Investigations of the synthesis of the superheavy element Z = 122

H. C. Manjunatha,^{1,*} K. N. Sridhar,^{2,3} and N. Sowmya¹

¹Department of Physics, Government College for Women, Kolar-563101 Karnataka, India ²Department of Physics, Government First Grade College, Kolar-563101 Karnataka, India

³Research and Development Centre, Bharathiar University, Coimbatore-641046, India

(Received 18 May 2018; published 15 August 2018)

We have identified the most probable projectile-target combination by studying the fusion cross section, evaporation residue cross section, compound nucleus formation probability (P_{CN}), and survival probability (P_{Surv}) of different projectile target combinations to synthesize the superheavy element Z = 122. The selected most probable projectile-target combinations to synthesize the superheavy element Z = 122 are Cr + Cf, Fe + Cm, Se + Ra, and As + Ac. Superheavy nuclei may decay through the different decay modes such as spontaneous fission, ternary fission, and cluster decay. We have also studied the half-lives of spontaneous fission, ternary fission, and cluster decay of the predicted nuclei for Z = 122 and compared with that of alpha decay. This enables us to study the competition between spontaneous fission, ternary fission, cluster decay, and alpha decay in the superheavy nuclei of Z = 122. The comparision of half lives for different decay modes reveals that alpha decay with respect to other decay modes also confirms that alpha decay is most dominant decay mode for the isotopes superheavy nuclei $^{307-314}122$ and hence these nuclei can be detected through the alpha decay mode only. We hope that our predictions may be guide for the future experiments in the synthesis of more isotopes of superheavy nuclei Z = 122.

DOI: 10.1103/PhysRevC.98.024308

I. INTRODUCTION

The study of superheavy elements has become the subject of strong interest both for experimental and theoretical research. Superheavy elements are formed by a fusion process in collisions of two heavy ions. The fusion is described in the literature with two different methods: as a melting of two nuclei along their relative coordinate or as a transfer of nucleons or clusters from the lighter nucleus to the heavier one. In this paper we describe the fusion as a melting process along the relative coordinate. The other method is based on the dinuclear system (DNS) concept (see Refs. [1,2]). In this model the formed DNS evolves as a diffusion process in the mass asymmetry coordinate n = (A1 - A2)/(A1 + A2) to the compound nucleus. The DNS model assumes that the motion to smaller relative distances (at fixed η) is hindered in collisions of heavy nuclei [3]. The diffusion process can lead to the decay of the dinuclear system, which is quasifission. Torres et al. [4] studied the quasifission process in a transport model for a dinuclear system. The competition between fusion and quasifission reduces the cross section for the compound nucleus formation. The DNS model works well for the description of fusion in symmetric reactions with heavy nuclei and in reactions producing superheavy nuclei [5]. The dependence of the fusion cross section on the isotopic composition of colliding nuclei is studied using the dinuclear system concept for compound nucleus formation [6]. Adamian et al. [7]

studied the possibilities of the synthesis of superheavy nuclei in actinide based fusion reactions within the dinuclear system model for compound nucleus formation. Previous workers studied the influence of angular momentum on the competition between complete fusion and quasifission within the dinuclear system model [8]. The use of light- and medium-mass neutronrich radioactive beams may produce superheavy nuclei. Such a possibility is also provided by the multinucleon transfer processes in low-energy damped collisions of heavy actinide nuclei, if the shell effects really play an important role in such reactions [9]. Multinucleon transfer reactions occurring in lowenergy collisions of heavy ions are considered an important method for the production of superheavy elements [10]. The possibilities of using radioactive beams, multinucleon transfer reactions, and neutron capture processes for this purpose are discussed by previous workers [11–13]. Marinov et al. [14] obtained possible evidence for the existence of a long-lived superheavy nucleus with mass number A = 292 and atomic number Z = 122 or 124 in natural thorium. The discovery of many isotopes of new superheavy elements of Z = 114, 115,116, 118 were reported in a review paper [15]. There have been some experimental studies reported on the investigations of superheavy nuclei (SHN) Z = 122 [16,17]. Some theoretical studies also observed on the predictions of SHN Z = 122 [18– 20]. Previous theoretical studies on the evaporation residue (σ_{FR}) cross section for Z = 122 refer to a cold, near-symmetric reaction ¹⁵⁴Sm(¹⁵⁰Nd, 1n)³⁰³122 [18,19]. Also observed is the synthesis of the superheavy element Z = 122 through a hot fusion reaction (⁵⁸Fe + ²⁴⁸Cm \rightarrow ^{306-x}122 + xn and ⁶⁴Ni + ²⁴⁴Pu \rightarrow ^{308-x}122 + xn) [20].

024308-1

^{*}Corresponding author: manjunathhc@rediffmail.com

FIG. 1. Decay chain of the predicted probable isotopes for Z = 122.

The predicted value of the 1n decay cross section for the cold fusion reaction 154 Sm $({}^{150}$ Nd, $1n)^{303}$ 122 by previous researchers [16] using the fusion-by-diffusion (FBD) model [21–23] is $\sigma_{1n} \sim 10^{-11}$ pb, whereas other authors [17] had predicted the same to be ~ 1 pb, an incredible 11 orders of magnitude higher, for their use of an old variant of the FBD model [21]. There is a discrepancy in the predictions of synthesis parameters of superheavy nuclei. The hot fusion reactions have been used as the tool to study the SHEs. Superheavy nuclei and their decay properties is one of the important fields in nuclear physics. Previous researchers [14] obtained the half-life $T_{1/2} >$ 10^8 yr and an abundance $(1-10) \times 10^{-12}$ for a superheavy nucleus with mass number A = 292 and atomic number Z =122. The possibility of such an extremely heavy Z nucleus motivated us to study the most probable projectile-target combinations to synthesize the superheavy nuclei Z = 122. Previous researchers also studied the possible projectile target combinations to synthesize the superheavy nuclei [22–28].

Manjunatha [26] studied the theoretical predictions on the possible isotopes of the superheavy element Z = 122 and predicted that the nuclei ³⁰⁷⁻³¹⁴122 were found to have long half-lives and hence could be sufficient to detect them if synthesized in a laboratory. The decay chains of predicted nuclei for Z = 122 are shown in Fig. 1. The present work consists of two parts. In the first part we have identified the most probable projectile-target combination to synthesize these superheavy nuclei. We have identified the most probable projectile-target combination by studying the fusion cross section, evaporation residue cross section, compound nucleus formation probability (P_{CN}), and survival probability (P_{Surv}) of different projectile target combinations to synthesize the superheavy element Z = 122. Superheavy nuclei may decay through the different decay modes such as spontaneous fission, ternary fission, and cluster decay. There is a need to study the different decay modes such as spontaneous fission, ternary fission, and cluster decay of the predicted nuclei for Z = 122. Hence in the second part of this work, we have studied the halflives of spontaneous fission, ternary fission, and cluster decay of this predicted nuclei for Z = 122 and compared them with that of alpha decay. This enables us to study the competition between spontaneous fission, ternary fission, cluster decay, and alpha decay in the superheavy nuclei of Z = 122.

II. THEORETICAL FRAMEWORK

A. Projectile-target combinations to synthesize SHN Z = 122 via fusion

The interacting potential barrier for two spherical nuclei is given by

$$V = V_N(R) + V_C(R) + \frac{\hbar^2 l(l+1)}{2\mu \times r^2},$$
 (1)

where *l* represents the angular momentum and μ is the reduced mass. Coulomb potential $V_c(R)$ is calculated by

$$V_{C}(R) = Z_{1}Z_{2}e^{2} \begin{cases} \frac{1}{R} & (R > R_{C}) \\ \frac{1}{2R_{c}} \left[3 - \left(\frac{R}{R_{c}}\right)^{2} \right] & (R < R_{C}) \end{cases}$$
(2)

where $R_C = 1.24 \times (R_1 + R_2)$, R_1 and R_2 are respectively the radii of the emitted alpha and daughter nuclei. Here Z_1 and Z_2 are the atomic numbers of the daughter and emitted cluster.

The nuclear potential is calculated from the proximity potential [29] and it is given as

$$V_p(z) = 4\pi\gamma b \left[\frac{C_1 C_2}{C_1 + C_2}\right] \Phi\left(\frac{z}{b}\right)$$
(3)

with the nuclear surface tension coefficient,

$$\gamma = 0.9517[1 - 1.7826(N - Z)^2/A^2] \text{ MeV/fm}^2.$$
 (4)

Here N, Z, and A represent the neutron, proton, and mass number of the parent and Φ represents the universal proximity potential [30] and the recent proximity function is

$$\Phi(\varepsilon) = \frac{p_1}{1 + \exp\left(\frac{s_0 + p_2}{p_3}\right)}.$$
(5)

Here p_1 , p_2 , and p_3 are -7.65, 1.02, and 0.89, respectively [31], and s_0 is calculated by the equation

$$s_0 = (R - R_1 - R_2)/b.$$
 (6)

The width (diffuseness) of the nuclear surface $b \approx 1$ and the Süsmann central radii C_i of the fragments is related to the sharp

radii R_i as

$$C_i = R_i - \left(\frac{b^2}{R_i}\right). \tag{7}$$

For R_i , we use a semiempirical formula in terms of mass number A_i as [32]

$$R_i = 1.28A_i^{1/3} - 0.76 + 0.8A_i^{-1/3}.$$
 (8)

After calculation of the total potential, fusion barriers are estimated. Since fusion happens at a distance larger than the touching configuration of the colliding pair, the above form of the Coulomb potential is justified. One can extract the barrier height V_B and barrier position R_B using the following conditions:

$$\left. \frac{dV(r)}{dr} \right|_{r=R_B} = 0 \quad \text{and} \quad \left. \frac{d^2 V(r)}{dr^2} \right|_{r=R_B} \leqslant 0. \tag{9}$$

To study the fusion cross sections, we shall use the model given by Wong [33]. In this formalism, the cross section for complete fusion is given by

$$\sigma_{\rm fus} = \frac{\pi \hbar^2}{2\mu \times E_{\rm cm}} \sum_{l=0}^{l_{\rm max}} (2l+1) \times T_l(E_{\rm cm}) P_{\rm CN}(E_{\rm cm}, l), \quad (10)$$

where μ is the reduced mass. The center of mass energy is denoted by $E_{\rm cm}$. In the above formula, $l_{\rm max}$ corresponds to the largest partial wave for which a pocket still exists in the interaction potential and $T_l(E_{\rm cm})$ is the energy-dependent barrier penetration factor. $P_{\rm CN}$ is the probability for the compound nucleus (CN) formation by two nuclei coming in contact. The probability of compound nucleus formation $P_{\rm CN}$ suggested by previous workers [34–40] is used in the present calculation. The calculation of $P_{\rm CN}$ requires effective fissility which in turn depends on $x_{\rm thr}$ and c. $x_{\rm thr}$ and c are adjustable parameters [22–24]. These parameters were suggested by Loveland [41]. This form of energy dependence of fusion probability is similar to the one proposed by Zargrebeav and Greiner [41].

After the fusion of two nuclei, the corresponding compound nuclei come to the ground state by emitting neutrons. The evaporation residue cross section of SH element production in a heavy-ion fusion reaction with subsequent emission of x neutrons is given by [41]

$$\sigma_{ER}^{xn} = \frac{\pi}{k^2} \sum_{l=0}^{\infty} (2l+1)T(E,l)P_{\rm CN}(E,l)P_{\rm sur}^{xn}(E^*,l).$$
(11)

 $P_{\rm sur}$ is the survival probability and it is the compound nucleus to decay to the ground state of the final residual nucleus via evaporation of neutrons/light particles. The survival probability is

the probability that the fused system emits several neutrons followed by observing a sequence of α decay from the residue. The survival probability under the evaporation of *x* neutrons is

$$P_{\text{sur}} = P_{\text{xn}}(E_{\text{CN}}^*) \prod_{i=1}^{i_{\max}=x} \left(\frac{\Gamma_n}{\Gamma_n + \Gamma_f}\right)_{i,E^*},$$
 (12)

where the index "*i*" is equal to the number of emitted neutrons. The calculation of P_{sur} requires the probability of evaporation of *x* neutrons from the compound nucleus (P_{xn}). To calculate the P_{xn} , we have adopted the procedure explained by previous workers [39,40]. The term $[\Gamma_n/(\Gamma_n + \Gamma_f)]$ in Eq. (12) is calculated by the knowledge of the ratio of the emission width of a neutron to the fission width (Γ_n/Γ_f). In the present work, we have used the expression for Γ_n/Γ_f based on the level densities of the Fermi-gas model [40].

B. Competition between binary fission, ternary fission, cluster radioactivity, and alpha decay process in superheavy nuclei

The interacting potential between two nuclei of fission fragments is taken as the sum of the Coulomb potential and proximity potential. To study the ternary and binary fission, we have used Denisov nuclear potential Vp(r) [42] and it is given by

$$V_P(r) = -1.989\,843 \frac{R_1 R_2}{R_1 + R_2} \varphi(r - R_1 - R_2 - 2.65)$$

$$\times \left[1 + 0.003\,525\,139 \left(\frac{A_1}{A_2} + \frac{A_2}{A_1} \right)^{3/2} - 0.411\,326\,3(I_1 + I_2) \right], \tag{13}$$

where the effective nuclear radius is given by

$$R_{i} = R_{ip} \left(1 - \frac{11.654\,15}{R_{ip}} \right) + 1.284\,589 \left(I_{i} - \frac{0.4A_{i}}{A_{i} + 200} \right) (i = 1, 2), \quad (14)$$

where R_{ip} is given by

$$R_{ip} = 1.24 A_i^{3/2} \left[1 + \frac{1.646}{A_i} - 0.191 \left(\frac{A_i - 2Z_i}{A_i} \right) \right] \text{ with}$$
$$I_i = \frac{N_i - Z_i}{A_i}.$$
(15)

The universal function $\phi(s = r - R_1 - R_2 - 2.65)$ is given by

$$\Phi(\xi) = \begin{cases} 1 - s/0.788\,166\,3 + 1.229\,218\,S^2 - 0.223\,427\,7S^3 - 0.103\,876\,9S^4 \\ -\frac{R_1R_2}{R_1 + R_2}(0.184\,493\,5S^2 + 0.075\,701\,01S^3) + (I_1 + I_2)(0.044\,706\,45S^2 + 0.033\,468\,70S^3) & \text{for } -5.65 \leqslant S \leqslant 0 \\ 1 - S^2 \Big[0.054\,101\,06\frac{R_1R_2}{R_1 + R_2} \exp\left(-\frac{S}{1.760\,580}\right) \Big] \\ -0.539\,542\,0(I_1 + I_2) \exp\left(-\frac{S}{2.424\,408}\right) \times \exp\left(-\frac{S}{0.788\,1663}\right) & \text{for } S \ge 0 \end{cases}$$

To study the cluster decay and alpha decay, Coulomb potential $V_c(R)$ is taken as

$$V_{C}(R) = Z_{1}Z_{2}e^{2} \begin{cases} \frac{1}{R} & (R > R_{C}) \\ \frac{1}{2R_{c}} \left[3 - \left(\frac{R}{R_{c}}\right)^{2} \right] & (R < R_{C}), \end{cases}$$
(16)

where $R_C = 1.24 \times (R_1 + R_2)$, R_1 and R_2 are respectively the radii of the emitted alpha/cluster and daughter nuclei. Here Z_1 and Z_2 are the atomic numbers of the daughter and emitted cluster. We have used the proximity function defined specially for cluster/alpha decay and it is given as [30]

$$\Phi(\varepsilon) = \frac{p_1}{1 + \exp\left(\frac{s_0 + p_2}{p_3}\right)} \quad \text{with} \quad s_0 = \frac{R - R_1 - R_2}{b}.$$
 (17)

Here p_1 , p_2 , and p_3 are -7.65, 1.02, and 0.89, respectively [31].

For all four processes such as spontaneous fission, alpha ternary fission, cluster decay, and alpha decay, the barrier penetrability P is given as

$$P = \exp\left\{-\frac{2}{\hbar}\int_{a}^{b}\sqrt{2\mu(V-Q)}dz\right\}.$$
 (18)

Here $\mu = mA_1A_2/A$, where *m* is the nucleon mass and A_1 , A_2 are the mass numbers of daughter and emitted clusters, respectively. For cluster/alpha decay, the turning points "*a*" and "*b*" are determined from the equation, V(a) = V(b) = Q. For the fission process, the first turning point is determined from the equation V(a) = Q and the second turning point from b = 0. The above integral can be evaluated numerically or analytically, and the half-life time is given by

$$T_{1/2} = \frac{\ln 2}{\lambda} = \frac{\ln 2}{\upsilon P},\tag{19}$$

where $v = \frac{\omega}{2\pi} = \frac{2E_v}{h}$ represents the number of assaults on the barrier per second and λ is the decay constant. E_v , the empirical

FIG. 3. Reduced fusion barrier positions $S_B(\text{fm})$ as a function of $\frac{Z_1 Z_2}{A_1^{1/3} + A_2^{1/3}}$.

Z₁Z_,/(A^{1/3}+A

2.605363128 - 0.0703202

vibration energy, is given as

10

2.2

2.0

1.8

1.6 1.4

1.2

1.0

0.8

0.6

0.4

S_B^{para} (fm)

ø

ഗ്

$$E_{\nu} = Q \left\{ 0.056 + 0.039 \exp\left[\frac{4 - A_2}{2.5}\right] \right\} \text{ for } A_2 \ge 4.$$
 (20)

III. RESULTS AND DISCUSSION

In the previous study [26], it is observed that the nuclei $^{307-314}122$ were found to have long half-lives and hence it could be sufficient to detect them if synthesized in a laboratory. To check isotopes for the stability against the proton, neutron, and beta emission, we have calculated the corresponding separation energies. The calculated separation energies for different isotopes of superheavy nuclei Z = 122 are shown in Fig. 2. On calculating the separation energies for the isotopes of Z = 122, the two-proton separation energy S(2p) is negative

FIG. 2. Nucleon separation energies as a function of mass number for Z = 122.

FIG. 4. Fusion barrier heights $V_B(\text{MeV})$ as a function of $\frac{Z_1Z_2}{R_p^{\text{Par}}}(1-\frac{1}{R_p^{\text{Par}}})$.

30

FIG. 5. Variation of compound nucleus probability (P_{CN}) at 20 MeV with mass number of projectile.

for those isotopes within the range $280 \le A \le 289$. These observations make it clear that all those isotopes within the range $280 \le A \le 289$ are outside the proton drip line and thus may easily decay through proton emission. Hence the nuclei $^{307-314}122$ may not undergo proton, neutron, and beta decay.

After identifying the most probable isotopes for the superheavy element Z = 122, we have studied the possible fusion reactions for their synthesis. We have studied around 900 possible projectile target combinations to synthesize superheavy nuclei ^{307–314}122. For all projectile-target combinations, we have

FIG. 6. Variation of survival probability (P_{Surv}) at 20 MeV (for 3n evaporation channel) with mass number of projectile.

FIG. 7. Evaporation residue cross section as a function of E^* for projectile-target combination Cr + Cf.

calculated the fusion barrier heights (V_B) and positions (R_B) . Once fusion barrier heights and positions were calculated, a search was made for their parametrization. We have calculated the reduced fusion barrier $S_B = R_B - C_1 - C_2$ and plotted reduced fusion barrier as a function of $Z_1 Z_2 / (A_1^{1/3} + A_2^{1/3})$ and it is shown in Fig. 3. We have fitted the function for the reduced fusion barrier in terms of $Z_1 Z_2 / (A_1^{1/3} + A_2^{1/3})$ as follows:

$$S_B^{\text{para}} = 2.6054 - 0.0703 \times \left[\frac{Z_1 Z_2}{A_1^{1/3} + A_2^{1/3}} \right],$$
 (21)

hence the fusion barrier position (R_B) becomes $R_B^{\text{para}} = S_B^{\text{para}} + C_1 + C_2$.

FIG. 8. Evaporation residue cross section as a function of E^* for projectile-target combination Fe + Cm.

FIG. 9. Evaporation residue cross section as a function of E^* for projectile-target combination Se + Ra.

Finally, the parametrized fusion barrier position can be expressed as

$$R_B^{\text{para}} = 2.6054 - 0.0703 \times \left[\frac{Z_1 Z_2}{A_1^{1/3} + A_2^{1/3}}\right] + C_1 + C_2.$$
(22)

The calculated fusion barrier height (V_B) is plotted as a function of $(Z_1Z_2/R_B^{\text{para}})(1-1/R_B^{\text{para}})$ and it is shown in Fig. 4. We have fitted nonlinear function for fusion barrier height as follows;

$$V_B^{\text{para}} = 5.051 + 0.961 \left[\frac{1.44 Z_1 Z_2}{R_B^{\text{para}}} \left(1 - \frac{0.75}{R_B^{\text{para}}} \right) \right].$$
(23)

The above equations may be used to produce the barrier heights (V_B) and the positions (R_B) of ${}^{307-314}122$ nuclei. After

FIG. 10. Evaporation residue cross section as a function of E^* for projectile-target combination As + Ac.

FIG. 11. Evaporation residue cross section as a function of E^* for projectile-target combination Mn + Bk.

studying the fusion barriers, we have calculated the compound nucleus formation probability ($P_{\rm CN}$) and the survival probability for different projectile-target combinations.

The variation of calculated compound nucleus formation probability ($P_{\rm CN}$) at 20 MeV with a mass number of projectile for superheavy nuclei ^{307–314}122 is shown in Fig. 5. From this figure, it is clear that $P_{\rm CN}$ decreases with increasing mass number of projectile. The variation of survival probability ($P_{\rm Surv}$) at 20 MeV (for 3*n*) with mass number of projectile for superheavy nuclei ^{307–314}122 is as shown in Fig. 6. We have calculated the evaporation residue cross sections for all studied possible projectile target combinations to synthesize superheavy nuclei ^{307–314}122. Figures 7–11 show the evaporation residue cross section as a function of E^* for projectile-target combination systems Cr + Cf, Fe + Cm, Se + Ra, As + Ac, and Mn + Bk respectively.

We have studied the variation of evaporation residue cross section as a function of mass number. Figure 12 shows the variation of evaporation residue cross section for $^{307-314}122$ vs mass number of the projectiles. The evaporation residue cross section decreases with increase in the mass number of the projectiles. We have selected the most probable projectile-target combination to synthesize superheavy nuclei $^{307-314}122$ that have minimum driving potential, maximum fusion, and evaporation residue cross sections. The selected most probable projectile-target combinations such as Cr + Cf, Fe + Cm, Se + Ra, As + Ac are listed in Table I.

The parameters required to decide the synthesis of superheavy nuclei such as compound nucleus fissility (χ_{CN}), charge product in the entrance channel (Z_pZ_t), effective entrance channel fissility (χ_{eff}), fusion barrier height (V_B), and fusion barrier width (R_B) for the most probable fusion reactions are also shown in Table I. The compound nucleus fissility (χ_{CN}) is calculated using the following equation:

$$\chi_{\rm CN} = \frac{Z^2}{A} \bigg/ \bigg(\frac{Z^2}{A} \bigg)_{\rm crit}, \tag{24}$$

FIG. 12. Evaporation residue cross section as a function of mass number of the projectile.

where Z and A are the atomic and mass numbers of the compound nucleus, respectively. The denominator is taken as

$$\left(\frac{Z^2}{A}\right)_{\text{crit}} = 50.883(1 - 1.7826I^2),$$
 (25)

where I = (A - 2Z)/A is the relative neutron excess of the compound nucleus.

The effective entrance channel fissility (χ_{eff}) is defined as

$$\chi_{\rm eff} = \frac{4Z_1 Z_2}{\left[A_1^{1/3} A_2^{1/3} (A_1^{1/3} + A_2^{1/3})\right]} \left/ \left(\frac{Z^2}{A}\right)_{\rm crit},$$
 (26)

where A_1 and A_2 are the mass number of projectile and target nucleus respectively. Tabulated data of compound nucleus fissility (χ_{CN}), charge product in the entrance channel ($Z_p Z_t$), effective entrance channel fissility (χ_{eff}), fusion barrier height (V_B), and fusion barrier width (R_B) for the most probable fusion reactions are useful in the experiments to synthesize more isotopes of SHN Z = 122.

After identifying the most probable projectile-target combinations, we have studied the different decay modes of Z = 122. The formed compound nucleus may undergo different decay modes such as alpha decay, cluster decay, and binary and ternary fission processes. It is essential to study the competition between different decay modes of superheavy nuclei. The energy released (Q) during the studied process such as spontaneous fission, alpha ternary fission, cluster decay, and alpha decay is calculated by using the following equation:

$$Q = \Delta M(A, Z) - \sum_{i}^{n} \Delta M(A_i, Z_i), \qquad (27)$$

where $\Delta M(A, Z)$ and $\Delta M(A_i, Z_i)$ are the mass excess of the parent and emitted nuclei respectively.

For ternary fission n varies from 1 to 3. For spontaneous fission and cluster and alpha decay processes, n varies from 1 to 2. In the present work, we have used this experimental mass excess data [43]. Some of the experimental mass excess values are not available. For those nuclei, where experimental

TABLE I.	Presynthesis	parameters	for SHE	Z = 122.
----------	--------------	------------	---------	----------

CN	Most probable projectile-target combination	$egin{array}{c} (\sigma_{ m Evp})_{ m max} \ pb \end{array}$	V _B (MeV)	R _B (fm)	$Z_p Z_t$	Хси	χ_{eff} (×10 ³)	E _{c.m} (MeV)	N/A
³⁰⁷ 122	⁵⁷ Fe (S 2.12%) + ²⁵⁰ Cm(9000 yr) ⁶⁰ Fe (2.6×10 ⁶ yr) + ²⁴⁷ Cm (1.56×10 ⁷ yr) ⁶³ Ni (100 yr) + ²⁴⁴ Pu (8.08×10 ⁷ yr) ⁷² Zn (S 46.5%) + ²³⁵ U (7.04×10 ⁸ yr) ⁷⁹ Se (3.27×10 ⁵ yr) + ²²⁸ Ra (5.75 yr)	5.61×10^{-2} 3.38×10^{-2} 1.92×10^{-2} 4.80×10^{-3} 1.80×10^{-3}	268.731 267.65 282.425 294.373 319.253	12.338 12.397 12.361 12.423 12.357	2496 2496 2632 2760 2992	1.0302	1.31 1.26 1.28 1.22 1.24	288 287 302 314 339	0.6026
³⁰⁸ 122	⁵⁸ Fe (S 0.28%) + ²⁵⁰ Cm (9000 yr) ⁶⁰ Fe (2.6×10 ⁶ yr) + ²⁴⁸ Cm (3.4×10 ⁵ yr) ⁶⁴ Ni (S 0.926%) + ²⁴⁴ Pu (8.08×10 ⁷ yr) ⁷⁰ Zn (S 0.65%) + ²³⁸ U (4.468×10 ⁹ yr) ⁷² Zn (S 46.5%) + ²³⁶ U (2.342×10 ⁷ yr) ⁷⁶ Ge (1.78×10 ²¹ yr) + ²³² Th (1.41×10 ¹⁰ yr) ⁸⁰ Se (S 49.85%) + ²²⁸ Ra (5.75 yr) ⁸² Se (1.08×10 ²⁰ yr) + ²²⁶ Ra (1600 yr)	$\begin{array}{c} 3.45 \times 10^{-1} \\ 2.47 \times 10^{-1} \\ 1.21 \times 10^{-1} \\ 4.67 \times 10^{-2} \\ 3.55 \times 10^{-2} \\ 1.98 \times 10^{-2} \\ 1.15 \times 10^{-2} \\ 9.10 \times 10^{-3} \end{array}$	268.141 267.429 281.845 294.741 294.121 306.834 318.685 318.129	12.37 12.409 12.391 12.405 12.436 12.412 12.385 12.412	2496 2496 2632 2760 2760 2880 2992 2992	1.0289	1.29 1.25 1.26 1.24 1.21 1.22 1.23 1.21	284 283 297 310 310 322 334 334	0.6039
³⁰⁹ 122	${}^{53}\text{Cr} (S 9.5\%) + {}^{256}\text{Cf} (12.3 \text{ min})$ ${}^{54}\text{Cr} (S 2.365\%) + {}^{255}\text{Cf} (85 \text{ min})$ ${}^{57}\text{Fe} (S 2.12\%) + {}^{252}\text{Cm} (<1 \text{ d})$ ${}^{58}\text{Fe} (S 0.28\%) + {}^{251}\text{Cm} (16.2 \text{ min})$ ${}^{59}\text{Fe} (44.6 \text{ d}) + {}^{250}\text{Cm} (9000 \text{ yr})$ ${}^{60}\text{Fe} (2.6 \times 10^6 \text{ yr}) + {}^{249}\text{Cm} (64.15 \text{ min})$ ${}^{66}\text{Ni} (54.6 \text{ h}) + {}^{243}\text{Pu} (4.956 \text{ h})$ ${}^{70}\text{Zn} (S 0.6\%) + {}^{237}\text{U} (23.45 \text{ min})$ ${}^{72}\text{Zn} (S 46.5\%) + {}^{237}\text{U} (6.75 \text{ d})$ ${}^{76}\text{Ge} (1.78 \times 10^{21} \text{ yr}) + {}^{233}\text{Th} (21.83 \text{ min})$ ${}^{79}\text{Se} (3.27 \times 10^5 \text{ yr}) + {}^{227}\text{Ra} (92 \text{ min})$ ${}^{82}\text{Se} (1.08 \times 10^{20} \text{ yr}) + {}^{227}\text{Ra} (42.2 \text{ min})$	$\begin{array}{c} 4.60\times10^{-1}\\ 3.83\times10^{-1}\\ 2.03\times10^{-1}\\ 1.74\times10^{-1}\\ 1.46\times10^{-1}\\ 1.23\times10^{-1}\\ 4.50\times10^{-2}\\ 2.33\times10^{-2}\\ 1.79\times10^{-2}\\ 9.90\times10^{-3}\\ 6.50\times10^{-3}\\ 4.60\times10^{-3} \end{array}$	253.032 252.656 268.289 267.921 267.561 267.209 280.945 294.49 293.871 306.568 318.692 317.849	12.374 12.395 12.362 12.382 12.402 12.421 12.438 12.418 12.449 12.425 12.384 12.426	2352 2352 2496 2496 2496 2632 2760 2760 2880 2992 2992	1.0277	$1.29 \\ 1.27 \\ 1.30 \\ 1.28 \\ 1.26 \\ 1.25 \\ 1.22 \\ 1.23 \\ 1.21 \\ 1.21 \\ 1.23 \\ 1.20 $	266 266 281 281 280 294 308 307 320 332 331	0.6052
³¹⁰ 122	${}^{54}\text{Cr} (S 2.365\%) + {}^{256}\text{Cf} (12.3 \text{ min})$ ${}^{58}\text{Fe} (S 0.28\%) + {}^{252}\text{Cm} (<1 \text{ d})$ ${}^{59}\text{Fe} (44.6 \text{ d}) + {}^{251}\text{Cm} (16.8 \text{ min})$ ${}^{60}\text{Fe} (2.6 \times 10^6 \text{ yr}) + {}^{250}\text{Cm} (9000 \text{ yr})$ ${}^{66}\text{Ni} (54.6 \text{ h}) + {}^{244}\text{Pu} (8 \times 10^7 \text{ yr})$ ${}^{72}\text{Zn} (S 46.5\%) + {}^{238}\text{U} (4.468 \times 10^9 \text{ yr})$ ${}^{76}\text{Ge} (1.78 \times 10^{21} \text{ yr}) + {}^{234}\text{Th} (24.1 \text{ d})$ ${}^{75}\text{As} (S100\%) + {}^{235}\text{Ac} (40 \text{ s})$ ${}^{80}\text{Se} (S 49.8\%) + {}^{230}\text{Ra} (92 \text{ min})$ ${}^{82}\text{Se} (1.08 \times 10^{20} \text{ yr}) + {}^{228}\text{Ra} (5.75 \text{ yr})$	$\begin{array}{c} 1.97 \times 10^{0} \\ 8.88 \times 10^{-1} \\ 7.56 \times 10^{-1} \\ 6.40 \times 10^{-1} \\ 2.30 \times 10^{-1} \\ 9.19 \times 10^{-2} \\ 5.15 \times 10^{-2} \\ 5.67 \times 10^{-2} \\ 2.99 \times 10^{-2} \\ 2.36 \times 10^{-2} \end{array}$	252.452 267.701 267.341 266.99 280.711 293.621 306.304 313.219 318.126 317.569	12.407 12.395 12.413 12.432 12.45 12.462 12.438 12.381 12.412 12.439	2352 2496 2496 2632 2760 2880 2937 2992 2992	1.0265	1.27 1.26 1.24 1.22 1.20 1.21 1.24 1.21 1.24 1.21	263 278 278 278 291 304 317 324 329 328	0.6065
³¹¹ 122	⁵⁹ Fe (44.6 d) + ²⁵² Cm (<1 d) ⁶⁰ Fe (2.6×10 ⁶ yr) + ²⁵¹ Cm (16.8 min) ⁷² Zn (S 46.5%) + ²³⁹ U (23.45 min) ⁷⁵ As (S 100%) + ²³⁶ Ac (2 min) ⁷⁶ As (1.1 d) + ²³⁵ Ac (40 s) ⁷⁷ As (38.33 h) + ²³⁴ Ac (44 s) ⁷⁷ As (38.33 h) + ²³⁴ Ac (44 s) ⁷⁷ Se (S 7.6%) + ²³⁴ Ra (30 s) ⁷⁸ Se (S 23.69%) + ²³³ Ra (30 s) ⁷⁹ Se (3.27×10 ⁵ yr) + ²³² Ra (250 s) ⁸⁰ Se (S 49.8%) + ²³¹ Ra (103 s) ⁸² Se (1.08×10 ²⁰ yr) + ²²⁹ Ra (4 min)	$\begin{array}{c} 6.53 \times 10^{-1} \\ 5.45 \times 10^{-1} \\ 7.90 \times 10^{-2} \\ 4.89 \times 10^{-2} \\ 4.18 \times 10^{-2} \\ 3.78 \times 10^{-2} \\ 3.63 \times 10^{-2} \\ 3.22 \times 10^{-2} \\ 2.91 \times 10^{-2} \\ 2.56 \times 10^{-2} \\ 2.04 \times 10^{-2} \end{array}$	267.123 266.771 293.373 312.949 312.644 312.345 318.729 318.429 318.136 317.848 317.292	12.425 12.444 12.474 12.394 12.409 12.424 12.383 12.397 12.412 12.426 12.453	2496 2496 2760 2937 2937 2937 2937 2992 2992 2992 2992	1.0254	1.25 1.23 1.19 1.24 1.22 1.21 1.24 1.23 1.22 1.21 1.19	277 277 303 323 323 322 329 328 328 328 328 328 328 327	0.6077
³¹² 122	⁶⁰ Fe $(2.6 \times 10^{6} \text{ yr}) + {}^{252}\text{Cm} (<1 \text{ d})$ ⁷⁶ As $(1.1 \text{ d}) + {}^{236}\text{Ac} (2 \text{ min})$ ⁷⁷ As $(38.33 \text{ h}) + {}^{235}\text{Ac} (40 \text{ s})$ ⁷⁸ Se $(S 23.69\%) + {}^{234}\text{Ra} (30 \text{ s})$ ⁷⁹ Se $(3.27 \times 10^{5} \text{ yr}) + {}^{233}\text{Ra} (30 \text{ s})$ ⁸⁰ Se $(S 49.8\%) + {}^{232}\text{Ra} (250 \text{ s})$ ⁸² Se $(1.08 \times 10^{20} \text{ yr}) + {}^{230}\text{Ra} (92 \text{ min})$	$5.91 \times 10^{-1} \\ 4.81 \times 10^{-2} \\ 4.38 \times 10^{-2} \\ 3.75 \times 10^{-2} \\ 3.30 \times 10^{-2} \\ 2.78 \times 10^{-2} \\ 2.36 \times 10^{-2} \\ 2.36 \times 10^{-2} \\ 100000000000000000000000000000000000$	266.554 312.375 312.076 318.154 317.86 317.572 317.015	12.456 12.423 12.437 12.411 12.425 12.439 12.466	2497 2937 2937 2992 2992 2992 2992	1.0243	1.23 1.22 1.21 1.22 1.21 1.22 1.21 1.20	277 322 322 328 328 328 328 328 327	0.6090

CN	Most probable projectile-target combination	$(\sigma_{ m Evp})_{ m max}$ Pb	V_B (MeV)	R _B (fm)	$Z_p Z_t$	χcn	χ_{eff} (×10 ³)	E _{c.m} (MeV)	N/A
³¹³ 122	⁷⁷ As $(38.33 \text{ h}) + {}^{236}\text{Ac} (2 \text{ min})$ ⁷⁹ Se $(3.27 \times 10^5 \text{ yr}) + {}^{234}\text{Ra} (30 \text{ s})$ ⁸⁰ Se $(S 49.8\%) + {}^{233}\text{Ra} (30 \text{ s})$ ⁸² Se $(1.08 \times 10^{20} \text{ yr}) + {}^{231}\text{Ra} (103 \text{ s})$	$\begin{array}{c} 3.46 \times 10^{-2} \\ 2.62 \times 10^{-2} \\ 2.25 \times 10^{-2} \\ 1.86 \times 10^{-2} \end{array}$	311.809 317.585 317.298 316.74	12.451 12.438 12.453 12.48	2937 2992 2992 2992	1.0232	1.20 1.20 1.19 1.17	322 328 327 327	0.6102
³¹⁴ 122	⁸⁰ Se (S 49.8%) + ²³⁴ Ra (30 s) ⁸² Se (1.08×10^{20} yr) + ²³² Ra (250 s)	$\begin{array}{c} 4.44 \times 10^{-2} \\ 3.41 \times 10^{-2} \end{array}$	317.024 316.467	12.466 12.493	2992 2992	1.0221	1.19 1.17	327 326	0.6115

TABLE I. (Continued.)

mass excess was unavailable, we have used theoretical values [44,45]. The total potential for spontaneous and ternary fission of different fission fragments are calculated. The driving potential (V - Q) is calculated. The variation of driving potential for spontaneous and ternary fission as a function of the mass number of fragment A_1 is shown in Fig. 13. The calculated spontaneous and ternary fission half-lives for the combination of different fission fragments of superheavy nuclei Z = 122 are presented. The variation of logarithmic half-lives of spontaneous and ternary fission as a function of mass number A_1 for different isotopes of SHN Z = 122 are shown in Fig. 14.

The energy released (*Q*) during the emission of different cluster nuclei from the different isotopes of SHN Z = 126 is calculated. Figure 15 represents the energy released (*Q*) during the emission of different clusters (¹²⁻¹⁴C, ¹⁴N, ²⁰⁻²⁴Ne, ²⁸⁻³⁴Si, ³⁶⁻⁴⁴Ar, ⁴⁰⁻⁴⁸Ca) from the superheavy nuclei Z = 122 as a function of mass number of clusters. From this figure, it is clear that the *Q* value in the cluster decay increases with an increase in the mass number of the emitted cluster. The half-lives of cluster emission (¹²⁻¹⁴C, ¹⁴N, ²⁰⁻²⁴Ne, ²⁸⁻³⁴Si, ³⁶⁻⁴⁴Ar, ⁴⁰⁻⁴⁸Ca) from the different isotopes of superheavy nuclei Z =122 are calculated. Figure 16 shows the variation of logarithmic half-lives for the emission of different clusters (¹²⁻¹⁴C, ¹⁴N, ²⁰⁻²⁴Ne, ²⁸⁻³⁴Si, ³⁶⁻⁴⁴Ar, ⁴⁰⁻⁴⁸Ca) from su-

FIG. 13. Variation of driving potential for spontaneous and ternary fission as a function of the mass number of fragment A_1 .

perheavy nuclei Z = 122 as a function of mass number of daughter nuclei.

The computed logarithmic cluster decay half-lives, decay constant, barrier penetrability, and other characteristics of cluster decay during the emission of ^{12,14}C, ¹⁴N, ^{20,22,24}Ne, ^{28,30,32,34}Si, ^{36,38,40,42,44}Ar, ^{40,42,44,46,48}Ca from the different isotopes of superheavy nuclei Z = 122 are tabulated in the Table II. To identify the dominant decay mode of the most predicted isotopes of superheavy nuclei Z = 122, we have calculated the branching ratios. Branching ratios are calculated using their decay constants. The branching ratio of alpha decay with respect to spontaneous fission is defined as

$$BR = \frac{\lambda_{\alpha}}{\lambda_{SF}}.$$
 (28)

The branching ratio of alpha decay with respect to alpha ternary fission is defined as

$$BR = \frac{\lambda_{\alpha}}{\lambda_{TF}}.$$
 (29)

The branching ratio of alpha decay with respect to cluster decay is defined as

$$BR = \frac{\lambda_{\alpha}}{\lambda_{CR}},$$
(30)

FIG. 14. Variation of logarithmic half-lives of spontaneous and ternary fission as a function of mass number A_1 for different isotopes of SHN Z = 122.

FIG. 15. Energy released (*Q*) during the emission of different clusters ($^{12-14}$ C, 14 N, $^{20-24}$ Ne, $^{28-34}$ Si, $^{36-44}$ Ar, $^{40-48}$ Ca) for superheavy nuclei *Z* = 122 as a function of mass number of clusters.

where λ_{α} , λ_{SF} , λ_{TF} , and λ_{CR} are decay constants, corresponds to alpha decay, spontaneous fission, alpha ternary fission, and cluster decay processes respectively. The calculated branching ratio of alpha decay with respect to the spontaneous fission, ternary fission, and cluster decay for different isotopes of superheavy nuclei Z = 122 is as shown in Table III. The computed logarithmic half-life values for various decay modes of superheavy nuclei Z = 122 is as given in Table IV. We have compared the logarithmic half-lives for spontaneous fission, ternary fission, cluster radioactivity, and alpha decay for superheavy nuclei $^{307}126$, $^{318}126$, $^{319}126$, $^{320}126$, and $^{323-326}126$ and it is shown in Table IV. From this table, it is clear that alpha decay half-lives are smaller than those of spontaneous fission, ternary fission, and cluster decay for the isotopes of superheavy nuclei Z = 122.

FIG. 16. Variation of logarithmic half-lives for the emission of different clusters ($^{12-14}$ C, 14 N, $^{20-24}$ Ne, $^{28-34}$ Si, $^{36-44}$ Ar, $^{40-48}$ Ca) from superheavy nuclei Z = 122 as a function of mass number of cluster nuclei.

IV. CONCLUSION

We have also selected the most probable projectile-target combinations, Cr + Cf, Fe + Cm, Se + Ra, As + Ac to synthesize the superheavy element Z = 122. We hope that our predictions may be a guide for future experiments in the synthesis of more isotopes of superheavy nuclei Z = 112. We have also studied the different decay modes of the most predicted isotopes of superheavy element Z = 122. The comparison of half-lives for different decay modes reveals that alpha decay has smaller half-lives than the other studied decay modes. A detailed study of branching ratio of alpha decay with respect to other decay modes also confirms that alpha decay is the most dominant decay mode for the isotopes of superheavy nuclei $^{307-314}122$ and hence these nuclei can be detected through the alpha decay mode only.

TABLE II. The computed logarithmic half-life values, decay constant, barrier penetrability and other characteristics, and cluster decay during the emission of ^{12,14}C, ¹⁴N, ^{20,22,24}Ne, ^{28,30,32,34}Si, ^{36,38,40,42,44}Ar, ^{40,42,44,46,48}Ca from the different isotopes of superheavy nuclei Z = 122.

Parent nuclei	Emitted cluster	Daughter nuclei	Q value(MeV)	Penetrability P	Decay constant λ	$\log_{10} T_{1/2}$	Parent nuclei
	¹² C	²⁹⁵ 122	49.3300	1.34×10^{21}	1.15×10^{-20}	1.54×10^{1}	-1.347
	^{14}C	²⁹³ 122	49.5100	1.34×10^{21}	2.54×10^{-29}	3.41×10^{-8}	7.307929
	14 N	²⁹³ 122	53.2070	1.44×10^{21}	2.44×10^{-25}	3.51×10^{-4}	3.294449
	²⁰ Ne	²⁸⁷ 122	80.5120	2.18×10^{21}	1.76×10^{-25}	3.83×10^{-4}	3.256649
	²² Ne	²⁸⁵ 122	84.1380	2.28×10^{21}	2.22×10^{-5}	$2.81 imes 10^{-4}$	-16.8631
	²⁴ Ne	²⁸³ 122	84.2190	2.28×10^{21}	1.13×10^{-22}	6.78×10^{-21}	0.428553
	²⁸ Si	²⁷⁹ 122	115.8330	3.14×10^{21}	2.07×10^{-25}	$6.50 imes 10^{-4}$	3.027158
	³⁰ Si	²⁷⁷ 122	123.1470	3.33×10^{21}	4.83×10^{-22}	0.161×10^{1}	-0.36646
³⁰⁷ 122	³² Si	²⁷⁵ 122	126.4180	3.42×10^{21}	2.52×10^{-20}	8.63×10^{1}	-2.09612
	³⁴ Si	²⁷³ 122	125.9880	3.41×10^{21}	4.24×10^{-20}	3.41×10^{21}	-2.32031
	³⁶ Ar	²⁷¹ 122	145.1920	3.93×10^{21}	2.55×10^{-26}	1.00×10^{-4}	3.839018
	³⁸ Ar	²⁶⁹ 122	155.7450	4.22×10^{21}	1.86×10^{-22}	$7.84 imes 10^{-1}$	-0.05432
	⁴⁰ Ar	²⁶⁷ 122	160.1260	4.34×10^{21}	4.83×10^{-20}	2.09×10^{2}	-2.48052
	⁴² Ar	²⁶⁵ 122	164.0040	4.44×10^{21}	7.63×10^{-19}	3.39×10^{3}	-3.68996
	⁴⁴ Ar	²⁶³ 122	166.1260	$4.5 imes 10^{21}$	5.07×10^{-18}	2.28×10^4	-4.51753

Parent nuclei	Emitted cluster	Daughter nuclei	Q value(MeV)	Penetrability P	Decay constant λ	$\log_{10} T_{1/2}$	Parent nuclei
	⁴⁰ Ca	²⁶⁷ 122	159.3960	4.32×10^{21}	1.07×10^{-26}	4.61×10^{-5}	4.176363
	⁴² Ca	²⁶⁵ 122	169.3870	$4.59 imes 10^{21}$	4.95×10^{-23}	$2.27 imes 10^{-1}$	0.483641
	⁴⁴ Ca	²⁶³ 122	176.7790	4.79×10^{21}	3.91×10^{-20}	1.87×10^2	-2.4324
	⁴⁶ Ca	²⁶¹ 122	182.9210	4.95×10^{21}	2.28×10^{-18}	1.13×10^{4}	-4.2126
	⁴⁸ Ca	²⁵⁹ 122	188.3950	5.1×10^{21}	1.79×10^{-16}	9.12×10^{5}	-6.11979
	^{12}C	²⁹⁶ 122	49.2600	1.33×10^{21}	1.07×10^{-20}	1.42×10^{1}	-1.31257
	¹⁴ C	²⁹⁴ 122	50.1300	1.36×10^{21}	7.92×10^{-29}	$1.08 imes 10^{-7}$	6.808576
	^{14}N	²⁹⁴ 122	52.2570	1.41×10^{21}	2.35×10^{-26}	$3.33 imes10^{-5}$	4.317715
	²⁰ Ne	²⁸⁸ 122	80.5120	2.18×10^{21}	1.88×10^{-25}	$4.10 imes 10^{-4}$	3.226809
	²² Ne	²⁸⁶ 122	85.4950	2.31×10^{21}	2.11×10^{-22}	$4.88 imes 10^{-1}$	0.151704
³⁰⁸ 122	²⁴ Ne	²⁸⁴ 122	85.0780	2.3×10^{21}	3.91×10^{-22}	9.01×10^{-1}	-0.11467
	²⁸ Si	²⁸⁰ 122	115.7230	3.13×10^{21}	1.96×10^{-25}	$6.15 imes 10^{-4}$	3.051528
	³⁰ Si	²⁷⁸ 122	122.9930	3.33×10^{21}	4.61×10^{-22}	0.154×10^{1}	-0.34604
	³² Si	²⁷⁶ 122	126.6580	3.43×10^{21}	3.58×10^{-20}	1.23×10^{2}	-2.2496
	³⁴ Si	²⁷⁴ 122	126.3320	3.42×10^{21}	6.75×10^{-20}	2.31×10^{2}	-2.52302
	³⁶ Ar	²⁷² 122	144.0720	3.9×10^{21}	1.34×10^{-26}	5.23×10^{-5}	4.121359
	³⁸ Ar	²⁷⁰ 122	154.9650	4.2×10^{21}	9.88×10^{-23}	4.14×10^{-1}	0.222669
	⁴⁰ Ar	²⁰⁸ 122	159.5660	4.32×10^{21}	3.88×10^{-20}	1.68×10^{2}	-2.3848
	⁴² Ar	²⁰⁰ 122 264 + 2 2	164.2470	4.45×10^{21}	9.45×10^{-19}	4.20×10^{3}	-3.78361
	⁴⁴ Ar	²⁰⁴ 122	166.1970	4.5×10^{21}	5.73×10^{-18}	2.58×10^{4}	-4.57162
	⁴⁰ Ca	²⁰⁸ 122	158.3360	4.29×10^{21}	5.9×10^{-27}	2.53×10^{-3}	4.436773
	⁴² Ca	$\frac{200}{122}$	168.5070	4.56×10^{21}	2.38×10^{-23}	1.09×10^{-1}	0.804158
	⁴⁶ Ca	²⁶⁴ 122 ²⁶² 122	176.5190	4.78×10^{21}	3.7×10^{-20}	1.77×10^{2}	-2.40724
	⁴⁰ Ca	²⁶² 122 260122	182.8840	4.95×10^{21}	2.44×10^{-16}	1.21×10^{4}	-4.24201
	⁺ °Ca	200 122	188.3030	5.1×10^{21}	$1.8 / \times 10^{-10}$	9.52×10^{3}	-6.13872
	^{12}C	²⁹⁷ 122	49.6300	1.34×10^{21}	2.6×10^{-20}	3.49×10^{1}	-1.70283
	¹⁴ C	²⁹⁵ 122	50.9400	1.38×10^{21}	3.71×10^{-28}	5.12×10^{-7}	6.130767
	¹⁴ N	²⁹⁵ 122	53.7170	1.45×10^{21}	5.83×10^{-25}	$8.48 imes 10^{-4}$	2.911618
	²⁰ Ne	²⁸⁹ 122	80.9320	2.19×10^{21}	3.12×10^{-25}	6.84×10^{-4}	3.005138
	²² Ne	²⁸⁷ 122	86.1250	2.33×10^{21}	5.9×10^{-22}	0.138×10^{1}	-0.29874
³⁰⁹ 122	²⁴ Ne	²⁸⁵ 122	86.6950	2.35×10^{21}	7.12×10^{-21}	1.67×10^{1}	-1.383
	²⁸ Si	²⁸¹ 122	115.9430	3.14×10^{21}	3.37×10^{-25}	1.06×10^{-3}	2.815154
	³⁰ Si	²⁷⁹ 122	123.4030	3.34×10^{21}	7.08×10^{-22}	0.236×10^{1}	-0.53357
	³² Si	²⁷⁷ 122	127.4250	3.45×10^{21}	9.4×10^{-20}	3.24×10^{2}	-2.67067
	³⁴ Si	²⁷³ 122	126.9240	3.44×10^{21}	1.46×10^{-19}	5.02×10^{2}	-2.86061
	³⁰ Ar	²⁷³ 122 ²⁷¹ 122	143.7120	3.89×10^{21}	1.15×10^{-20}	4.48×10^{-3}	4.188599
	³⁰ Ar	^{2/1} 122 269122	154.3050	4.18×10^{21}	6.03×10^{-23}	2.52×10^{-1}	0.438656
	⁴⁰ Ar 42 A =	²⁶⁷ 122	160.7000	4.35×10^{21}	7.52×10^{-20}	3.27×10^{2}	-2.6/44/
	44 A -	265 1 22	164.1390	4.44×10^{21} 4.52×10^{21}	9.61×10^{-18}	4.27×10^{3}	-3.79001
	Ar	269 1 2 2	100.8840	4.52×10^{-1}	9.42×10^{-27}	4.20×10^{-5}	-4.78901
	⁴² Ca	267 1 2 2	157.4100	4.20×10^{10}	5.39×10^{-23}	1.33×10^{-2}	4.034601
	44 Ca	265 1 2 2	107.7270	4.34×10^{-1} 4.70×10^{21}	1.52×10^{-20}	3.97×10^{-10}	1.003913
	46 Ca	²⁶³ 122	170.9380	4.79×10^{4}	4.97×10^{-18}	$2.38 \times 10^{-1.40} \times 10^{4}$	-2.55057
	⁴⁸ Ca	²⁶¹ 122	188.6300	4.90×10^{10} 5.11×10^{21}	2.72×10^{-16}	1.49×10^{10} 1.39×10^{6}	-6.30323
	^{12}C	²⁹⁸ 122	49 4900	1.34×10^{21}	2.03×10^{-20}	2.72×10^{1}	-1 59428
	^{14}C	²⁹⁶ 122	51,1600	1.39×10^{21}	6.06×10^{-28}	8.39×10^{-7}	5.91617
	¹⁴ N	²⁹⁶ 122	52.5770	1.42×10^{21}	1.02×10^{-25}	1.46×10^{-4}	3.677131
	²⁰ Ne	²⁹⁰ 122	81.2220	2.2×10^{21}	4.54×10^{-25}	9.98×10^{-4}	2.840811
	²² Ne	²⁸⁸ 122	86.4150	2.34×10^{21}	1.05×10^{-21}	0.246×10^{1}	-0.55053
	²⁴ Ne	²⁸⁶ 122	88.3420	2.39×10^{21}	6.84×10^{-20}	1.64×10^{2}	-2.37369
	²⁸ Si	²⁸² 122	115.7730	3.13×10^{21}	2.81×10^{-25}	8.82×10^{-4}	2.894855
³¹⁰ 122	³⁰ Si	²⁸⁰ 122	123.5830	3.35×10^{21}	8.97×10^{-22}	0.300×10^{1}	-0.6374
	³² Si	²⁷⁸ 122	127.5610	3.45×10^{21}	1.24×10^{-19}	4.28×10^{2}	-2.79095
	³⁴ Si	²⁷⁶ 122	127.4540	3.45×10^{21}	3.18×10^{-19}	1.10×10^{3}	-3.19979
	³⁶ Ar	²⁷⁴ 122	143.0420	3.87×10^{21}	8.14×10^{-27}	3.15×10^{-5}	4.341648
	³⁸ Ar	²⁷² 122	153.4750	4.16×10^{21}	3.24×10^{-23}	$1.35 imes 10^{-1}$	0.710629

TABLE II. (Continued.)

Parent nuclei	Emitted cluster	Daughter nuclei	Q value(MeV)	Penetrability P	Decay constant λ	$\log_{10}T_{1/2}$	Parent nuclei
	⁴⁰ Ar	²⁷⁰ 122	160.2100	4.34×10^{21}	6.25×10^{-20}	2.71×10^{2}	-2.5931
	⁴² Ar	²⁶⁸ 122	163.8690	4.44×10^{21}	8.92×10^{-19}	3.96×10^{3}	-3.75732
	⁴⁴ Ar	²⁶⁶ 122	167.4170	4.53×10^{21}	1.42×10^{-17}	6.44×10^4	-4.96906
	⁴⁰ Ca	²⁷⁰ 122	156.2660	4.23×10^{21}	1.91×10^{-27}	$8.09 imes 10^{-6}$	4.932028
	⁴² Ca	²⁶⁸ 122	166.9570	4.52×10^{21}	7.54×10^{-24}	3.41×10^{-2}	1.30761
	⁴⁴ Ca	²⁶⁶ 122	176.3480	4.77×10^{21}	3.95×10^{-20}	1.89×10^2	-2.43543
	⁴⁶ Ca	²⁶⁴ 122	183.1060	4.96×10^{21}	$3.34 imes 10^{-18}$	1.66×10^4	-4.37892
	⁴⁸ Ca	²⁶² 122	188.8830	5.11×10^{21}	3.79×10^{-16}	1.94×10^{6}	-6.44697
	^{12}C	²⁹⁹ 122	49.3100	1.34×10^{21}	1.46×10^{-20}	1.95×10^{1}	-1.45061
	^{14}C	²⁹⁷ 122	51.3700	1.39×10^{21}	9.81×10^{-28}	1.36×10^{-6}	5.704987
	14 N	²⁹⁷ 122	53.4570	1.45×10^{21}	4.47×10^{-25}	$6.48 imes 10^{-4}$	3.028727
	²⁰ Ne	²⁹¹ 122	81.1920	2.2×10^{21}	4.71×10^{-25}	1.04×10^{-3}	2.824779
	²² Ne	²⁸⁹ 122	86.6750	2.35×10^{21}	1.88×10^{-21}	0.441×10^{1}	-0.80441
	²⁴ Ne	²⁸⁷ 122	88.8120	2.4×10^{21}	1.1×10^{-19}	2.65×10^{2}	-2.583
	²⁸ Si	²⁸³ 122	115.5630	3.13×10^{21}	2.22×10^{-25}	$6.93 imes 10^{-4}$	2.999274
³¹¹ 122	³⁰ Si	²⁸¹ 122	146.8030	3.97×10^{21}	1.92×10^{-12}	7.63×10^{9}	-10.0422
	³² Si	²⁷⁹ 122	127.8110	3.46×10^{21}	1.91×10^{-19}	6.61×10^{2}	-2.98039
	³⁴ Si	²⁷⁷ 122	128.0610	3.47×10^{21}	9.08×10^{-19}	3.15×10^{3}	-3.6578
	³⁶ Ar	²⁷⁵ 122	141.9320	3.84×10^{21}	4.38×10^{-27}	1.68×10^{-5}	4.613658
	³⁸ Ar	²⁷³ 122	152.9550	4.14×10^{21}	2.31×10^{-23}	9.56×10^{-2}	0.859796
	⁴⁰ Ar	²⁷¹ 122	159.3900	4.32×10^{21}	4.38×10^{-20}	1.89×10^{2}	-2.43691
	⁴² Ar	²⁶⁹ 122	164.8430	4.46×10^{21}	1.68×10^{-18}	7.49×10^{3}	-4.03434
	⁴⁴ Ar	²⁶⁷ 122	167.1490	4.53×10^{21}	1.31×10^{-17}	5.93×10^{4}	-4.93269
	⁴⁰ Ca	²⁷¹ 122	155.3460	4.21×10^{21}	1.18×10^{-27}	4.97×10^{-6}	5.144005
	⁴² Ca	269122	165.8770	4.49×10^{21}	3.44×10^{-24}	1.54×10^{-2}	1.65157
	⁴⁴ Ca	²⁶⁷ 122	175.4080	4.75×10^{21}	2.63×10^{-20}	1.25×10^{2}	-2.25625
	⁴⁶ Ca	265122	183.3650	4.96×10^{21}	4.28×10^{-18}	2.13×10^4	-4.48764
	⁴⁸ Ca	²⁶³ 122	188.9150	5.12×10^{21}	4.40×10^{-16}	2.25×10^{6}	-6.51241
	^{12}C	³⁰⁰ 122	48.8500	1.32×10^{21}	6×10^{-21}	0.793×10^{1}	-1.05919
	^{14}C	²⁹⁸ 122	51.2500	1.39×10^{21}	8.29×10^{-28}	1.15×10^{-6}	5.779013
	^{14}N	²⁹⁸ 122	51.9270	1.41×10^{21}	1.39×10^{-26}	1.96×10^{-5}	4.547803
	²⁰ Ne	²⁹² 122	80.8320	2.19×10^{21}	3.45×10^{-25}	7.55×10^{-4}	2.962102
	²² Ne	²⁹⁰ 122	86.9850	2.36×10^{21}	4.26×10^{-21}	1.00×10^{1}	-1.16119
	²⁴ Ne	²⁸⁸ 122	89.1220	2.41×10^{21}	1.55×10^{-19}	3.73×10^{2}	-2.73218
	²⁸ Si	²⁸⁴ 122	114.9930	3.11×10^{21}	1.02×10^{-25}	3.19×10^{-4}	3.336952
³¹² 122	³⁰ Si	²⁸² 122	123.4930	3.34×10^{21}	9.81×10^{-22}	0.328×10^{1}	-0.67592
	³² Si	²⁸⁰ 122	128.0110	3.47×10^{21}	2.84×10^{-19}	9.86×10^2	-3.15362
	³⁴ Si	²⁷⁸ 122	128.2170	3.47×10^{21}	1.47×10^{-18}	5.09×10^{3}	-3.86671
	³⁶ Ar	²⁷⁶ 122	141.3020	3.83×10^{21}	9.64×10^{-28}	3.69×10^{-6}	5.273239
	³⁸ Ar	²⁷⁴ 122	152 3050	4.12×10^{21}	1.49×10^{-23}	6.13×10^{-2}	1 052494
	⁴⁰ Ar	²⁷² 122	158,5800	4.29×10^{21}	3.1×10^{-20}	1.33×10^2	-2.28429
	⁴² Ar	²⁷⁰ 122	164 3730	4.45×10^{21}	1.38×10^{-18}	6.16×10^3	-3.94965
	⁴⁴ Ar	²⁶⁸ 122	166 8990	4.52×10^{21}	1.30×10^{-17} 1.22 × 10 ⁻¹⁷	5.10×10^{4}	-4 90109
	⁴⁰ Ca	²⁷² 122	154 3260	4.18×10^{21}	6.91×10^{-28}	2.89×10^{-6}	5 379844
	⁴² Ca	²⁷⁰ 122	164 7470	4.46×10^{21}	1.56×10^{-24}	2.09×10^{-6} 2.89 × 10 ⁻⁶	1 996791
	44Ca	²⁶⁸ 122	174 6580	4.73×10^{21}	1.93×10^{-20}	9.15×10^{1}	-2 12119
	46Ca	²⁶⁶ 122	182 7950	4.75×10^{21}	3.31×10^{-18}	1.64×10^4	-437401
	⁴⁸ Ca	²⁶⁴ 122	188.9650	5.12×10^{21}	5.21×10^{-16}	2.66×10^{6}	-6.58556
	^{12}C	³⁰¹ 122	47,9200	1.3×10^{21}	1.09×10^{-21}	0.141×10^{1}	-0.30957
	^{14}C	²⁹⁹ 122	51 2500	1.39×10^{21}	8.89×10^{-28}	1.23×10^{-6}	5 749116
	^{14}N	²⁹⁹ 122	52 6770	1.37×10^{10} 1.43×10^{21}	1.62×10^{-25}	2.31×10^{-4}	3 476317
	²⁰ Ne	²⁹³ 122	80 6920	2.18×10^{21}	3.19×10^{-25}	6.96×10^{-4}	2 997325
	²² Ne	²⁹¹ 122	87 1350	2.16×10^{21} 2.36 × 10 ²¹	9.36×10^{-21}	2.21×10^{1}	-1 50396
	²⁴ Ne	²⁸⁹ 122	89 5620	2.33×10^{21} 2.43×10^{21}	2.46×10^{-19}	5.96×10^2	-2.93501
³¹³ 122	²⁸ Si	²⁸⁵ 122	114 4530	3.1×10^{21}	5.39×10^{-26}	1.67×10^{-4}	3 616912
122	³⁰ Si	²⁸³ 122	123 4630	3.34×10^{21}	1.04×10^{-21}	0.347×10^{1}	-0 70058
	³² Si	²⁸¹ 122	128.2510	3.47×10^{21}	4.68×10^{-19}	1.63×10^{3}	-3.37104

TABLE II. (Continued.)

Parent nuclei	Emitted cluster	Daughter nuclei	Q value(MeV)	Penetrability P	Decay constant λ	$\log_{10} T_{1/2}$	Parent nuclei
	³⁴ Si	²⁷⁹ 122	128.6470	3.48×10^{21}	4.48×10^{-18}	1.56×10^{4}	-4.35275
	³⁶ Ar	²⁷⁷ 122	140.6620	3.81×10^{21}	4.13×10^{-28}	$1.57 imes 10^{-6}$	5.643293
	³⁸ Ar	²⁷⁵ 122	151.3750	4.1×10^{21}	7.76×10^{-24}	3.18×10^{-2}	1.33764
	⁴⁰ Ar	²⁷³ 122	158.2400	4.28×10^{21}	2.79×10^{-20}	1.20×10^2	-2.2378
	⁴² Ar	²⁷¹ 122	163.7330	4.43×10^{21}	1.04×10^{-18}	4.60×10^{3}	-3.82299
	⁴⁴ Ar	²⁶⁹ 122	168.0530	4.55×10^{21}	2.74×10^{-17}	1.25×10^{5}	-5.25536
	⁴⁰ Ca	²⁷³ 122	153.0760	4.14×10^{21}	1.12×10^{-28}	$4.66 imes 10^{-7}$	6.172113
	⁴² Ca	²⁷¹ 122	164.0070	4.44×10^{21}	$9.8 imes 10^{-25}$	$4.35 imes 10^{-3}$	2.201385
	⁴⁴ Ca	²⁶⁹ 122	173.7580	4.7×10^{21}	1.32×10^{-20}	6.23×10^{1}	-1.95411
	⁴⁶ Ca	²⁶⁷ 122	182.0350	$4.93 imes 10^{21}$	2.29×10^{-18}	1.13×10^{4}	-4.21167
	⁴⁸ Ca	²⁶⁵ 122	189.4040	5.13×10^{21}	8.83×10^{-16}	4.53×10^{6}	-6.81602
	^{12}C	³⁰² 122	47.1500	$1.28 imes 10^{21}$	2.97×10^{-22}	3.80×10^{-1}	0.260678
	¹⁴ C	³⁰⁰ 122	50.7300	1.37×10^{21}	3.49×10^{-28}	$4.80 imes 10^{-7}$	6.158867
	14 N	³⁰⁰ 122	49.9370	$1.35 imes 10^{21}$	2.67×10^{-28}	3.62×10^{-7}	6.281974
	²⁰ Ne	²⁹⁴ 122	79.9020	2.16×10^{21}	$1.5 imes 10^{-25}$	$3.25 imes 10^{-4}$	3.327909
	²² Ne	²⁹² 122	86.7150	2.35×10^{21}	2.89×10^{-21}	0.679×10^{1}	-0.99161
	²⁴ Ne	²⁹⁰ 122	89.8120	2.43×10^{21}	3.3×10^{-19}	8.01×10^2	-3.06371
³¹⁴ 122	²⁸ Si	²⁸⁶ 122	113.5230	3.07×10^{21}	1.85×10^{-26}	$5.7 imes 10^{-5}$	4.084265
	³⁰ Si	²⁸⁴ 122	122.8330	3.33×10^{21}	6.58×10^{-22}	0.219×10^{1}	-0.4997
	³² Si	²⁸² 122	128.0410	3.47×10^{21}	3.86×10^{-19}	1.34×10^{3}	-3.28639
	³⁴ Si	²⁸⁰ 122	128.7870	3.49×10^{21}	5.17×10^{-18}	1.80×10^4	-4.41547
	³⁶ Ar	²⁷⁸ 122	139.7520	$3.78 imes 10^{21}$	1.45×10^{-28}	$0.54 imes 10^{-7}$	6.101623
	³⁸ Ar	²⁷⁶ 122	150.6850	$4.08 imes 10^{21}$	4.96×10^{-24}	$2.03 imes 10^{-2}$	1.533564
	⁴⁰ Ar	²⁷⁴ 122	157.5300	4.27×10^{21}	2.08×10^{-20}	8.89×10^{1}	-2.10881
	⁴² Ar	²⁷² 122	162.8630	4.41×10^{21}	6.86×10^{-19}	3.03×10^{3}	-3.64088
	⁴⁴ Ar	²⁷⁰ 122	167.5230	4.54×10^{21}	2.13×10^{-17}	9.65×10^4	-5.14425
	⁴⁰ Ca	²⁷⁴ 122	152.0060	4.12×10^{21}	2.78×10^{-29}	$1.14 imes 10^{-7}$	6.781859
	⁴² Ca	²⁷² 122	162.9270	4.41×10^{21}	4.84×10^{-25}	2.14×10^{-3}	2.510313
	⁴⁴ Ca	²⁷⁰ 122	172.5680	4.67×10^{21}	7.88×10^{-21}	3.68×10^1	-1.72571
	⁴⁶ Ca	²⁷¹ 122	181.2250	$4.91 imes 10^{21}$	1.54×10^{-18}	7.57×10^3	-4.03888
	⁴⁸ Ca	²⁶⁶ 122	188.7740	5.11×10^{21}	5.66×10^{-16}	$2.89 imes 10^6$	-6.62145

TABLE II. (Continued.)

TABLE III. Branching ratio of alpha decay with respect to the spontaneous fission, ternary fission, and cluster decay for different isotopes of superheavy nuclei Z = 122.

$\lambda \alpha /(SF)$	$\lambda \alpha /(TF)$			λ_{lpha}	$\lambda_{\rm CR}$		
		¹² C	¹⁴ N	²⁰ Ne	³⁰ Si	⁴⁰ Ar	⁴⁰ Ca
1.72×10^{7}	2.45×10^{11}	4.59×10^{3}	2.01×10^{8}	1.84×10^{8}	4.39×10^4	3.37×10^2	1.53×10^{9}
2.27×10^{3}	1.09×10^{12}	2.94×10^{3}	1.26×10^{9}	1.02×10^{8}	2.72×10^4	2.49×10^{2}	1.65×10^{9}
3.85×10^{3}	6.42×10^{7}	6.90×10^{2}	2.84×10^{7}	3.52×10^{7}	1.02×10^4	7.37×10^{1}	1.57×10^{9}
1.30×10^{4}	3.07×10^{8}	4.99×10^{2}	9.32×10^{7}	9.32×10^{7}	4.52×10^{3}	5.00×10^{1}	1.68×10^{9}
3.07×10^{4}	2.89×10^{7}	3.82×10^2	1.15×10^{7}	7.21×10^{6}	$9.8 imes 10^{-7}$	3.95×10^{1}	3.32×10^{-3}
3.77×10^{37}	3.79×10^{8}	5.08×10^2	2.06×10^{8}	5.34×10^{6}	1.23×10^{3}	3.03×10^{1}	1.40×10^{9}
1.99×10^{5}	3.23×10^{7}	1.51×10^{3}	9.23×10^{6}	3.06×10^{6}	6.14×10^{2}	1.78×10^{1}	4.58×10^{9}
5.01×10 ⁵	2.88×10^{10}	2.92×10^{3}	3.07×10^{9}	3.41×10^{6}	5.07×10^2	1.25×10^1	9.70×10^{9}

TABLE IV. The computed logarithmic half-life values for various decay modes of s	superheavy	y nuclei $Z = 122$.
--	------------	----------------------

Isotope	Spontaneous fission	ontaneous fission Ternary fission	Cluster radioactivity (yr)						α decay (yr)
	half-life (yr)	half-life (yr)	¹² C	14 N	²⁰ Ne	³⁰ Si	⁴⁰ Ar	⁴⁰ Ca	
³⁰⁷ 122	1.69×10^{2}	2.40×10^{6}	4.50×10^{-2}	1.97×10^{3}	1.81×10^{3}	4.30×10^{-1}	3.31×10^{-3}	1.50×10^4	9.80×10^{-6}
³⁰⁸ 122	3.76×10^{-2}	1.80×10^{7}	4.87×10^{-2}	2.08×10^4	1.69×10^{3}	4.51×10^{-1}	4.12×10^{-3}	2.73×10^{4}	1.66×10^{-5}
³⁰⁹ 122	1.11×10^{-1}	1.84×10^{3}	1.98×10^{-2}	8.16×10^{2}	1.01×10^{3}	2.93×10^{-1}	2.12×10^{-3}	4.52×10^{4}	2.87×10^{-5}
³¹⁰ 122	6.63×10^{-1}	1.56×10^{4}	2.55×10^{-2}	4.75×10^{3}	4.75×10^{3}	2.30×10^{-1}	2.55×10^{-3}	8.55×10^{4}	5.10×10^{-5}
³¹¹ 122	2.84×10^{0}	2.68×10^{3}	3.54×10^{-2}	1.07×10^{3}	6.68×10^{2}	9.07×10^{-11}	3.66×10^{-3}	3.07×10^{-7}	9.27×10^{-5}
³¹² 122	6.48×10^{33}	6.51×10^{4}	8.73×10^{-2}	3.53×10^{4}	9.16×10^{2}	2.11×10^{-1}	5.20×10^{-3}	2.40×10^{5}	1.72×10^{-4}
³¹³ 122	6.45×10^{1}	1.05×10^{4}	4.90×10^{-1}	2.99×10^{3}	9.94×10^{2}	1.99×10^{-1}	5.78×10^{-3}	1.49×10^{6}	3.24×10^{-4}
³¹⁴ 122	3.12×10^2	1.80×10^7	1.82×10^{0}	1.91×10^{6}	2.13×10^3	3.16×10^{-1}	7.78×10^{-3}	6.05×10^6	6.24×10^{-4}

- A. Diaz-Torres, G. G. Adamian, N. V. Antonenko, and W. Scheid, Phys. Rev. C 64, 024604 (2001).
- [2] N. V. Antonenko, E. A. Cherepanov, A. K. Nasirov, V. P. Permjakov, and V. V. Volkov, Phys. Rev. C 51, 2635 (1995).
- [3] G. G. Adamian, N. V. Antonenko, and W. Scheid, Nucl. Phys. A 618, 176 (1997).
- [4] G. G. Adamian, N.V. Antonenko, S. E Ivanova, and W. Scheid, Nucl. Phys. A 646, 29 (1999).
- [5] G. G. Adamian, N. V. Antonenko, W. Scheid, and V. V. Volkov, Nucl. Phys. A 633, 409 (1998).
- [6] G. G. Adamian, N. V. Antonenko, and W. Scheid, Nucl. Phys. A 678, 24 (2000).
- [7] G. G. Adamian, N. V. Antonenko, and W. Scheid, Phys. Rev. C 69, 044601 (2004).
- [8] Sh. A. Kalandarov, G. G. Adamian, N. V. Antonenko, and W. Scheid, Phys. Rev. C 83, 054611 (2011).
- [9] V. I. Zagrebaev, Phys. Rev. C 64, 034606 (2001).
- [10] V. I. Zagrebaev, B. Fornal, S. Leoni, and W. Greiner, Phys. Rev. C 89, 054608 (2014).
- [11] V. I. Zagrebaev, Phys. Rev. C 78, 047602 (2008).
- [12] V. I. Zagrebaev and W. Greiner, Phys. Rev. C 83, 044618 (2011).
- [13] V. I. Zagrebaev, A. V. Karpov, I. N. Mishustin, and W. Greiner, Phys. Rev. C 84, 044617 (2011).
- [14] A. Marinov, I. Rodushkin, D. Kolb, A. Pape, Y. Kashiv, R. Brandt, R. V. Gentry, and H. W. Miller, Int. J. Mod. Phys. E 19, 131 (2010).
- [15] Y. T. Oganessian, J. Phys. G: Nucl. Part. Phys. 34, R165 (2007).
- [16] M. G. Itkis, E. Vardaci, I. M. Itkis, G. N. Knyazheva, and E. M. Kozulin, Nucl. Phys. A 944, 204 (2015).
- [17] W. Q. Shen, J. Albinski, A. Gobbi, S. Gralla *et al.*, Phys. Rev. C 36, 115 (1987).
- [18] T. Cap, K. Siwek-Wilczynska, and J. Wilczynski, Phys. Lett. B 736, 478 (2014).
- [19] R. K. Choudhury and Y. K. Gupta, Phys. Lett. B 731, 168 (2014).
- [20] V. L. Litnevsky, G. I. Kosenko, and F. A. Ivanyuk, Phys. Rev. C 93, 064606 (2016).

- [21] W. J. Swiatecki, K. Siwek-Wilczyńska, and J. Wilczyński, Phys. Rev. C 71, 014602 (2005).
- [22] H. C. Manjunatha and K. N. Sridhar, Eur. Phys. J. A 53, 97 (2017).
- [23] H. C. Manjunatha and K. N. Sridhar, Eur. Phys. J. A 53, 196 (2017).
- [24] H. C. Manjunatha and K. N. Sridhar, Nucl. Phys. A 962, 7 (2017).
- [25] H. C. Manjunatha and N. Sowmya, Nucl. Phys. A 969, 68 (2018).
- [26] H. C. Manjunatha, Int. J. Mod. Phys. E 25, 1650100 (2016).
- [27] H. C. Manjunatha, Int. J. Mod. Phys. E 25, 1650074 (2016).
- [28] H. C. Manjunatha, Nucl. Phys. A 945, 42 (2016).
- [29] J. Blocki, J. Randrup, W. J. Swiatecki, and C. F. Tsang, Ann. Phys. (N.Y.) 105, 427 (1977).
- [30] L. Zheng, G. L. Zhang, J. C. Yang, and W. W. Qu, Nucl. Phys. A 915, 70 (2013).
- [31] G. L. Zhang, H. B. Zheng, and W. W. Qu, Eur. Phys. J. A 49, 10 (2013).
- [32] J. Blocki and W. J. Swiatecki, Ann. Phys. (N.Y.) 132, 53 (1981).
- [33] C. Y. Wong, Phys. Lett. B 42, 186 (1972).
- [34] W. Loveland, Phys. Rev. C 75, 069801 (2007).
- [35] V. Zagrebaev and W. Greiner, Phys. Rev. C 78, 034610 (2008).
- [36] P. Armbruster, Rep. Prog. Phys. 62, 465 (1999).
- [37] S. A. Kalandarov, G. G. Adamian, N. V. Antonenko, and W. Scheid, Phys. Rev. C 82, 044603 (2010).
- [38] Z. H. Liu and J. D. Bao, Phys. Rev. C 81, 044606 (2010).
- [39] J. D. Jackson, Can. J. Phys. 34, 767 (1956).
- [40] R. Vandenbosch and J. R. Huizenga, Nuclear Fission (Academic, New York, 1973).
- [41] W. Loveland, Phys. Rev. C 76, 014612 (2007).
- [42] V. Y. Denisov, Phys. Lett. B 526, 315 (2002).
- [43] H. Koura, T. Tachibana, M. Uno, and M. Yamada, Prog. Theor. Phys. 113, 305 (2005).
- [44] M. Kowal, P. Jachimowicz, and A. Sobiczewski, Phys. Rev. C 82, 014303 (2010).
- [45] H. C. Manjunatha, B. M. Chandrika, and L. Seenappa, Mod. Phys. Lett. A 31, 1650162 (2016).