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We systematically study the properties of single-�, �, and � hypernuclei within the framework of relativistic
mean-field model. The YN coupling constants are constrained according to the experimental data and previous
theoretical efforts. By adding a hyperon to 40Ca, we investigate its mean-field potentials, single-hyperon levels,
density distributions, and binding energies, where the consequences of introducing different types of hyperons
(�,�0,−, and �+,0,−) are examined. In general, the � and �0 hyperons show similar behaviors in bulk properties
since both of them are electroneutral and have similar coupling constants; �0 hyperon owns the shallowest
mean-field potential well with the most extended density distribution; and Coulomb interactions play vital roles
in the charged �−, �−, and �+ hyperons. As a result, those hyperons have different impurity effects on the
nuclear core 40Ca. The ωYY tensor couplings are included and show remarkable effects on the spin-orbit splitting
which even change the level ordering of � hyperon. Finally, the single-hyperon binding energy of hypernuclei
generally increases with the mass number. However, there is a turning point for �+ hypernuclei at 91

�+ Nb where
the binding energy begins to decrease. This is mainly due to the increasing Coulomb repulsive potential at large
proton numbers.
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I. INTRODUCTION

Hypernuclei consist of neutrons, protons, and hyperons
(e.g., �,�, and � hyperons), which have an additional
strangeness degree of freedom compared with ordinary nuclei.
Since the first � hypernucleus was discovered in 1953 [1],
the study of hypernuclei has attracted worldwide interest in
both experimental observations [2–4] and theoretical calcula-
tions [5]. An important goal in the investigations of hypernuclei
is to extract information on baryon-baryon interaction, which
is crucial to understand the hypernuclear structure [6–9] and
neutron star properties [10–14]. Because of the difficulties
in the hyperon-nucleon (YN ) and hyperon-hyperon (YY )
scattering experiments, there exists very few YN scattering
data and no YY scattering data at all.

In the aspect of experiments, many large facilities, such
as the European Organization for Nuclear Research (CERN),
Brookhaven National Laboratory (BNL), Jefferson Labora-
tory (JLab), High Energy Accelerator Research Organiza-
tion (KEK), Japan Proton Accelerator Research Complex
(J-PARC), and Mainz Microtron (MAMI), have been produc-
ing a lot of hypernuclei data to investigate the strangeness nu-
clear physics [2–4]. The most extensively studied hypernuclear
system is the single-� hypernucleus and rich experimental
events ranging from 3

�H to 208
� Pb have been obtained in labo-

ratories [2,15,16]. However, for � hypernuclei, it is generally
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recognized that bound �-hypernuclear systems do not exist
except for 4

�He, which was produced in the (K−
stop, π−) reaction

at KEK [17]. For the hypernuclei with strangeness number
S = −2, the experimental data are very limited because of
the difficulty of the high-intensity medium-energy K− beams
required to produce such objects. Until now, three double-�
hypernuclei, 6

��He [18], 10
��Be [19], and 13

��Be [20], have
been identified and the observed positive �� bond energies
�B�� = B�� − 2B� suggest slightly attractive �� interac-
tion. Meanwhile, there are several observed data on the �

hypernuclei in the 12
� Be (11B + �−) [21], 13

� B (12C + �−) [22],
and 15

� C (14N + �−) [23] systems. In particular, the Kiso event
with the process of �− + 14N → 10

� Be + 5
�He provided the

first clear evidence of a deeply bound state of the �−-14N
system by an attractive �N interaction [23].

In theoretical calculations, great efforts have been made to
study the hypernuclei as a many-body system. Since hyperons
do not suffer from the Pauli blocking by nucleons, they can
penetrate into the nuclear interior and form deeply bound
hypernuclear states. As an impurity, the hyperons may induce
many effects on the nuclear core, such as the shrinkage
effect [24–26], deformation [27–32], modification of cluster
structure [33–35], shift of neutron drip line [36], halo struc-
tures [33,37,38], and spin and pseudospin symmetries [39–43].
Many approaches such as the cluster model [24,25,44,45],
the shell model [46–48], the antisymmetrized molecular
dynamics [49], the mean-field approaches [28–30,50–60],
quark mean-field model [12], and ab initio methods [61]
have contributed a lot to the investigations of the structure
of hypernuclei and obtained great successes. Among these
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theoretical methods, the mean-field approaches can be globally
applied from light to heavy hypernuclei, like Skyrme-Hartree-
Fock (SHF) [28,50–53] and the relativistic mean-field (RMF)
models [29,30,54–60].

During the past decades, the RMF model was very suc-
cessful at describing the properties of ordinary nuclei [62–71].
Those successes quite naturally inspired attempts to describe
the more general baryon systems with the strangeness degree
of freedom within the same framework. In 1977, Brockmann
and Weise first applied this approach to hypernuclei [54]. At
that time, it had been already observed experimentally that the
spin-orbit splittings in hypernuclei are significantly smaller
than those in ordinary nuclei [72]. The relativistic approach
is suitable for a discussion of spin-orbit splittings, which nat-
urally emerged within the relativistic framework. As a result,
the RMF model has been applied to describe single- and multi-
� systems, including the single-particle (s.p.) spectra of �

hypernuclei and the spin-orbit splittings, and extended beyond
the � hyperon to other strangeness baryons [7,56,73–80].

In this work, we aim to investigate the properties of single-
�,�, and � hypernuclei systematically within the framework
of the RMF model. Proper YN interactions will be adopted.
First, by adding a hyperon to the nuclear core 40Ca, the
properties such as the mean-field potentials, s.p. levels, and
density distributions for hyperons will be presented. The
impurity effects from different hyperons on the binding energy
and radius of nuclear core will be analyzed. Second, the ωYY
tensor coupling effects on the hyperon spin-orbit splittings
will be investigated. Finally, the mass dependence of the
single-hyperon binding energies will be discussed.

The paper is organized as follows. In Sec. II, we present
the RMF model for the single-�,�, and � hypernuclei. After
the numerical details in Sec. III, we present the results and
discussions in Sec. IV. Finally, a summary is drawn in Sec. V.

II. THEORETICAL FRAMEWORK

The starting point of the meson-exchange RMF model for
hypernuclei is the covariant Lagrangian density

L = LN + LY , (1)

where LN is the standard RMF Lagrangian density for the
nucleon [62–67], in which the couplings between nucleons
and the scalar σ , vector ωμ, and vector-isovector �ρμ mesons
and the photon Aμ are included.

The Lagrangian density LY is the contribution from the
hyperons. In this work, hypernuclei with the single-�,�, and
� hyperon are studied and the properties of those hyperons are
listed in Table I. For the electroneutral � hyperon with isospin
0, only the couplings with σ and ω mesons are included; for the
� and � hyperons, the couplings with σ, ω, and ρ mesons and
photon are included. The Lagrangian density LY reads [57]

LY = ψ̄Y

[
iγ μ∂μ − MY − gσY σ − gωY γ μωμ

− fωY

2MY

σμν∂νωμ

]
ψY + LρY + LAY , (2)

TABLE I. Strangeness number S, mass MY (in MeV), isospin I ,
total angular momentum and parity J P , and charge Q for hyperons
Y = �, �0,−, and �+,0,−.

S MY I J p Q

� −1 1115.6 0 (1/2)+ 0

�0 −2 1314.9 1/2 (1/2)+ 0
�− −2 1321.3 1/2 (1/2)+ −e

�+ −1 1189.4 1 (1/2)+ +e

�0 −1 1192.5 1 (1/2)+ 0
�− −1 1197.4 1 (1/2)+ −e

where MY are the masses of hyperons and gσY , gωY , and
gρY are the coupling constants between a hyperon and the
σ, ω, and ρ mesons, respectively. The term proportional to
fωY

2MY
represents the tensor coupling between hyperons with

the ω field, and the last two terms LρY and LAY describe
the interaction of a hyperon with the ρ meson and Coulomb
field, respectively, which should be included for the � and �

hypernuclei. For a particular hyperon, they read

LρY =

⎧⎪⎪⎨
⎪⎪⎩

0, for �,

− ψ̄�gρ�γ μ�τ� · �ρμψ�, for �,

− ψ̄�gρ�γ μ�τ� · �ρμψ�, for �,

(3)

and

LAY =

⎧⎪⎨
⎪⎩

0, for �,

−ψ̄�eγ μ τ�,3−1
2 Aμψ�, for �,

−ψ̄�eγ μτ�,3Aμψ�, for �,

(4)

where �τY is the isospin vector with the third component τY,3,

τY,3 =

⎧⎪⎪⎨
⎪⎪⎩

0, Y = �,

+1, −1, Y = �0, �−,

+1, 0, −1, Y = �+, �0, �−.

(5)

Note that, like the � hyperon, the electroneutral �0 hyperon
couples only with the σ and ω mesons due to the zero-isospin
third component.

For a system with time-reversal symmetry, the spacelike
components of the vector fields vanish, leaving only the time
components ω0, �ρ0, and A0. Furthermore, one can assume that
the hyperon s.p. states do not mix isospin, i.e., the s.p. states
are eigenstates of τY,3, and therefore only the third component
of the ρ0 meson field, ρ0,3, survives.

With the mean-field and no-sea approximations, the
s.p. Dirac equations for baryons and the Klein-Gordon equa-
tions for mesons and photon can be obtained by the variational
procedure. In the spherical case, the Dirac spinor can be
expanded as

ψ (r ) = 1

r

(
iGnκ (r )

Fñκ (r ) σ · r̂

)
Y l

jm(θ, φ), (6)

where Gnκ (r )/r and Fñκ (r )/r are the radial wave functions
for the upper and lower components with n and ñ numbers of
radial nodes, Y l

jm(θ, φ) is the spinor spherical harmonics, and
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quantum number κ is defined by the angular momenta (l, j )
as κ = (−1)j+l+1/2(j + 1/2).

The Dirac equation for the radial wave functions of the
hyperon is(

V + S − d
dr

+ κ
r

+ T

d
dr

+ κ
r

+ T V − S − 2MY

)(
G
F

)
= ε

(
G
F

)
, (7)

where ε is the s.p. energy. For a particular hyperon, the scalar
potential S, vector potential V , and ωYY tensor potential T
are

S = gσY σ, for �,�, or �, (8a)

V =

⎧⎪⎨
⎪⎩

gω�ω0, for �,

gω�ω0 + gρ�τ�,3ρ0,3 + e
τ�,3−1

2 A0, for �,

gω�ω0 + gρ�τ�,3ρ0,3 + eτ�,3A0, for �,

(8b)

and

T = − fωY

2MY

∂rω0, for �,�, or �. (8c)

The mesons and photon fields satisfy the radial Laplace
equation (

− d2

dr2
− 2

r

d

dr

)
φ = Sφ, (9)

with the source terms

Sφ

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−m2
σ σ − gσ ρs − gσY ρsY − g2σ

2 − g3σ
3, for σ,

−m2
ωω0 + gωρv + gωY ρvY + fωY

2MY
∂ij

0i
T Y − c3ω

3
0, for ω0,

−m2
ρρ0,3 + gρρ3 + gρY ρ3Y , for ρ0,3,

+eρc + eρcY , for A0,

(10)

where mφ (φ = σ, ω, and ρ) are the meson masses and is
zero for photon; gσ , gω, gρ, g2, g3, and c3 are the parameters
of the nucleon-nucleon (NN ) interaction in the Lagrangian
density LN ; ρs (ρsY ), ρv (ρvY ), ρ3(ρ3Y ), and ρc(ρcY ) are the
radial scalar, baryon, isovector, and charge density for the
nucleons (hyperons), respectively; and j 0i

T Y is the tensor den-
sity for the hyperons. With the radial wave functions, these
densities for the hyperons can be expressed as

ρsY (r ) = 1

4πr2

AY∑
k=1

[∣∣GY
k (r )

∣∣2 − ∣∣FY
k (r )

∣∣2]
, (11a)

ρvY (r ) = 1

4πr2

AY∑
k=1

[∣∣GY
k (r )

∣∣2 + ∣∣FY
k (r )

∣∣2]
, (11b)

j 0i
T Y (r ) = 1

4πr2

AY∑
k=1

[
2GY

k (r )FY
k (r )

]
n, (11c)

ρ3Y (r ) = 1

4πr2

AY∑
k=1

[∣∣GY
k (r )

∣∣2 + ∣∣FY
k (r )

∣∣2]
τY,3, (11d)

and

ρcY (r )

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

4πr2

A�∑
k=1

[∣∣G�
k (r )

∣∣2 + ∣∣F�
k (r )

∣∣2]τ�,3 − 1

2
, for �,

1

4πr2

A�∑
k=1

[∣∣G�
k (r )

∣∣2 + ∣∣F�
k (r )

∣∣2]
τ�,3, for �,

(11e)

where n is the angular unit vector. The hyperon number AY is
determined by the baryon density ρvY (r ) as

AY =
∫

4πr2drρvY (r ). (12)

The coupled equations (7)–(11) in the RMF model are
solved numerically in the coordinate space.

As the translational symmetry is broken in the mean-field
approximation, a proper treatment to the center-of-mass (c.m.)
motion is very important, especially for light nuclei. In the
present calculation, we employ a microscopic c.m. correction
as shown in Ref. [81],

Ec.m. = − 1

2M
〈 P̂

2〉, (13)

where M = ∑
B MB is the total mass of the (hyper)nucleus

and P̂ = ∑
B P̂B is the total momentum operator. With the

c.m. correction, the total energy for a hypernucleus in RMF is
finally given as

Etot

=
A∑

k=1

εk +
AY∑
k=1

εY
k

− 2π

∫
r2dr

[
gσ ρsσ + gσY ρsY σ + 1

3
g2σ

3 + 1

2
g3σ

4

]

− 2π

∫
r2dr

[
gωρvω0 + gωY ρvY ω0 + fωY

2mY

∂ij
0i
T Y ω0 − 1

2
c3ω

4
0

]

− 2π

∫
r2dr

[
gρρ3ρ0,3 + gρY ρ3Y ρ0,3 − 1

2
d3ρ

4
0,3

]

− 2π

∫
r2dr[eρcA0 + eρcY A0] + Ec.m.. (14)

III. NUMERICAL DETAILS

In this work, the single-�, �, and � hypernuclei are
calculated by the RMF model. In the following, we also use
the notation A

Y Z to represent a hypernucleus with the mass
number A = An + Ap + AY , where An is the neutron number,
Ap is the proton number, and AY is the number of embedded
hyperons. For a hypernucleus with an electroneutral hyperon,
the electric charge Z corresponds to the number of protons
while for a hypernucleus with charged hyperons such as �+,−
and �−, the value of Z is altered.

For the NN interaction, the effective interaction PK1 [82]
is adopted, which can provide excellent descriptions not only
for nuclear matter but also for finite nuclei both in and far from
the valley of β stability. For the YN interaction, the sets of
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TABLE II. Coupling constants ασY = gσY /gσN , αωY = gωY /

gωN , αρY = gρY /gρN , and αT Y = fωY /gωY in the YN interactions for
the Y = �, �, and � hyperons.

ασY αωY αρY αT Y

� 0.618 0.667 0.0 0.0 − 0.122 − 0.541 − 1.0
� 0.313 0.333 1.0 0.0 − 0.4 − 1.89 − 2.27
� 0.619 0.667 1.0 0.0 0.76 1.0 1.417

coupling constants ασY = gσY /gσN, αωY = gωY /gωN, αρY =
gρY /gρN , and αT Y = fωY /gωY are listed in Table II. The
�N interaction is taken as in Ref. [83], which is fixed by
reproducing the experimental single-� binding energy B

(1s)
� of

the 1s orbit in hypernucleus 40
� Ca. With this �N parameter, the

single-� spectra for hypernuclei from 12
� C to 208

� Pb can be well
described. The �N interaction is taken as in Ref. [80], which
is determined by fitting the observed �− removal energy in
the Kiso event related to the hypernucleus 15

� C (14N + �−).
The �N interaction is taken as in Ref. [57]. In these YN
interactions, the vector coupling constants gωY are taken
according to the naive quark model [84], namely,

gω� = gω� = 2gω� = 2
3gωN, (15)

and the tensor coupling constants αT Y are adopted
as αT � = −1.0 [83], αT � = −0.4 [85], and αT � =
1.0 [84], respectively. Several other values of αT Y , i.e.,
αT � = −0.122,−0.541, αT � = −1.89,−2.27, and αT � =
0.76, 1.417 [57], are also taken to investigate the ωYY tensor
coupling effects on the s.p. levels.

The Dirac equation (7), the Laplace equation (9), and the
densities in Eq. (11) in the RMF model are solved in the
coordinate space with a box size of R = 20 fm and a step
size of 0.1 fm.

IV. RESULTS AND DISCUSSION

A. Hypernuclei 40Ca + Y

In this part, by adding a hyperon to 40Ca, the mean-field
potentials, single-hyperon levels, density distributions, and
binding energies in the hypernuclear systems 40Ca + Y (Y =
�,�,�) are investigated and the consequences of introducing
different types of hyperons are examined.

In Fig. 1, the hyperon mean-field potentials V + S and
the corresponding s.p. levels in the hypernuclei 40Ca + Y are
presented, where Y = �,�0,−, and �+,0,−. For comparison,
we first set the ωYY tensor coupling constant αT Y = 0 for
all hypernuclei. Obvious differences in the potential depths
are obtained except for the � and �0 hyperons, with very
similar mean-field potentials indicated by solid lines. This is
because both the � and �0 hyperons couple only with σ and
ω mesons and have very close coupling strengths, as shown
in Table II. Moreover, in Fig. 1(a), the potential depth of the
� hyperon is about twice of the �0 hyperon, which yields
fewer bound states in the �0 spectra. This is mainly due to the
weaker σ -�0 and ω-�0 couplings, which are around half of
σ -� and ω-� couplings. However, the �− hyperon is more
deeply bound than the �0 hyperon, which is caused by the

FIG. 1. Mean-field potentials V + S and s.p. levels for the hyper-
ons in the hypernuclei 40Ca + Y . In panel (a), Y = � and �0,−, and
in panel (b), Y = �+,0,−. αT Y = 0.

attractive Coulomb potential of �− hyperons. In Fig. 1(b), the
results of � hyperons are presented. The effect of Coulomb
interaction is very distinct. From �− to �+ hypernuclei, the
s.p. states become almost 15 MeV less bound, and the Coulomb
barrier around 5 MeV near the nuclear surface of the �+ can
be seen clearly.

In Table III, the values of the s.p. energies for the �,�,
and � hyperons in the hypernuclei 40Ca + Y are listed. For
comparison, the experimental data and corresponding theoret-
ical results for the hypernucleus 40

� Ca are also presented. Note
that the ωYY tensor coupling constant αT � = −1 for 40

� Ca
while 0 for 40Ca + Y . Very close single-� binding energies
are obtained for 40

� Ca in theory and experiment, with the
differences less than 5% of the experimental values. The
spin-orbit splittings in the single-� hypernuclei 40

� Ca and 41
� Ca

are commonly less than 0.3 MeV, which are in accordance with
the experimental conclusion [55]. For hypernuclei 40Ca + Y
with electroneutral hyperons (Y = �, �0, �0), comparing
with the single-� spectra, the single-�0 spectra do not possess
high-angular-momentum states due to the weak single-�0

potential at nuclear saturation density while the single-�0

spectra are systematically more bound, which results from the
smaller repulsive effect of the kinetic energy yielded by the
larger M� . Furthermore, compared with those electroneutral
hyperons, Coulomb interaction plays an important role for
charged hyperons; i.e., the s.p. spectra for the negative charged
�− and �− hyperons are more deeply bound, while those for
the positive charged �+ hyperons are weakly bound.

To understand the differences in the mean-field potentials
for hyperons, in Fig. 2, we show different contributions to the
total hyperon mean-field potentials Vtot = V + S = Vσ+ω +
Vρ + VC , i.e., the contributions from the σ and ω mesons
(Vσ+ω), ρ meson (Vρ), and photon (VC).

In Fig. 2(a), only σ and ω mesons contribute to the total
potential since � hyperon is isoscalar and electroneutral. In
Figs. 2(b) and 2(c), besides the σ and ω mesons, the ρ meson
and photon also contribute to the total potentials since the �−
and �− hyperons are isovector and charged. The contributions
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TABLE III. Comparison of the s.p. energies (in MeV) for Y = �, �0,−, and �+,0,− in the hypernuclei 40Ca + Y . The experimental data
and corresponding theoretical results for the nearby hypernucleus 40

� Ca are also listed for comparison. αT � = −1 for 40
� Ca and αT Y = 0 for

40Ca + Y.

40
� Ca (Expt.) 40

� Ca 40Ca + Y

� �0 �− �+ �0 �−

1s1/2 −18.7 ± 1.1 −18.73 −19.26 −8.85 −16.32 −10.20 −19.98 −27.04
2s1/2 −1.90 −1.98 −4.48 −2.93 −8.93
1p3/2 −10.10 −11.10 −3.42 −10.38 −3.30 −12.02 −18.86
1p1/2 −11.0 ± 0.6 −9.86 −9.80 −3.08 −10.01 −2.21 −10.89 −17.73
2p3/2 −1.97 −3.04
2p1/2 −1.94 −2.82
1d5/2 −2.14 −3.18 −4.61 −4.21 −10.65
1d3/2 −1.0 ± 0.5 −1.87 −1.46 −4.14 −2.61 −8.95
1f7/2 −0.60 −2.97
1f5/2 −0.54 −1.50

from Vσ+ω are very close for the � and �− hyperons, but
much larger than that for the �− hyperon, due to the smaller
σ -� and ω-� couplings. Meanwhile, the potential Vσ+ω leads
to the main difference of Vtot between the �− and �− hyperons.
The contributions from Coulomb potential VC are quite similar
for these negative charged hyperons.

In Fig. 3, we plot the density distributions ρv (r ) for different
hyperons, i.e., Y = �, �0,− in Fig. 3(a) and Y = �+,0,− in
Fig. 3(b), in the 40Ca + Y systems. In our present calculations,
the single-hyperon occupies the 1s1/2 orbit. It can be easily
seen that the � and �0 hyperons have quite similar density
distributions due to similar s.p. energies of their occupied 1s1/2

orbits. Compared with the � and �0 hyperons, the density
distribution for the �0 hyperon is the most diffused while that
for the �− hyperon is the most bound. This is because of
the shallowest �0 mean-field potential while the deepest �−
potential. In this sense, the hyperon halo is most likely to be
found in the �0 hypernuclei.

In Table IV, the total binding energy Etot, the hyperon
s.p. energy εY

1s , the energy contribution from the nuclear
core Ecore, and the c.m. correction Ecm are listed for the

FIG. 2. Comparison of the total mean-field potentials Vtot =
Vσ+ω + Vρ + VC (solid curves) and various components (dashed
curves) for the Y = � (a), �− (b), and �− (c) hyperons in the hyper-
nuclei 40Ca + Y . Potentials Vσ+ω, Vρ , and VC are the contributions
from the σ + ω mesons, ρ meson, and photon, respectively. αT Y = 0.

single-hyperon hypernuclei 41
� Ca (40Ca + �), 41

�0 Ca (40Ca +
�0), 41

�−K (40Ca + �−), 41
�+Sc (40Ca + �+), 41

�0 Ca (40Ca +
�0), and 41

�−K (40Ca + �−). For comparison, the energies for
the ordinary nucleus 40Ca are also given. By comparing the
total binding energies Etot between 40Ca and single-hyperon
hypernuclei, it can be easily seen that the added hyperon
makes the nuclear systems much more bound because of the
attractive NY interactions, especially in the hypernuclei 41

� Ca,
41
�0 Ca, and 41

�−K. Accordingly, the obtained single-hyperon
energies εY

1s are very large for the �, �0, and �− hyperons.

FIG. 3. Density distributions ρv for the hyperons in the hypernu-
clei 40Ca + Y . In panel (a), Y = � and �0,−; in panel (b), Y = �+,0,−.
The inserted figures are the same but in log scales. αT Y = 0.
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TABLE IV. Energies (in MeV) and radii (in fm) for the hypernuclei 40Ca + Y with Y = �, �0,−, and �+,0,− by the RMF model. Energies
listed are, respectively, the total binding energy Etot , the hyperon s.p. energy of 1s1/2 orbit εY

1s , energy contributed by the nuclear core Ecore,
and the c.m. correction Ec.m.. Detailed contributions for the hyperon energy from the σ, ω, and ρ mesons and Coulomb force are presented as
well, i.e., EσY = ∫

4πr2drgσY ρsY σ , EωY = ∫
4πr2dr[gωY ρvY ω0 + fωY

2mY
∂ij

0i
T Y ω0], EρY = ∫

4πr2drgρY ρ3Y ρ0,3, and EY
cou = ∫

4πr2dreρcY A0.
Radii listed are, respectively, the mass radius Rtot , hyperon radius RY , neutron radius Rn, and proton radius Rp , calculated by R =√∫

drr4ρv (r )/
∫

drr2ρv (r ) with the particle vector density ρv (r ) and charge radius Rc calculated by Rc =
√

R2
p + 0.8642 + 0.3362 × N

Z
.

For comparison, the results for the nearby ordinary nucleus 40Ca are also given. αT Y = 0.

40Ca 41
� Ca 41

�0 Ca 41
�− K 41

�+ Sc 41
�0 Ca 41

�− K

Etot −342.797 −361.884 −351.870 −359.615 −353.418 −362.583 −370.408
εY

1s −19.263 −8.852 −16.315 −10.197 −19.981 −27.039
Ecore −333.860 −333.785 −334.248 −334.496 −334.434 −333.774 −334.517
Ec.m. −8.937 −8.837 −8.770 −8.804 −8.788 − 8.828 −8.852
EσY −103.807 −49.319 −51.174 −100.403 −105.860 −107.131
EωY 91.622 42.751 44.435 88.258 93.359 94.552

EρY 0 0.207 0.665 0.203 0 0.751

EY
cou 0 0 −4.185 4.613 0 −4.266

Rtot 3.327 3.313 3.317 3.310 3.319 3.311 3.307
RY 2.745 2.938 2.809 2.830 2.660 2.625
Rn 3.303 3.302 3.286 3.317 3.287 3.302 3.319
Rp 3.351 3.350 3.367 3.327 3.373 3.350 3.325
Rc 3.445 3.444 3.461 3.421 3.467 3.444 3.420

The c.m. correction Ec.m. in different hypernuclei are very
close, and one possible reason for their slight differences is
the hyperon mass difference. After removing εY

1s and Ec.m.

from the total binding energy, the energy contributed by the
nuclear core can be described, i.e., Ecore = Etot − εY

1s − Ec.m..
In all the hypernuclei, the nuclear core energies are very close
with the difference less than 0.75 MeV. To see the detailed
energy contributions for the single-hyperon energy εY

1s , the
energies contributed by the σ, ω, ρ mesons and Coulomb
field are analyzed. The energy contributions from σ and ω
mesons are around −7 to −12 MeV while that from ρ meson
is much smaller and less than 1.0 MeV, and the Coulomb field
contributes remarkable energy around ±4 MeV.

To further illustrate the bulk properties of the hypernuclei,
different radii such as the mass radius Rtot, hyperon radius
RY , neutron radius Rn, proton radius Rp, and charge radius Rc

are also listed in Table IV. By comparing the mass radii Rtot

for nucleus 40Ca and hypernuclei 40Ca + Y , we find that the
hyperon makes the size of the nuclear system smaller. This is
in accordance with the conclusion of the larger binding energy
Etot. Among all the single-hyperon hypernuclei 40Ca + Y , the
radius of �0 hyperon is largest because of the most weakly
bound 1s1/2 orbit shown in Fig. 1. By comparing with the neu-
tron radii Rn of nucleus 40Ca and hypernuclei 40Ca + Y , very
different impurity effects from the hyperons on the neutron
radii are shown; i.e., �0 and �+ hyperons decrease Rn, �− and
�− hyperons increase Rn, and � and �0 hyperons have almost
no influences on Rn. Those differences are mainly caused by
the isospin effects related to the couplings between different
hyperons and ρ meson. For the hyperons �0 and �+ with
τY,3 = +1, they make the neutron total mean-field potential
deeper by reducing the repulsive potential Vρ contributed from
ρ meson due to the opposite sign of τn,3 = −1 for neutrons.
However, for the hyperons �− and �− with τY,3 = −1, they

increase the mean-field potential Vρ and the total potential
becomes shallower. Unlike the case of Rn, the Coulomb
interaction is important for the proton radius Rp and charge
radius Rc; e.g., the positively charged �+ increases Rp and Rc

while the negatively charged hyperons �− and �− make them
smaller. Besides, the electroneutral �0 hyperon increases Rp

and Rc slightly due to the same sign of τ3 as protons, which
leads to a shallower mean-field potential for protons.

B. ωYY tensor coupling effects

In this part, we investigate the ωYY tensor coupling effects
on the s.p. levels, the values of the tensor coupling constant αT Y

are taken as in Table II. For illustration and better comparison
of the role of the tensor coupling played for different hyperons,
we omitted the ρ-meson couplings for the � and � hyperons
as in Ref. [57].

In Fig. 4, we present the dependence of the hyperon
s.p. levels on the ωYY tensor coupling constants αT Y . In
all the hypernuclei 40Ca + Y with Y = �,�, and �, the
ωYY tensor couplings cause obvious changes in the spin-orbit
splitting. In Fig. 4(a), the ωYY coupling reduces the � hyperon
spin-orbit splitting. The spin-orbit splittings in the 1p (1p1/2

and 1p3/2) spin doublet varies from 1.3 to 0.24 MeV with αT �

increases from 0 to −1. In Figs. 4(b) and 4(c), the energy
level orders for �0,− hyperons change with extremely large
negative αω� � −1.89. In Figs. 4(d)–4(f), different from the
cases of � and � hyperons, the ωYY tensor coupling increases
the spin-orbit splitting for the � hyperon. For αT � = 1.0, the
splittings acquire almost twice of the value for αT � = 0 for all
the �0, �+, and �− hyperons.

The different effects of ωYY tensor couplings on the split-
tings of �,�, and � can be understood by recasting the Dirac
equation (7) into a Schrödinger-like equivalent form which we

024316-6



RELATIVISTIC MEAN-FIELD APPROACH FOR … PHYSICAL REVIEW C 98, 024316 (2018)

FIG. 4. Positions of the hyperon s.p. levels calculated with dif-
ferent ωYY tensor coupling constants αT Y in hypernuclei 40Ca + Y

with Y = � (a), �0,− [(b), (c)], and �0,+,− [(d)–(f)]. The values of
αT Y are taken as in Table II. αρY = 0.

can describe the spin-orbit splitting potential as [57,86]

V Y
SO = − 1

Meff

(
1

Meff

dMeff

dr
+ 2T

)
l · s
r

,

(16)

Meff = MY − 1

2
(V − S),

where the ωYY tensor potential T = − αT Y

2MY
gωY ∂rω0. For the

� and � hyperons, because of the negative values of αT Y ,
the ωYY tensor potential T will decrease the spin-orbit
splitting potential V Y

SO and lead to smaller spin-orbit splittings.
However, for the � hyperon, due the positive values of αT Y ,
the tensor potential T will increase potential V Y

SO and lead to
larger spin-orbit splittings.

On the other hand, the spin-orbit splittings are very different
for �,�, and � hyperons in the case of αT Y = 0; i.e., the
spin-orbit splittings for � and � hyperons are very close
but much larger than those for � hyperons. In this case, the
spin-orbit potential V Y

SO = − 1
M2

eff

dMeff
dr

l·s
r

in which the hyperon
effective mass Meff plays the dominant role. Since the �

and � hyperons own similar masses MY shown in Table I
and mean-field potentials V − S extracted from the energies
EωY − EσY in Table IV, the spin-orbit potentials V Y

SO should
also be very close. However, compared with � and � hyperons,
the � hyperon is much more massive but has smaller values of
V − S, which leads to much larger Meff and smaller spin-orbit
splittings.

In Fig. 5, the ωYY tensor potentials T (r ) for the �,�−,
and �− hyperons in the hypernuclei 40Ca + Y are plotted
with different coupling constants αT Y listed in Table II. For

FIG. 5. Tensor potentials T (r ) by the ωYY couplings for the Y =
� (a), �− (b), and �− (c) hyperons in the hypernuclei 40Ca + Y with
different coupling constants αT Y taken from Table II. For comparison,
we plot −T (r ) for the �− hyperon. αρY = 0.

comparison, we also take αT �− = −1 to calculate the tensor
potentials for �− hyperon. Obviously, � and �− hyperons
own a negative ωYY tensor potential while �− hyperons own
a positive one, which is consistent with our previous analyses
from Eq. (16). When taking αT Y = ±1, the magnitudes of
the tensor potentials for both � and �− hyperons are around
9 MeV, while a much smaller value is obtained for the �−
hyperon, i.e., around 4 MeV. Besides, for the �− hyperon,
varying αT Y from −0.4 to −1.89, the magnitudes of T (r )
increases significantly, which leads to the change of level
ordering.

C. Mass dependence of the single-hyperon binding energies BY

In Fig. 6, taking hypernuclei 16O + Y, 40Ca + Y, 90Zr +
Y , and 208Pb + Y as examples, the single-hyperon binding
energies BY for different levels versus the mass number of
the hypernuclei A−2/3 are plotted for the �,�0,−, and �+,0,−
hyperons, respectively. The coupling constants ασY , αωY , and
αρY in the NY interactions are taken as in Table II. The ωYY
tensor coupling constants for the �,�, and � hyperons are
taken as αT � = −1, αT � = −0.4, and αT � = 1, respectively.
Note that the average values of BY for the spin doublets are
adopted for the single-hyperon binding energy BY in Fig. 6
except the case of the s orbit.

For the � and �0 hyperons in Figs. 6(a) and 6(d), since both
of them are electroneutral with the isospin third component
τY,3 = 0, the obtained mass dependences of the single-hyperon
binding energy BY are very similar. As the mass number
increases, the binding energy BY for each orbit increases
and more bound levels appear. Note that there are still some
differences between BY for � and �0 hyperons, where the
single-�0 levels are more bound than those of � hyperons
in general and one more bound orbit 1h appears for the �0

hyperon. From O to Pb, BY for the 1s orbit increases by around
13 MeV for the � hyperon while around 11.5 MeV for the
�0 hyperon. Those differences can be attributed to the mass
difference between � and �0 hyperons and the opposite effects
from the ωYY tensor couplings shown in Fig. 4.

Compared with the � and �0 hyperons, the mass depen-
dence of BY for the �0 hyperon, which is also electroneutral,
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FIG. 6. Mass dependence of the single-hyperon binding energies BY for the hyperons Y = �, �0 [(a), (d)], �0,− [(b), (e)], and �+,− [(c), (f)]
as a function of mass number A−2/3. Coupling constants ασY , αωY , and αρY in the NY interactions are taken as in Table II. The ωYY tensor
coupling constants for the �, �, and � hyperons are taken as αT � = −1, αT � = −0.4, and αT � = 1, respectively.

is very different. On the one hand, the values of B�0 for all
orbits are much smaller, which is mainly caused by the weaker
couplings between �0 hyperon with the σ and ω mesons. On
the other hand, the increase of BY with mass number is much
more drastic for �0 hyperon, especially for the s orbit from
41
�0 Ca to 209

�0 Pb. This is due to large isospin effects resulting
from strong coupling with ρ meson in 91

�0 Zr and 209
�0 Pb.

Compared with the �0 hyperon, the values of BY for the
negatively charged �− hyperon in Fig. 6(e) are much larger
due to the attractive Coulomb interaction, which leads to a
considerably stronger binding of �− hyperon in the nuclear
medium compared with �0 hyperon. The deepest bound state
of �− in 209

�− Tl is around −29.5 MeV while that of �0 in 209
�0 Pb

is around −19.5 MeV. Meanwhile states with high angular
momentum h, i, and j are bound in 209

�− Tl.
As in the case of �− hyperon, Coulomb interactions are

also very important for the charged �+ and �− hyperons.
As indicated in Figs. 6(c) and 6(f), the differences of BY for
�+ and �− hyperons can be seen clearly. For the positively
charged �+ hyperon, the repulsive Coulomb interaction re-
duces the total binding energy drastically and only s, p, and
d states are found bound in heavy hypernuclei. However, for
the negatively charged �− hyperon, the attractive Coulomb
interaction deepens the mean-field potentials and as many as
nine bound states are found. Note that this large difference
from Coulomb interaction for the �+ and �− hyperons will
be weakened slightly by their couplings with the ρ meson.
Besides, in the �+ hypernuclei, an abnormal mass dependence
of BY is found in the large-mass region. From 91

�+Nb to 209
�+ Bi,

the values of BY decrease a lot. This is because of the stronger
repulsive Coulomb potential with the increasing proton
number Ap.

From Fig. 6, it can be seen that for most hyperons, the
single-hyperon binding energies BY increase with the mass

number except for the �+ hyperon, which has a turning point
at 91

�+Nb where the binding energy begins to decrease. To
illustrate these behaviors clearly, in Figs. 7 and 8, taking �+
and �− hypernuclei as examples, we plot the evolutions of
the mean-field potentials in the hypernuclei 16O + Y, 40Ca +
Y, 90Zr + Y , and 209Pb + Y . Potentials including the total
potential Vtot=σ+ω+ρ+cou, the contributions from the σ and ω
mesons Vσ+ω, the ρ meson Vρ , and Coulomb potential Vcou are
presented.

From Fig. 7, we find that the total mean-field potentials Vtot

for �+ hyperons become shallower from 17
�+F to 209

�+ Bi which

FIG. 7. Comparison of the mean-field potentials for the �+

hyperons in the hypernuclei 17
�+ F, 41

�+ Sc, 91
�+ Nb, and 209

�+ Bi. Potentials
presented include the total potential Vtot = Vσ+ω+ρ+cou and the poten-
tials contributed from the σ and ω mesons Vσ+ω, the ρ meson Vρ , and
Coulomb potential Vcou.
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FIG. 8. The same as Fig. 7, but for the �− hyperons in the
hypernuclei 17

�− N, 41
�− K, 91

�− Y, and 209
�− Tl.

is mainly caused by the increasing repulsive Coulomb inter-
action. In particular, in the hypernucleus 209

�+ Bi, the Coulomb
potential Vcou reaches as large as 26 MeV in the central
part. The shallower potential will lead to more weakly bound
s.p. levels. However, while the potentials become wider in
heavier hypernuclei, more bound levels emerge. As a result,
from 17

�+F to 91
�+Nb, the values of B�+ for s and p orbits become

larger, but B�+ becomes smaller in 209
�+ Bi. Different from the

�+ hypernuclei, the mean-field potentials for the �− hyperons
become deeper from 17

�−N to 209
�− Tl due to the attractive Coulomb

interaction. As with the �+ hyperons, the potentials become
wider with increasing mass number. All these changes will
make s.p. levels more bound. The potentials contributed from
the ρ meson Vρ are completely opposite for the �− and �+
hyperons because of their opposite signs of the isospin third
component, i.e., τ�+,3 = +1 and τ�−,3 = −1.

V. SUMMARY

Within the framework of RMF model, the single-hyperon
(Y = �,�0,−, and �−,0,+) hypernuclei are studied systemati-
cally. Detailed formalism for those hypernuclei in RMF model
are presented. For the NN interaction, the PK1 parameter is
adopted. For the YN interactions, parameters are constrained
according to the experimental data or previous theoretical
efforts. Among them, �N interaction is fixed by reproducing
the experimental single-� binding energy B

(1s)
� of the 1s orbit

in hypernucleus 40
� Ca [83], the �N interaction is determined by

fitting the observed �− removal energy in 15
�−C [80], and �N

interaction is taken as in Ref. [57]. This work mainly includes
three parts.

First, taking hypernuclei 40Ca + Y (Y = �, �0,−, �+,0,−)
as examples, we investigate the mean-field potentials,

single-hyperon levels, density distributions, and binding en-
ergies, where the consequences of introducing different types
of hyperons are examined. We found that the mean-field
potentials and the corresponding s.p. levels for the � and
�0 hyperons are very similar, because both of them are
electroneutral and have very close coupling strengths with
the σ and ω mesons. The �0 is the most weakly bound for
which the density distributions is the most extended. Coulomb
interactions play important roles in the �−, �−, and �+
hyperons, which causes the mean-field potential to be much
shallower for positively charged �+ hyperons while much
deeper for the negatively charged �− and �− hyperons. By
comparing the binding energies and rms radii between 40Ca
and 40Ca + Y , the impurity effects from the single hyperon on
the nuclear core are also studied. It is found that the intruded
single hyperon makes the nuclear system more bound, due to
the attractive NY interaction. However, very different effects
on the nucleon radii are observed for different hyperons. For
example, for the neutron rms radius Rn, �0 and �+ hyperons
decrease Rn, �− and �− hyperons increase Rn, and � and �0

hyperons have almost no influence on Rn. Unlike the case of
Rn, the Coulomb interaction is important for the proton radius
Rp and charge radius Rc. For example, the positively charged
�+ increases Rp and Rc while the negatively charged hyperon
�− and �− make them smaller.

Second, taking 40Ca + Y (Y = �, �0,−, �+,0,−) as ex-
amples, the ωYY tensor couplings and the effects on the
single-hyperon levels are studied. In general, the ωYY tensor
couplings obviously influence the spin-orbit splittings but have
different effects for different hyperons. For the � and �0,−
hyperons, the ωYY tensor potentials reduce the spin-orbit
splittings, while for the �+,0,− hyperons they are increased. In
particular, for the �0,− hyperons, the level ordering is inverted
by large ωYY tensor potential.

Finally, taking 16O + Y, 40Ca + Y, 90Zr + Y , and 208Pb +
Y as examples, the mass dependence of the single-hyperon
binding energies are studied. Generally, the binding energy
increases with the mass number A for all hyperons. In different
hypernuclei, the values of single-hyperon binding energies are
very different. For examples, for the �− hyperon, BY of the
1s orbit reaches as much as 40 MeV in 208Pb + �−, but it is
only half of that for �0 hyperons. In the same manner, the
number of bound levels is very different. Furthermore, there
is a turning point for �+ hyperon where the binding energy
decreases after 91

�+Nb, which is mainly caused by the repulsive
Coulomb interaction.
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[44] T. Motoba, H. Bandō, K. Ikeda, and T. Yamada, Prog. Theor.

Phys. Suppl. 81, 42 (1985).
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