
computing these spectroscopic factors involves uncoupling
and recoupling angular momenta, with the aid of 6 coef-
ficients. In this first example, the relevant 6 coefficient is
unity.) Results for the other low-lying negative-parity states
of ”Be will be similar. From the d? component of the (sd )%0
structure, the first 3~ and 2~ states of ?Be can be reached in
d proton removal. Squares of relevant recoupling coefficients
are 2/3 for 37 and 1/3 for 27. In a similar manner to that
detailed above, resulting spectroscopic factors are as listed in
Table I.

Another core excitation that could contribute involves
1/2 ® (sd)3,, but still with 7, = 0 for the sd-shell pair. [The
configuration 1/2~ ® (sd)3, lies lower, but it has the wrong J
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TABLE I. Estimated spectroscopic factors for proton removal
from core-excited admixtures in >B to the lowest negative-parity
states in ’Be.

Impurity S for proton removal from *B
Configuration® to negative-parity states

12 1- 3 2-
"Be(1/27)® (sd)}, 0  0.0064 - -

2 - 0.0068 0.0032
"Be(1/27)® (sd)}, 2 0.0048 0.008 0.016

“Double subscripts denote JT of the sd-shell pair.

to mix with *B(g.s.).] We can estimate the expected energy
of this core-excited configuration again by using BFZ as
above. However, here, caution is required. For core excitation
involving more than one hole and more than one particle
and un-stretched isospin (as here), the BFZ formula is well
known to provide too low an excitation energy [15]. For this
configuration, I need the isospin weak-coupling parameter, for

which T use b = 5.0 MeV. The BFZ estimate of the excitation
energy of the 1/2~ ® (sd )3, is thus about 10.8 MeV. Given the
caveat above, this is a lower limit. The (sd)3; state consists
mostly of ds and d> components. Estimating spectroscopic
factors as above, results are as given in Table .

III. SUMMARY

It can be noted that none of these core excitations provide
any significant proton removal strength from '*B to negative-
parity states of '>Be. It is thus very likely that any states
observed in this reaction will have positive parity. This ex-
pectation is supported by the fact that a recent proton-removal
experiment [16] from '*B saw no evidence for the probable 3~
state at 4.58 MeV. For comparison, the p-shell spectroscopic
factor for °B — ”Be(27) is about 2.6 [3,17]—several hun-
dred times larger than for the negative-parity states. It thus
appears reasonable that in proton removal from '*B, virtually
all of the observed strength will go to positive-parity states,
and virtually none to negative-parity states.
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