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Empirical signatures of shape phase transitions in nuclei with odd nucleon numbers
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Nuclear level density at low excitation energies is proposed as an indicator of the first order phase transitions in
nuclei. The new signature, a maximum value of the level density at the critical point, appears to be sensitive to the
detailed way the phase transition takes place in different nuclear regions: it is consistent with phase coexistence
in the N = 90 region, and with a rapid crossing of the two phases, without their coexistence/mixing at the critical
point in the N = 60 region, respectively. Candidates for critical point nuclei are proposed for odd-mass and
odd-odd nuclei, using correlations between relative excitation energies, and their ratios, for structures (bands)
based on unique-parity orbitals.
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I. INTRODUCTION

Quantum phase transitions (QPT) in nuclei appear at zero
temperature, and represent rapid changes in the equilibrium
deformation of the ground state, induced by the variation of a
nonthermal control parameter—the number of nucleons, due to
the competition of phases with different shapes. Such changes
in the shape of the ground state influence the evolution of
various nuclear properties, and, in order to characterize this
type of QPT [called also shape phase transition (SPT)], it
is important to identify observables that can play the role
of order parameters, allowing to observe how these critical
phenomena take place. Because the natural control parameter
in nuclei, the nucleon number, has only integer values, its
discontinuous variation smoothes out the discontinuities at the
phase transition point (or critical point). Both experimental
and theoretical studies propose various ways to assess the
different signatures of the SPTs: the discontinuous behavior of
nuclear properties that can be related to order parameters and
the characterization of the type of transition (first or second
order), the coexistence of the two phases, and the possible
realization of critical points in real nuclei. There are several
review papers which present the nuclear QPT domain from a
phenomenological point of view, as well as based on theoretical
nuclear structure models [1–5] such as the interacting boson
model [6] or the geometric (or collective) model [7,8].

Most of the theoretical and experimental studies concen-
trated until now mainly on the even-even nuclei. The reason is
that the evolution of many experimental observables of these
nuclei can be followed over extended nuclear regions thus
allowing to identify and characterize the discontinuities that
are typical of SPT. Also, in the even-even nuclei, in order
to describe the phase transitional nuclei, Iachello introduced,
in addition to the three IBM benchmarks of collective be-
havior [spherical nuclei—or with U(5) dynamical symmetry,
γ -soft nuclei—with O(6) dynamical symmetry, and nuclei
with axially symmetric deformation—with SU(3) dynamical
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symmetry] [6], the concept of critical point symmetries. He
proposed two such models, called E(5) for the second order
phase transition [between spherical, U(5) nuclei, and γ -soft,
O(6) nuclei] [9], and X(5) for the first order phase transition
[between spherical, U(5) nuclei and symmetrically deformed,
SU(3) nuclei] [10]. In contrast, the odd-mass and odd-odd
nuclei were much less studied until now, because of their more
complicated structure. Experimentally, it is difficult to find, for
such nuclei, observables that can be followed over extended
nuclear regions; theoretically, the dynamical situation created
by extra particle(s) added to the even-even core is more
complex. Only during the last decade there has been a boost
of studies (both theoretical and experimental) devoted to these
nuclei [11–28].

In this work we further extend our previous empirical
approach to SPT in odd-mass nuclei [27], by focusing on
experimental quantities that can be used as order parameters
for all types of nuclei, both even-even and with odd numbers of
nucleons. The nuclear level density at low excitation energies is
proposed as a novel indicator for first order SPT. Other aspects
of a SPT, such as phase coexistence and critical point nuclei
are considered as well.

II. EMPIRICAL OBSERVABLES AS EFFECTIVE
ORDER PARAMETERS

Because the equilibrium deformation of the ground state is
not an observable, one recurses to the so-called effective order
parameters, which are experimental observables sensitive to
SPT occurrence. Reference [29] addressed this problem by de-
termining the order parameter (deformation) both classically,
with a Landau-type of potential, and by quantum calculation
within the IBM. This study emphasized that (i) the finiteness
of the nuclei leads to a certain smoothing of the expected
discontinuities but that this is not a dominating effect, and
(ii) the advantage in the nuclear case is that properties of both
ground state and excited states can be measured. One can then
use as effective order parameters observables related both to the
ground state and to excited states, which may present distinct
signatures for the characterization of the SPT. Generally, the
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critical behavior of excited states may differ from that of the
ground state, and thus lead to a slightly different critical point
in some cases.

In the following we briefly review the effective order
parameters used until now to identify signatures of the SPTs.

A. Nuclear mass-related quantities

These may be considered the most basic ones because they
are related to the ground state properties. Nuclear masses or
binding energies comprise the sum of all binding effects in
a nucleus (single-particle and residual interactions). However,
their values (in MeV) are very large and thus obscure the effects
(of a few MeV) produced by changing the nuclear deformation.
It is therefore convenable to use nuclear mass-based quantities
which are of a differential nature and consequently more
sensitive to changes, such as different separation energies.

One of the most useful such quantities is the two-neutron
separation energy S2n, proposed long ago in a paper which
studied the classical limit of IBM [30], and intensively used
since then to identify and characterize SPTs (see [1–3], and, for
a few recent references, [17,18,22,23,25,27]). For a chain of
isotopes, S2n shows an almost linear decrease with increasing
N , with discontinuities at the shell closures and at the critical
points of first order SPTs. The change at the critical point
shows up as a flattening or even an increase of the curve,
which translates into a singularity/kink in the derivative of
S2n with respect to N . For the second order SPTs S2n shows
a discontinuity only in its first derivative. This behavior was
discussed in many papers (see quoted references). The basic
character of S2n as a direct signature of the SPT comes from its
expression as S2n(Z,N ) = B(Z,N ) − B(Z,N − 2), where
B is the binding energy (the energy of the ground state). It
is therefore proportional to the first derivative of the nuclear
binding energy with respect to the order parameter N , and
thus plays a role in the characterization of the QPT similar
to that of the free energy and its derivatives with respect
to the order parameter in the classical case [1,2,25]. The
differential variation of S2n (therefore the second derivative of
B) peaks at the critical point of the SU (3) to U (5) transition,
the peak being a δ function in the infinite-size limit (infinite
number of bosons), and showing a smoother behavior for
realistic numbers of bosons [1]. Other quantities expressing
various mass differences, such as α-particle decay energies
Q(α), double-β decay energies Q(2β ), as well as other decay
energies or Q values, are also useful to characterize SPT in
nuclei [22]. One should emphasize that such mass-related
quantities as presented above are available for a large number
of nuclei (as they are derived from mass tables [31]) and can
be used to identify and characterize SPT in any kind of nuclei
(even-even or with odd N and/or odd Z).

B. Nuclear radii and related quantities

Nuclear charge radii are sensitive to shell/subshell closures,
and also to changes in the ground state deformation (actually,
they are directly related to the β2 deformation parameter).
Therefore, similar to the two-neutron separation energies, nu-
clear radii and their differential variation show discontinuities

and kinks at shell closure and critical points, respectively
[32,33]. Measured nuclear charge radii are available for many
nuclei of all types [34]. Quantities that were considered as
signatures of the SPT are the average squared charge radii
〈r2〉 and their differential variations, like the isotope shifts
(differences between two adjacent isotopes with mass A and
A + 2), and the isomer shifts [differences for the states 0+

1
and 2+

1 , or for the 0+
1 and 0+

2 states, respectively, in the same
(even-even) nucleus]. The later are sensitive to the type of the
SPT (first or second order) [29,35].

C. Quantities based on excitation spectra of nuclei

(1) Excitation energies, E(2+
1 ), E(4+

1 ), and their ratio
R4/2 = E(4+

1 )/E(2+
1 ) (for the even-even nuclei) were largely

used for a long time. Similarly, certain relative excitation
energies and their ratios were also used in odd-mass nuclei
[19,27,28]. To distinguish the first and second order SPT within
the IBM, the ratio E(6+

1 )/E(0+
2 ) was proposed [36].

(2) Electromagnetic transition strengths. E2 transitions
within the ground state band, especially B(E2; 2+

1 → 0+
1 )

(which is related to the deformation parameter β2), and
the ratio B4/2 = B(E2; 4+

1 → 2+
1 )/B(E2; 2+

1 → 0+
1 ); or be-

tween different bands: B(E2; 2+
2 → 2+

1 ), and B(E2; 2+
2 →

0+
1 ) [37,38]. Another good SPT indicator was found in the

electric monopole, E(0) transition strength ρ2(E0 : 0+
2 → 0+

1 )
[39–41].

(3) Two-neutron transfer reaction intensities (from the 0+
1

ground state of the mass A target to the 0+
1 and 2+

1 states of the
final A − 2 or A + 2 nuclei) [42,43].

(4) Global properties of the excited 0+ states in even-even
nuclei [44].

From the list presented above, one can see that most of the
experimental quantities used until now as signatures (or order
parameters) of SPTs in nuclei refer to even-even nuclei. It is
therefore of utmost importance to enlarge this list with other
quantities that can be used for all types of nuclei.

III. NUCLEAR LEVEL DENSITY: A NOVEL INDICATOR
FOR FIRST ORDER SHAPE PHASE TRANSITIONS

Previous results, both theoretical calculations and exper-
imental findings, indicated that at the critical point of the
transition between spherical and axially deformed shapes the
excited nuclear states have a peculiar behavior. Thus, IBM
calculations predicted that the spectrum of the low-lying
excited 0+ states was maximally compressed at this point [45],
this behavior persisting for higher spins as well. Experimental
studies of the two-neutron transfer reaction (p, t), which is
particularly suited to evidence 0+ states, showed that the
nucleus 154Gd, known as a good example of X(5) critical point
nucleus (for the transition from spherical to axially deformed
nuclei) had indeed an enhanced number of low-lying (up to
2.5 MeV) 0+ states, compared to other nuclei in the same region
[44,46]. These results have led to the expectation that, near the
critical point, there may be an enhancement of the density of
levels at low excitation energies.

In order to investigate this possibility we examine now
experimentally determined nuclear level densities. We refer
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FIG. 1. Parameter a of the BSFG model level density formula,
Eq. (1), as determined by individual fits to low-lying levels and s-wave
neutron resonance spacings of about 300 nuclei [47]. The inset shows
the values for all investigated nuclei, while the big graph displays the
details for the nuclei with mass ≈150 and N around 90. The red lines
represent the leading term of Eq. (2), that is, 0.199A0.869.

to the results of Ref. [47] for the nuclear level densities at
relatively low excitation energies. In that work, the total level
density ρ(E) was determined for individual nuclei by fitting
both the cumulative numbers of known low-lying levels and
the density of neutron resonances, with the back-shifted Fermi
gas model formula (BSFG) [48],

ρBSFG(E) = e2
√

a(E−E1 )

12
√

2σa1/4(E − E1)5/4
(1)

with the free parameters a and the energy shift E1. The nuclei
for which this procedure can be applied is limited to about
300, as they are of the stable-nucleus-plus-one-neutron type.
The fitting procedure is described in [47]. The result of the
individual fits to all these nuclei (between 18F and 251Cf) are
shown in the inset of Fig. 1. The values of a show an almost
linear dependence on A, on which oscillations due to shell
effects are superimposed [47–49]. Note that for nuclei with
comparable mass values, the larger the parameter a, the larger
is the level density ρ, therefore one can use a as a measure of
the level density.

By observing correlations between the parameters a and E1

and different experimental quantities, the following compact
empirical formulas were proposed to describe these experi-
mental values:

a = (0.199 + 0.0096S ′)A0.869, (2)

E1 = −0.381 + 0.5Pa′, (3)

where S ′ = S + 0.5Pa′, with the shell correction S = BLD −
Bexp being the difference between the binding energy B
calculated with a Weizsäcker-type (liquid drop) formula [50]
and the experimental value, and Pa′ is the so-called deuteron

pairing defined as Pa′ = [2B(Z,N ) − B(Z + 1, N + 1) −
B(Z − 1, N − 1)]/2, B values as tabulated in [31]. Formulas
(2) and (3) can be used to predict level densities of nuclei for
which these are not known or cannot be measured, by using
only quantities from the mass tables.

One remarks in the inset of Fig. 1 a set of nuclei with
mass A ≈ 150 which significantly deviates from the average
trajectory of the data. The big graph of Fig. 1 presents in detail
the region with these nuclei. One observes that the isotopes of
Nd to Dy with N around 90 have larger level densities than
other nuclei from this mass region, their a values being about
18 MeV−1, compared to about 16.5 MeV−1 of the average
behavior. These are exactly the nuclei near/at the N = 90
critical point of the well-known transition from spherical to
axially deformed nuclei in this mass region. Therefore, another
signature of the first order SPT from this region is an increase
of the level density at the critical point. The examination
of the experimental level densities at the neutron resonance
energy brings further support to this conclusion. Figure 2 shows
the experimental values of the density of the s-wave neutron
resonances ρ0, as determined from the average level spacings
of these resonances [49]. The same set of nuclei, around the
critical point at N = 90, shows almost the largest ρ0 values
observed in the ≈300 nuclei, some of them comparable to
values observed only in some transactinide nuclei.

One should remark here that the set of about 300 nuclei
represented in both Figs. 1 and 2, for which experimental a
and ρ0 values are known, is rather restricted, as it comprises
only nuclei that can be obtained from stable targets plus one
neutron. The SPT region with the peak around the N = 90
critical point shows up so well because it contains, fortunately,
many such nuclei, thus allowing to see a meaningful correlation
between the SPT and the level density both at low excitation
energies and at the neutron resonance energy. However, many
key nuclei from this region, close to the critical point, cannot
appear in these plots (such as, e.g., 150Nd), and this is generally
the case for other nuclear regions where first order SPTs occur.

In order to see how this first order SPT occurs as a function
of the neutron number N (the control parameter) in the level
densities of all nuclei from the mass ≈150 region we rely on
formula (2) for the parameter a, which describes reasonably
well the set of the 300 experimentally investigated nuclei [47].
Figure 3 shows how a evolves as a function of N for all
types of nuclei with Z between 56 (Ba) and 70 (Yb). The
curves passing through small symbols are the values predicted
by Eq. (2). One can see that they describe reasonably well
the few existing experimental data from this region (the big
symbols, representing the values obtained by individual fits
to those nuclei [47]), which suggest themselves the existence
of maxima around N ≈ 90. For all four types of nuclei (with
both even and odd numbers of nucleons) the curves of the
isotopic chains between Z = 60 (Nd) and Z = 67 (Ho) present
a maximum for a (maximum level density) around the critical
value N = 90. For isotopes with larger Z this maximum
gradually shifts to larger N and diminishes, while for smaller
Z it does not exist. It is thus seen that the main correction in
Eq. (2) to the almost linear dependence onA, which is due to the
“shell correction” S, contains information not only on the shell
closure but on the occurrence of the shape phase transition as
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FIG. 2. Level density ρ0 of the s-wave neutron resonances for all nuclei from Fig. 1 (determined as the inverse of the mean resonance
spacings from the RIPL-3 database [49]). The inset shows in detail the nuclei in the region of the shape phase transition at N = 90.

well—which is not surprising, as it is determined by the nuclear
masses.

As Figs. 1 to 3 show, the nuclear level density at low
energies, represented by the main parameter a of its BSFG
model description is a good signature for the SPT at N = 90,
the nuclei near the critical point having the largest level
densities. This confirms the predictions of the IBM calculations
for the maximization of 0+ states density at the U(5) to

SU(3) transition point [45], and corroborates the experimental
findings for the numbers of 0+ states in nuclei from the same
region [44,46]. The meaning of this level density enhancement
at relatively low energies may be related to the special potential
well of the nuclei near the critical point [2,3]. It is expected
that in such nuclei the potential well is broadened (in the
deformation space) due to the nearly degenerated spherical
and deformed coexisting minima, with a small barrier between
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FIG. 3. Level density parameter a for nuclei in the region of the SPT at mass ≈150. Small symbols joined by curves are values calculated
with formula (2). Big symbols are experimental values determined by individual fits with formula (1) [47].
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them. As states can exist in either minimum, such a potential
well can accommodate more states, their large density and the
small barrier favoring the state mixing. Therefore, the enhance-
ment of the level density, clearly shown in the presented data for
the mass ≈150 region, is consistent with the phase coexistence,
another phenomenon expected for a first order SPT.

IV. COMPARISON BETWEEN THE N = 90 AND N = 60
SPT REGIONS

It is interesting to apply the present approach based on the
level density to other well established nuclear regions showing
a first order SPT. One of these, well known for its very rapid
transition, is the A ≈ 100 (Sr–Zr) region, with the critical point
at N = 60. Before looking at level densities, we first make a
comparative analysis of the A ≈ 150 and A ≈ 100 regions,
using general order parameters that can be applied to all types
of nuclei, that is, the quantities S2n and 〈r2〉 discussed in Sec. I.
Actually, we have used their differential variation (difference
between two successive isotopes) which acts as a “magnifying
glass” in highlighting the discontinuities associated with the
SPT.

Figure 4 displays the differential variation dS2n of the
two-neutron separation energy, and d〈r2〉 of the mean square
charge radius, respectively, for the nuclei in the region of
the STP at N = 90, separated for the four types of nuclei
according to their nucleon numbers. S2n can be examined
for both even-even nuclei and nuclei with odd numbers of
nucleons, as shown in some recent papers [18,22,23,25,27].
Its behavior in this mass region was considered in detail in
Refs. [18,22,23,25], by examining its deformation-dependent
part, as well as the odd-even effects. It was found that the
signal for the emerging SPT is enhanced by the extra-single
particle(s) in comparison with that from the adjacent even-even
nuclei, and that pairing plays the major role in driving the phase
transition. The enhancement of the signal for the SPT can
be also seen in graphs (a) to (d) of Fig. 4, the amplitude of
the kink at N ≈ 90 being larger for the odd nuclei than for the
even-even ones, with the largest effect in the odd-odd nuclei, in
agreement with the findings of Ref. [22]. A recent study of Sm
and Eu nuclei, with a core-quasiparticle coupling Hamiltonian
based on the energy dependence functionals, explained the
enhancement of the SPT in the odd-mass nuclei by a shape
polarization effect of the unpaired proton, which, before the
critical neutron number 90 couples to Sm cores, and starting
from N = 90 couples predominantly to Gd cores which have
larger quadrupole deformation and smaller pairing [21].

Graphs (e) to (h) in Fig. 4 show the differential variation of
the mean square charge radius for the same nuclei from the left
column of the figure, whenever these quantities are available
[34]. The aspect of these graphs in the region N ≈ 90 is similar
to that of the corresponding graphs from the left side, also
showing the enhancement of the signal in the nuclei with odd
number of protons. Actually, a similarity between the graphs of
various differential observables (these two and those of some
other spectroscopic observables available only for even-even
nuclei) as a function of N , was remarked in Ref. [51].

Figure 5 is the analog of Fig. 4, for the region with mass A ≈
100, with its fastest known shape phase transition at N = 60.
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FIG. 4. Differential variations of the two-neutron separa-
tion energy S2n (data from [31]) and of the mean square
charge radius 〈r2〉, or isotopic shifts (data from [34]), for iso-
topic chains in the A ≈ 150 region, around N = 90. The def-
initions used are dS2n(Z, A) = S2n(Z, A + 2) − S2n(Z, A) and
d〈r2(Z, A)〉 = 〈r2(Z,A)〉 − 〈r2(Z, A − 2)〉, respectively, and were
chosen such as to display a correct behavior at the magic number
N = 82.

It looks rather similar to Fig. 4, except for the smaller number
of isotope chains which show the SPT in graphs (a)–(d) of
dS2n. There is a clear signature in even-even nuclei [graph (a)]
only for Sr and Zr (also well known from other spectroscopic
observables). In the even-odd nuclei [graph (b)] the signature
for the first order SPT is enhanced for Sr and Zr and there is
also a weaker signature for the Mo isotopes. In the nuclei with
odd proton [graphs (c) and (d)] there is indication of SPT in
Rb, Y, and Nb nuclei, with an enhancement of the signature
in the odd-odd nuclei. Graphs (e) to (d) for the charge radii
show a strong SPT signature, unfortunately the only chains
with available data being Sr and Zr [graphs (e) and (f)], and
Rb and Y [graphs (g) and (h)].

Figures 4 and 5 show a rather close similarity between the
two regions, with clear signatures of first order SPT appearing
at N = 90 and N = 60, respectively. We examine now how
the SPT in the Sr–Zr region appears in the evolution of the
level density. Figure 6 is similar to Fig. 3, it displays the level
density parameter a for the isotopic chains from Kr to Rh.
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FIG. 5. Same as Fig. 4, for the A ≈ 100 region, around N = 60.

Unfortunately, there are no experimentally determined level
densities for the rather neutron-rich nuclei around the critical
point N = 60. There are only several nuclei with experimental
points (big filled symbols), all below N = 60, the trend of
their evolution with N being reasonably well reproduced by
Eq. (2). We rely therefore on formula (2) to examine how
the level density evolves in this region. It is likely that this
formula predicts with reasonable accuracy the level density
parameter a at least for the cases when experimental masses are
used (in Fig. 6 the points calculated from extrapolated masses,
from Ref. [31], are distinguished by open small symbols and
dashed curves). The shape phase transition (kinks in Fig. 5) is
indicated by a discontinuity in the evolution of a, shown by
the change of slope at N = 60, after which the values remain
almost constant (Fig. 6). This behavior is different from that of
the nuclei from the Sm region (Fig. 3). The lack of a maximum
of the level density at the critical point N = 60 in Fig. 6 may
indicate that in the Sr–Zr region there is no phase coexistence
at the critical point. This situation corroborates the results of
recent large scale Monte Carlo shell model calculations which
describe very well the characteristics of nuclei in this region,
namely, 96Zr [52] and the SPT at N = 60 [53]. In all nuclei
from this region, from 96Zr to 110Zr, these calculations predict
coexistence of various shapes: spherical, prolate, oblate, and
triaxial, the mechanism describing quantitatively the low-
energy structure of these nuclei being the type II shell evolution
[52–54]. The SPT in the Sr–Zr region is a rather special
one, the transition from nuclei with spherical ground state
to nuclei with axially deformed ground state being a rather
abrupt one, the two competing configurations crossing each
other without significant interaction between them. The same
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FIG. 6. Same as Fig. 3, for the A ≈ 100 region. Small empty symbols joined by dashed lines indicate values calculated with Eq. (2) from
extrapolated mass table values [31].
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situation appears in the similar transition from 96Sr and 98Sr,
where Coulomb excitation studies showed that the prolate (g.s.)
and spherical (excited) coexisting configurations of 98Sr have
a very weak mixing [55]. In the Sm region this transition is
comparatively more gradual, and takes place through a critical
point where the two phases coexist and mix with each other.
A discussion of the shape coexistence and phase coexistence
phenomena can be found in [1,56]. We conclude this section by
stating that the analysis of these two nuclear regions shows that
shape phase transition and phase mixing in nuclei can appear
in different forms and with different characteristics, as also
remarked in [37].

V. CRITICAL POINT NUCLEI

Besides the abrupt change in the order parameter (ground
state equilibrium deformation) and the phase coexistence
phenomenon, a third feature of the SPT in nuclei is the possible
experimental occurrence of critical point nuclei. Because the
number of nucleons is an integer, the nuclear properties change
discretely, and in principle it may happen that real nuclei do
not lie exactly at the critical point. The identification of nuclei
with critical point features in the even-even case has mainly
been based on comparison of spectroscopic observables with
the parameter-free predictions of the critical point symmetries
E(5) [9] and X(5) [10]. Thus, for the first order SPT a number
of nuclei with X(5) properties were proposed in the rare
earths region [57], in particular the N = 90 nuclei 150Nd [58],
152Sm [59], 154Gd [60], 156Dy [61], as well as other possible
candidates in heavier rare earths [62,63]. IBM calculations
also allowed localization of the critical phase transition points
(see, e.g., Ref. [57]). For the odd-mass nuclei, there are also
theoretical developments of critical point symmetries. Thus,
Iachello introduced the critical point Bose-Fermi symmetry
E(5/4) for the case of a j = 3/2 particle coupled to an E(5) core
[11], subsequently extended into the E(5/12) model [12,13]
by considering a multi-j case: coupling of a particle in j =
1/2, 3/2, 5/2 orbits. The X(5/(2j + 1)) model was proposed
for cases in which a particle in a j orbit is coupled to an X(5)
core [24]. As empirical studies of different order parameters
show (see also previous sections of this work), the first order
SPTs in odd-mass nuclei are strongly correlated to those taking
place in the adjacent even-even nuclei. The role of the unpaired
particle on the SPT was also studied within the interacting
boson-fermion model (IBFM) [64] calculations [14,15,17,18],
where the theoretical results are compared to experimental
evidence on the occurrence of phase transitions in Pm, Eu,
and Tb proton-odd nuclei. The IBFM study of a particle in the
j = 1/2, 3/2, and 5/2 orbitals [14] showed that the position
of the critical point in the odd nucleus is shifted with respect
to that in the even-even core, with a magnitude proportional to
1/N (N the number of active bosons). Newer developments
refer to a microscopic framework based on the nuclear energy
density functional theory. In Ref. [19], the energy density
functionals method and a fermion-boson coupling scheme
were used, and calculated spectroscopic observables indicate
sharp irregularities at mass 151 for the Eu isotopes, and at mass
153 for the odd Sm isotopes. This type of study was recently

refined, by using a core-quasiparticle-coupling Hamiltonian
based on energy density functionals [21].

Compared to the even-even case, approaches to describe
the structure of odd-mass nuclei in a global way are only
at their beginning. Besides studies highlighting the role of
the unpaired particle on the SPT (usually manifested in an
enhancement of the transition), there is also interest, at present,
in empirically finding critical point nuclei with odd N and/or
odd Z. Thus, in Ref. [23], it is proposed to identify critical
point odd-mass nuclei by looking for the phase coexistence
phenomenon, which should take place around the critical point
of a first order SPT. In that work the experimentally observed
low-lying structure in the odd Sm nuclei was examined. The
several known low-lying bands known in these nuclei show
that in 151Sm there are coexisting rotational and vibrational
bands (phases), whereas the structure of 153Sm is dominated by
rotational structures. Therefore, it was proposed that, because
151Sm shows more clearly shape coexistence features, it is
closer to the critical point [23].

For the odd-mass nuclei, a method based on correlations
between excitation energies has been rather useful to identify
critical point nuclei. This kind of analysis was first proposed
by Ref. [65], and represents an empirical way to circumvent
the integer nucleon number problem [66]. It consists in using
as a control parameter an empirical quantity, such as E(2+

1 )
in even-even nuclei, which, for many nuclei in a region,
presents a nearly continuous distribution. Other quantities
[like E(4+

1 ), S2n], represented as a function of E(2+
1 ), follow

simple, compact trajectories, for large regions of nuclei, with
distinct anomalies, characteristic of a phase transition, at
E(2+

1 ) values similar to that of 152Sm (≈150 keV) where
phase coexistence was suggested [65]. The same is true for
other differential observables [67]. A similar procedure was
subsequently proposed for odd-mass nuclei [27]. In order
to be able to cover large nuclear regions, the structures
(bands) determined by unique parity orbitals (UPO) were
considered because they practically do not mix with other
orbitals and thus lead to nearly identical effects for any
UPO. Excitation energies relative to that of the state of spin
j (the spin of the UPO) were defined within the favoured
quasiband E(j + 2), E(j + 4) with E(I ) = E∗(I ) − E∗(j ),
and also the ratio Rj+4/j+2 = E(j + 4)/E(j + 2), similar to
E(2+

1 ), E(4+
1 ), and R4/2 for the even-even nuclei. E(j + 4)

displays compact trajectories when represented as a function
of E(j + 2) (the effective control parameter), for the different
investigated UPOs [27]. In particular, for the nuclei of mass
≈150, where there are rich data for the νi13/2 UPO, this
correlation has a “turning point” for nuclei near N ≈ 90 at
a minimum energy Ec(j + 2) ≈ 200 keV, which is correlated
with the critical point of their even-even cores, with Ec(2+

1 ) ≈
150 keV [27]. In the odd-mass nuclei this kind of correlation
allows a rather direct identification of possible critical point
nuclei, based on their proximity to the critical (turning) point
Ec(j + 2). Figure 7 shows the correlation between Rj+4/j+2

and E(j + 2) of νi13/2 structures in the even-odd isotopes
from Sm to Os. Although less compact than the correlation
of E(j + 4) versus E(j + 2) (Fig. 6 of [27]), it allows a
better visualisation of each isotopic chain. In Fig. 7, for each
isotopic chain, with increasing mass, Rj+4/j+2 (and E(j + 4)
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FIG. 7. Correlation between the energy ratios Rj+4/j+2 = E(j +
4)/E(j + 2) and the relative energies E(j + 2) for the favoured band
of the νi13/2 structures in the odd-mass nuclei of the isotopic chains
from Sm to Os. The nuclei closest to the turning points of the curves
are explicitly indicated.

[27]) first increases as E(j + 2) decreases, this trend reversing
at the critical (turning) point at Ec(j + 2) ≈ 200 keV. One
should remark that the maximum of compression of the favored
band at the critical point corroborates well the maximum level
density at the same point discussed in Sec. II. Based on the
individual isotopic curves in Fig. 7, one can propose critical
point nuclei as those which are closest to the point where the
curve reverses its trend (turns back in energy). In some cases,
like 155Gd or 157Dy, the experimental point coincides rather
well with the turning point of an empirical continuous curve
drawn through the data points, therefore these nuclei are good
candidates for critical points. In other cases, the situation may
be different; for example, for the Sm isotopes, 153Sm has the
lowest E(j + 2) energy, but a continuous curve drawn through
the data points may suggest that the turning point occurs
somewhere in between 153Sm and 151Sm. Another feature of
the critical point nuclei may be the approximate degeneracy in
energy of the favoured and unfavored UPO bands [E(j + 1) ≈
E(j + 2), E(j + 3) ≈ E(j + 4),...] [27,28].

Figures 4 and 5 show a very clear SPT signature for the
odd-odd nuclei (Pm, Eu, and Tb in the mass-150 region, and Rb
and Y in the mass-100 region, respectively). The complicated
structure of these nuclei makes it difficult to follow observables
related to excitation energies. In the case of Tb (Z = 65)
one could, nevertheless, identify and follow the evolution of
the same structure, namely a band with the (πh11/2, νi13/2)
structure [68], for three nuclei around N = 89 where one can
see the strong SPT signature in Fig. 4. Figure 8(a) shows
a correlation between excitation energies within this band,
relative to the state of spin 12h̄ (which is the sum of the
spins of the two orbitals), similar to the case of UPO states
in the odd-mass nuclei. One can see that the evolution of the
three nuclei shows a “turning point” at 154Tb (N = 89), which
may be proposed as a candidate for critical point nucleus.
Figure 8(b) shows that this band is maximally compressed at
N = 89, similar to the odd-mass nuclei, and in agreement with
expectations based on the level density argument. One should
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FIG. 8. (a) Correlation between relative excitation energies of the
favoured sequence of the (πh11/2, νi13/2) structure in the odd-odd
Tb (Z = 65) isotopes around N = 89 (data from [68]). (b) The
(πh11/2, νi13/2) band in the three Tb isotopes from (a).

also remark that the same argument, of largest level density
at the critical point nuclei, seems to be confirmed also for
the N = 89 nucleus 150Pm (Fig. 4), for which a large density
of low-lying excited levels was observed through the (d, α)
reaction, unlike for other nuclei in the same mass region (cf.
Fig. 1 of [69]). As Figs. 4 and 5 show, further experimental
and theoretical studies of signatures of the first order SPT in
odd-odd nuclei in the mass regions ≈150 and ≈100, should
concentrate on the best candidates for critical point nuclei
150Pm, 152Eu, 154Tb and 96Rb, 98Y, 100Nb, respectively.

VI. CONCLUSIONS

In this work it has been shown that the nuclear level density
at low excitation energy constitutes a good indicator for the
first order shape phase transitions in nuclei. The level density
displays a maximum value at the critical point, and this was
tested in detail for the known SPT at N = 90. This maximum
value also discloses the phase coexistence phenomenon at
the critical point. It is gratifying that this novel indicator can
be studied for all kinds of nuclei, even-even, odd-mass, and
odd-odd.

A comparison has been presented between two well known
first order SPTs, those at N = 90 and N = 60, by using
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effective order parameters that are applicable to all types of
nuclei: the differential variation of the two-neutron separation
energy S2n, of the mean square radius 〈r2〉, and the level
density (as represented by the a parameter of its BSFG
description). While the first two such quantities are very similar
in the two nuclear regions, just indicating a rapid change of
properties, the one based on the level density appears as more
shaded, as it indicates some differences related to the way
the two SPTs take place: while the transition at N = 90 is
more gradual and indicates phase coexistence and mixing, the
one at N = 60 is consistent with a very rapid crossing of the
two phases, without coexistence and mixing between them.

Finally, we discuss the problem of assessing critical point
nuclei in the case of the odd-mass and odd-odd nuclei. For the
odd-mass nuclei, the method is based on the correlations be-
tween excitation energies, and their ratios, of the unique parity
orbital structures (bands) [27,28]. It is shown, by examining the
ratio Rj+4/j+2 = E(j + 4)/E(j + 2) versus E(j + 2) (with
j—the unique parity orbital spin), that candidates for the

critical point nuclei can be proposed by looking at their
proximity to the critical energy (Ec ≈ 200 keV in the case
of nuclei with νi13/2 bands from the N = 90 region), which
appears as a turning point in these graphs. The pattern of these
correlations can be used to tell whether the critical point is
very close to a certain real nucleus, or it falls between two
real nuclei. An example of such correlations is also given for
a restricted number of odd-odd nuclei from the same region.
Both the odd-mass and odd-odd nuclei display a maximum
compression of the band structures near the critical point of
a first order SPT, in agreement with the other criterion, of
maximum level density. Some candidates of critical odd-odd
nuclei are proposed on the basis of the employed empirical
investigations.
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