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Isoscalar giant monopole resonance within the Bohr-Mottelson model
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Background: With the possibility to measure the isoscalar giant monopole resonance (ISGMR) in the short-lived
nuclei, the compressibility of the open-shell and exotic nuclei has attracted much attention.
Purpose: The present work is an attempt to develop a semiclassical model to describe the ISGMR and the
compressibility of the finite nuclei.
Method: The fluid dynamical reduction of the Boltzmann-Langevin equation was carried out to describe the
collective motion of the nucleus [Z. Phys. A 337, 413 (1990); Z. Phys. A 349, 119 (1994)]. In this work, by
including the Skyrme energy density functional, we develop the model and apply it to the ISGMR. Both the
self-consistent and linearized methods are used to solve the corresponding Langevin equation.
Results: It is shown that the calculations of the ISGMR energies in this work agree with those by the relativistic
mean-field theory and the random phase approximation, and reproduce the general trend of the data. The model
only includes the two-body dissipation, and underestimates the width of the ISGMR. Twelve sets of the Skyrme
interactions are applied to perform the calculations and study the incompressibility parameters in the leptodermous
expansion. The calculated surface parameter KS within the model is smaller than the extracted value, and decreases
linearly over mass number of the nucleus. The calculated values of the symmetry parameter Kτ and the Coulomb
parameter KC agree with the extracted values by fitting the available data for the nuclei from 12C to 238U.
Conclusions: The Bohr-Mottelson model provides a reasonable method to understand the ISGMR in a
macroscopic approach.
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I. INTRODUCTION

The giant resonances, which are collective excitations of
nucleons, have been objects of theoretical and experimental
research of modern nuclear physics over recent decades
since it plays a very crucial role in the understanding of the
nonequilibrium properties of nuclei and the nuclear force
[1,2]. Particularly, the isoscalar giant monopole resonance
(ISGMR) has been extensively investigated in a wide range of
nuclei, as a valuable tool to study the nuclear incompressibility
at the normal density [3–8]. The consensus on the value of the
nuclear incompressibility at 230 ± 40 MeV was reached about
a decade ago by the investigation of the doubly magic nuclei
such as 208Pb [9,10]. Now, the attention has been directed to the
novel effects on the ISGMR in open-shell and light nuclei [11].

One of these novel effects consists in the overestimation
of the peak energies for the Sn [12] and Cd [13] isotopes by
the models, which can reproduce those for 90Zr, 144Sm, and
208Pb [14]. Many attempts were made to calculate the ISGMR
in Sn and Cd isotopes. It was found that increasing the value
of the symmetry energy at saturation density can decrease the
calculated peak energies while keeping the incompressibility
constant [15]. The role of pairing in the description of the
ISGMR in Sn and Cd isotopes was also pointed out [16].
However, the results were insufficient to explain the exper-
imental data up to now. Other novel effects were found in
light nuclei. Microscopic calculations showed that the ISGMR
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strength distribution exhibits a two-peak structure due to the
deformation of the light-mass nuclei [17,18]. Another structure
effect was speculated by recent results on the Ca, Zr, and
Mo isotopes. Contrary to the general trend going roughly as
A−1/3, a decreasing energy with increasing mass number was
observed when comparing the energies of the ISGMR in 90Zr
to those in 92Mo and 92Zr, as well as 40Ca to 48Ca [19]. It
was proposed that the calculations with a common effective
interaction would not reproduce the mass dependence of the
ISGMR energies in Ca isotopes without the addition of nuclear
structure effects. Recently, with the possibility to measure the
ISGMR in the short-lived nuclei [20], the compressibility of
the exotic and neutron-rich nuclei has become an important
topic in nuclear structure [21,22].

Microscopic models, such as the random phase approxi-
mation (RPA) [23,24] and the relativistic RPA [25,26], have
been developed to describe the ISGMR. In principle, the RPA
is the small-amplitude limit of a more general time-dependent
Hartree-Fock theory. There are already several extended ver-
sions, such as the quasiparticle RPA [27] and second RPA
[28], which are developed by including the open-shell effect
and particle-vibration coupling respectively. The semiclassical
treatments of the ISGMR have also been reported, including
the isospin-dependent quantum molecular dynamics (IQMD)
[29] and the Boltzmann-Uehling-Uhlenbeck (BUU) transport
approach [30].

The present work is an attempt to describe the centroid
energies of the ISGMR in finite nuclei by a macroscopic
model based on the fluid dynamical reduction of the
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Boltzmann-Langevin equation. The paper is organized as
follows. In Sec. II, we describe the method. In Sec. III, we
present both the results and discussions. Finally, the summaries
are given in Sec. IV.

II. THEORETICAL FRAMEWORK

The fluid dynamical reduction of the Boltzmann-Langevin
equation was carried out for a situation where the velocity
field can be described by a set of N collective variables
[31,32]. A set of N coupled Langevin equations is obtained
for the collective variables, which constitute a generalization
of the Bohr-Mottelson model for the hot nuclei. The degree
of freedom of the ISGMR is a collective variable X, and the
velocity field reads,

u = Ẋ∇ r2

2
. (1)

In the case of spherical symmetry, it gives a scaling condition
between the density ρ and the collective variable X,

∂ρ

∂X
= −r

∂ρ

∂r
− 3ρ. (2)

The Langevin equation for the collective variable X reads,

MẌ + 1

2

∂M

∂X
Ẋ2 + ∂V

∂X

= C(t ) −
∫ t

−∞
dt ′γ (t − t ′)Ẋ(t ′) + δF (t ), (3)

where M is the inertia parameter,

M = m

∫
d3rr2ρ, (4)

and V is the potential energy, which is the sum of the
Coulomb and nuclear Skyrme energies. The Coulomb energy
is a combination of the direct and exchange terms,

Vc =
∫

d3r
e2

2
ρp(r)

∫
d3r′ ρp(r′)

|r − r′| ,

−
∫

d3r
3e2

4

(
3

π

)1/3

[ρp(r)]4/3. (5)

The nuclear Skyrme energy can be written as a sum of
two-body termV0, three-body termV3, effective mass termVeff ,
finite-range term Vfin, spin-orbit term Vso, and tensor coupling
term Vsg [33,34]:

V = V0 + V3 + Veff + Vfin + Vso + Vsg

=
∫

d3r(ε0 + ε3 + εeff + εfin + εso + εsg),

ε0 = t0

2

(
1 + x0

2

)
ρ2 − t0

2

(
x0 + 1

2

)(
ρ2

n + ρ2
p

)
,

ε3 = t3

12

(
1 + x3

2

)
ρσ+2 − t3

12

(
x3 + 1

2

)
ρσ

(
ρ2

n + ρ2
p

)
,

εeff = 1

4

[
t1

(
1 + x1

2

)
+ t2

(
1 + x2

2

)]
ρ(τn + τp )

+ 1

4

[
t2

(
x2 + 1

2

)
− t1

(
x1 + 1

2

)]
(ρnτn + ρpτp ),

εfin = 1

16

[
3t1

(
1 + x1

2

)
− t2

(
1 + x2

2

)]
(∇ρ)2

− 1

16

[
3t1

(
x1 + 1

2

)
+ t2

(
x2 + 1

2

)]

× [(∇ρn)2 + (∇ρp )2],

εso = 1

2
W0[J · ∇ρ + Jn · ∇ρn + Jp · ∇ρp],

εsg = − 1

16
(t1x1 + t2x2)J 2 + 1

16
(t1 − t2)

(
J 2

n + J 2
p

)
, (6)

where ρ, τ , and J are, respectively, the local nucleon density,
kinetic energy density, and spin density. The subscripts n and
p correspond to the proton and neutron densities, respectively.

The terms on the right-hand side of Eq. (3) are the dynamical
forces. The first term comes from the incompressibility. The
second term is the friction force, due to the coherent coupling
between the single-particle and collective motion. The last term
is the random force due to the interaction of the collective
variable with the heat bath.

C(t ) = 2Ek = 2
∫

d3r
[

h̄2

2m
(τn + τp )

]
,

γ (t − t ′) = 4

5
AEF exp

[
− (t − t ′)π2

32σvf ρEF

]
, (7)

δF (t )δF (t ′) = 2

π

√
EF E∗γ (t − t ′),

where A is the mass number, σ is the cross section of nucleon-
nucleon scattering, Vf is the Fermi velocity, EF is the Fermi
energy, and E∗ is the excitation energy, i.e., the ISGMR energy.

It was shown by the extended Thomas-Fermi model that the
kinetic densities and the spin current vector densities can be
expressed as the functions of the local density and its gradient
[35]. Using the scaling condition [Eq. (2)], one obtains the
inertia parameter, the potential energy, and the dynamical force
as functions of the collective variable X,

M = M (0)e2X,

∂M

∂X
= 2M (0)e2X,

∂V

∂X
= − V (0)

c e−X − 3V
(0)

0 e−3X

− (3 + 3σ )V (0)
3 e−(3+3σ )X − 5V

(0)
eff e−5X

− 5V
(0)

fin e−5X − 5V (0)
so e−5X − 5V (0)

sg e−5X,

C(t ) = 2E
(0)
k e−2X,

EF = 5

3A
E

(0)
k e−2X. (8)

Here, the superscript “(0)” means the values in the initial
equilibrium state. Those values are provided by the Skyrme
Hartree-Fock-Bogolyubov (SHFB) model, the code of which
is available [36].
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FIG. 1. (a) Time evolution of the collective variable X for 208Pb,
(b) the same for velocity Ẋ. (c) the same for acceleration Ẍ.
(d) Frequency spectrum extracted from the acceleration Ẍ. In the
calculation, the friction and random forces are not considered.

III. RESULTS AND DISCUSSIONS

A. Self-consistent solution

The Langevin equation Eq. (3) can be solved self-
consistently. The initial value X0 of the collective variable is
the calculated from the equilibrium condition,

∂V

∂X
(X0) = C(X0). (9)

While, the initial velocity Ẋ0 depends on the ISGMR en-
ergy E∗,

Ẋ0 =
√

2E∗

M (0)
. (10)

Equation (3) without the friction and random forces is solved
numerically with the initial conditions. The solution, shown
as Figs. 1(a)–1(c), exhibits a good oscillation structure. One
sees that the value X0 in the equilibrium state is 0. The values
of the velocity Ẋ have an order of 10−3, while those of the
acceleration Ẍ have an order of 10−4. It means that the term
related to Ẋ2 can be ignored.

With the Fourier transform of Ẍ(t ),

Ẍ(ω) = 1

tmax

∫ tmax

0
Ẍ(t ) exp(−iωt )dt, (11)

one obtains the frequency spectrum P (ω) ∝ |Ẍ(ω)|2, as shown
in Fig. 1(d). Since the damping is not considered, the frequency
spectrum shows a narrow peak. The output ISGMR energy
E∗

out = h̄ω0 is calculated by the peak position ω0 of the
frequency spectrum. The output ISGMR energy will be used
to calculate the initial velocity Ẋ, and solve the equation again,
unless the discrepancy between the input and output ISGMR
energy is less than 0.001 MeV.

When the friction and random forces are considered, the
time evolution of the collective variable X, its velocity Ẋ, and
acceleration Ẍ are shown in Figs. 2(a)–2(c). The random force
results in the fluctuation of the acceleration Ẍ. However, its
influence on the collective variable X and velocity Ẋ is weak.

FIG. 2. Same as Fig. 1, but considering the friction and random
forces.

Due to the friction, the exponential damping is visible. It results
in the width � = 1.62 MeV of the frequency spectrum. The
peak position of the frequency spectrum is 14.21 MeV, which
is the same as that in Fig. 1(d). The friction and random forces
do not affect the ISGMR energy.

The model is applied to calculate the excitation energies and
widths of the ISGMR in nuclei from 12C to 238U. The results are
shown in Fig. 3, and compared to the data and calculations by
other models. It is well known from the empirical systematic
study that the ISGMR energies approximately follow the
relation of E∗ = η A−1/3 [2]. The A−1/3 law can be deduced

FIG. 3. Excitation energies of the ISGMR as a function of the
mass number. In the calculation, the Skyrme force Sky5 is applied.
The solid line shows the fit by A−1/3 law. The calculations by the
relativistic RPA with FSUGold interaction are taken from Ref. [25].
The calculations by (Q)RPA model with Skyrme interaction T6
are taken from Ref. [24]. The calculations by GiBUU model are
taken from Ref. [30]. The IQMD results are taken from Ref. [29].
Experimental data are from Refs. [7,11].
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FIG. 4. Same as Fig. 3 but for the width of the ISGMR. The
calculations by QTBA is taken from Ref. [24].

by the soundlike excitation in a finite system [1],

E∗ = h̄vsk,

vs =
√

K

9m
, (12)

k = π

R
= π

1.2A1/3
,

where vs is the sound velocity, k is the eigenvalue of the lowest
compressional model, m is the mass of the nucleon, and K is
the incompressibility. By the best fit of the data, η = 73.3 MeV,
i.e., K = 170 MeV is obtained. The A−1/3 law fitting is shown
as a black curve in Fig. 3. In fact, the A−1/3 law is only the
zeroth-order approximation, in which both the isospin effect
and surface effect are not considered. Thus, one sees the devia-
tion between the data and theA−1/3 law fit. Several models have
been applied to calculate the mass dependence of the ISGMR
energies. Two transport models, Giessen BUU (GiBUU) and
IQMD, provide calculations with visible difference. In the
IQMD calculations, which globally agree to the data, the
Gaussian wave-packet width is used as the fitting parameter.
Our model reproduces the ISGMR energies of 208Pb, 232Th,
and 238U, but overestimates those of lighter nuclei, which is
consistent with two microscopic approaches [relativistic RPA
and (Q)RPA]. The nuclear interactions used in three models,
i.e., FSUGold in relativistic RPA, Skyrme T6 in (Q)RPA, and
Skyrme Sly5 in this work, provide the incompressibility for
symmetric nuclear matter of K∞ = 230 MeV. Comparing to
the relativistic RPA and (Q)RPA models, our model provides
a method to understand the ISGMR macroscopically.

The damping of a collective vibration, which results in the
width, is related to the dissipation processes. The calculations
by the GiBUU model have shown that both one-body and two-
body dissipation contribute to the widths of the ISGMR [30].

In the reduction of the Boltzmann-Langevin equation in this
work, only the two-body dissipation is included [31]. Hence,
one sees the smaller widths of the ISGMR predicted by our

FIG. 5. Excitation energy E∗ (top) and incompressibility KA

(bottom) of the ISGMR as a function of the mass number. The inset
panel at the top shows E∗ of Sn isotopes. Experimental data are from
Refs. [7,11].

model as compared to GiBUU. Using the quasiparticle time
blocking approximation (QTBA), the damping mechanism is
included in the (Q)RPA model. This mechanism results in
larger widths, however it still can not reproduce the data for
heavy nuclei.

B. Incompressibility in finite nuclei

The incompressibility KA of a finite nucleus is defined using
the ISGMR energy [3],

KA = m

h̄2 〈r2〉E∗2, (13)

where 〈r2〉 is the mean-square radius of the nucleus. The
experimental data of ISGMR energies, together with the
empirical formula 〈r2〉1/2 = 0.82A1/3 + 0.58 from Ref. [37]
is applied to calculate the KA values. The results are show in
Fig. 5. The KA values increase with increasing mass number,
and reach 145 MeV for 238U. The incompressibility KA of the
finite nucleus is smaller than that of the infinite nuclear matter,
K∞ = 230 ± 40 MeV.

In analogy to the liquid-drop formula for the nuclear masses,
the finite nucleus incompressibility KA is related to the nuclear
matter incompressibility K∞, i.e., the so-called leptodermous
expansion [3],

KA = K∞ + KSA
−1/3 + Kτδ

2 + KC

Z2

A4/3
, (14)

where δ = (N − Z)/A is the neutron-proton asymmetry, Z
and N are the charge number and neutron number, KS , Kτ , and
KC are the surface, symmetry, and Coulomb incompressibility
parameters, respectively. The parameters are determined by
fitting the experimental data. In the fitting, K∞ = 230 MeV is
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FIG. 6. Surface parameter KS , symmetry parameter Kτ , and Coulomb parameter KC of the incompressibility as a function of the mass
number.

unadjusted in order to compare with the following calculations,
in which Skyrme interactions providing K∞ = 230 MeV are
applied. The data deviating from the systematics, which are
shown in the dashed circle in Fig. 5, are not used. It is obtained
that KS = −153.2 ± 4.7 MeV, Kτ = 0.0 ± 205.1 MeV, and
KC = 2.0 ± 0.4 MeV. Those parameters can reproduce the
ISGMR energies of Sn isotopes reasonably well, as shown
in the inset panel in Fig. 5.

Starting from the Langevin equation Eq. (3), the incom-
pressibility parameters can be calculated. After linearization,
Eq. (3) becomes,

M (0)Ẍ + X
[
3V (0)

c + 8E
(0)
k + 15V

(0)
0

+ (3 + 3σ )(5 + 3σ )V (0)
3 + 35V

(0)
eff

+ 35V
(0)

fin + 35V (0)
so + 35V (0)

sg

] = 0, (15)

and leads to the solution,

E∗ = h̄

√
KA

m〈r2〉 ,

KA = 1

A

[
3V (0)

c + 8E
(0)
k + 15V

(0)
0 + (3 + 3σ )(5 + 3σ )V (0)

3

+ 35V
(0)

eff + 35V
(0)

fin + 35V (0)
so + 35V (0)

sg

]
. (16)

The mean-square radius, the Skyrme potential energy, and
the kinetic energy are calculated by the SHFB model. That
is to say, we can calculate the ISGMR energy and finite
nucleus incompressibility KA directly by the SHFB model.
It is interesting to point out that the two-body term V0 does
not contribute to the nuclear matter incompressibility K∞, but
contributes to the finite nucleus incompressibility KA.

Comparing Eq. (16) to Eq. (14), the incompressibility
parameters KS , Kτ , and KC are obtained. The V (0)

c term
contributes to the Coulomb incompressibility parameter,

KC = 3V (0)
c

A

A4/3

Z2
. (17)

Assuming ρn = ρp, τn = τp, and Jn = Jp with keeping the
total density constant, we calculate the incompressibility for
symmetry system KA(δ = 0). The symmetry parameter Kτ is

calculated by

Kτ = 1

δ2
[KA − KA(δ = 0)]. (18)

Then, the surface parameter KS is calculated from KA, KC ,
and Kτ ,

KS = A1/3

[
KA − K∞ − Kτδ

2 − KC

Z2

A4/3

]
. (19)

We perform the SHFB calculations for the nuclei from 12C
to 238U within 12 sets of the Skyrme parameters, MSk2, MSk4,
BSk6, BSK8, SLy4, SLy5, SLy6, SLy7, SLy230a, SLy230b,
MSL0, SkMP. The nuclear matter incompressibilities provided
by those Skyrme parameters are in the region from 229–
231 MeV. The incompressibility parameters are calculated and
shown as a function of mass number in Fig. 6. In the figure,
the incompressibility parameters (upper and lower limits)
extracted from the data are shown as gray region.

For the surface parameter KS , the extracted value by the
data is −153.2 ± 4.7 MeV. However, the calculations are in
the region from −100 to −600 MeV. It has been shown above
that the model overestimates the data of the ISGMR energies
for A < 150. The underestimation of the surface parameter
KS is the result of the overestimation of the ISGMR energies.
Moreover, the calculated KS value decreases linearly over mass
number. It is indicated that the data could be better described
if the A2/3 scaling term is added in the liquid-drop formula
Eq. (14).

For the Coulomb parameter KC , the extracted value from
the data is 2.0 ± 0.4 MeV, while the calculated values are
in the region from 1.7–2.1 MeV. Although the calculated
values slightly depend on the mass number, they are in the
confidence interval of the extracted value. In fact, the Coulomb
parameter KC has been studied widely. In those investigations,
the negative term related to the third derivative of the energy
per nucleon over density is considered. Our model does not
consider the third derivative of the energy per nucleon, but can
reproduce the extracted value from the data.

Many attempts to extract the symmetry parameter Kτ were
based on the data of the Sn and Cd isotopes. The value about
−550 MeV was obtained [11]. However, the ISGMR energies
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of the Sn and Cd isotopes are not only isospin dependent
but also mass dependent. The extracted symmetry parameter
Kτ depends on the assumed mass dependence of the ISGMR
energies. Two evidences support this point of view. First, the
value Kτ = −550 MeV can not explain the isospin dependence
of the ISGMR in light nuclei, such as Ca isotopes [19]. Second,
the value Kτ = 0 MeV, extracted from the data for nuclei
from 12C to 238U, can reproduce the ISGMR energies of Sn
isotopes reasonably, as shown in the inset panel in Fig. 5.
The symmetry parameter Kτ can be also extracted from the
data of isobars. In this case, the mass effect can be removed.
Unfortunately, the error bars of available isobars data, such
as 112Sn-112Cd, 114Sn-114Cd, and 116Sn-116Cd, are too large to
constrain the Kτ value. Equation (18) provides a method to
calculate Kτ . The calculated values locate in the region from
−200 to 50 MeV, which is narrower than the region of the
extracted value (0 ± 205.1 MeV). The extracted and calculated
values in this work are both much smaller than −550 MeV, but
they agree with each other.

IV. CONCLUSION

The fluid dynamical reduction of the Boltzmann-Langevin
equation was carried out for a situation where the velocity field
can be described by a set of N collective variables [31,32].
In this work, the deducing Langevin equation is applied to
investigate the isoscalar giant monopole resonance (ISGMR).
It is shown that the calculations of the ISGMR energies in this
work agree with those of the relativistic mean-field theory and
the random phase approximation, and reproduce the general
trend of the data. The model only includes the two-body
dissipation, and hence underestimates the width of the ISGMR.

By linearization of the Langevin equation, a method is
provided to calculate the incompressibility KA of the finite
nucleus directly by the Skyrme Hartree-Fock-Bogolyubov
model. Twelve sets of the Skyrme interactions are applied
to perform the calculations and study the incompressibility
parameters in the leptodermous expansion. The incompress-
ibility parameters are also extracted by fitting the available
data for the nuclei from 12C to 238U. For the surface parameter
KS , the extracted value by the data is −153.2 ± 4.7 MeV.
Because of the overestimation of the ISGMR energies by
the model, the calculated KS values are smaller than the
extracted value, and decrease linearly over mass number of the
nucleus.

The calculated KC values (1.7–2.1 MeV) agree with the
extracted value (2.0 ± 0.4 MeV). For the symmetry param-
eter Kτ , the extracted value is 0 with a large uncertainty
±205.1 MeV. The calculated values locate in the region
from −200 to 50 MeV, which is narrower than the region
of the extracted value. The Bohr-Mottelson model provides a
reasonable method to understand the ISGMR macroscopically.
With more data of the ISGMR in short-lived nuclei in the future,
it will be used to constrain the incompressibility parameters,
especially the symmetry part.
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