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New algorithm in the variation after projection calculations for non-yrast nuclear states
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We present a novel and simple algorithm in the variation after projection (VAP) approach for the non-yrast
nuclear states. It is the first time that the yrast state and non-yrast states can be varied on the same footing. The
orthogonality among the calculated states is automatically fulfilled by solving the Hill-Wheeler equation. This
avoids the complexity of the frequently used Gram-Schmidt orthogonalization, as adopted by the excited VAMPIR
method. Thanks to Cauchy’s interlacing theorem in matrix theory, the sum of the calculated lowest projected
energies with the same quantum numbers can be safely minimized. Once such minimization is converged, all the
calculated energies and corresponding states can be obtained, simultaneously. The present VAP calculations are
performed with time-odd Hartree-Fock Slater determinants. It is shown that the calculated VAP energies (both
yrast and non-yrast) are very close to the corresponding ones from the full shell model calculations. It appears the
present algorithm is not limited to the VAP, but should be universal, i.e., one can do the variation with different
forms of the many-body wave functions to calculate the excited states in different quantum many-body systems.
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For a given many-body quantum system, its spectrum
and the corresponding wave functions should be obtained by
solving Schrödinger’s equation. In nuclear structure studies,
this is done in the full shell model (SM) calculations with
a given Hamiltonian. However, due to the combinatorial
computational cost, full SM calculations up to now have been
restricted to rather small model spaces. To tackle the problem
of the eigensystems in even larger model spaces, it looks like
the only way is to compress the huge configuration space into a
relatively small one so that the code can be run on a present-day
computer. Unfortunately, the obtained energies and states are
approximated ones. To make such approximated solutions
as good as possible, various methods, such as shell model
truncation [1], stochastic quantum Monte Carlo approaches
[2,3], and the VAMPIR method [4] have been developed.

Recently, we implemented a variation after projection
(VAP) calculation [5]. Instead of using the Hartree-Fock-
Bogoliubov (HFB) vacuum state as adopted in the VAMPIR
approach, we take a time-odd Hartree-Fock (HF) Slater de-
terminant (SD). This means the particle number projection
can be omitted, and only the spin projection is required.
Although the VAP wave function is simply a spin projected
SD, our calculations show that it can still be very close to the
corresponding shell model wave function. This is because the
involved spin projection plays a key role in obtaining a good
shell model approximation [5,6]. However, that VAP can only
be applied to the yrast states. In the present work, we construct
a new and easy algorithm to extend our VAP calculations to the
non-yrast excited states and show that the calculated non-yrast
states are also very close to the exact shell model ones.
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We should mention that the EXCITED VAMPIR can be
used to calculate the excited states, too. In that method, one
should first vary the HFB vacuum state to find the energy
minimum for the yrast state. Then one varies the second
HFB vacuum for the first excited state, but the Gram-Schmidt
orthogonalization must be applied at each iteration to ensure
the orthogonality between the first excited state and the yrast
one. Similarly, the HFB vacua are added and varied one
by one for the higher excited states, and the Gram-Schmidt
orthogonalization should be treated throughout all the VAM-
PIR iterations. To incorporate the important correlations, the
more general EXCITED FED VAMPIRE (EFV) [4,7] uses
several instead of only one symmetry-projected HFB vacuum
for the description of each state. Those symmetry-projected
HFB vacua for the same nuclear state are still added and
varied successively. All the VAMPIR calculations then are
ended with a final diagonalization of the given Hamiltonian
in the space spanned by all the obtained projected HFB
vacua.

The present VAP looks similar to the EFV in the sense that
both of them take the projected basis. But here, we developed
a quite different strategy in optimizing the low-lying nuclear
states. The projected SDs are varied simultaneously and all the
calculated states with the same spin (and parity if necessary)
can be obtained on the same footing. The orthogonality among
the calculated states is automatically fulfilled by solving the
Hill-Wheeler equation. Thus, we do not need the Gram-
Schmidt orthogonalization here.

To address the present algorithm, let us first introduce
Cauchy’s interlacing theorem relating to the eigenvalues of
Hermitian matrices (Theorem 4.3.17 in [8]). Let An and Bm

be Hermitian matrices of orders n and m, respectively. The
eigenvalues of An are denoted by μ1 � μ2 � · · · � μn. Those
of Bm are λ1 � λ2 � · · · � λm. if Bn−1 is of order m = n − 1
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and An is

An =
(

Bn−1 �y
�y† a

)
, (1)

where a is a real number and �y is a complex vector of order
n − 1. Then Cauchy’s interlacing theorem tells us that

μ1 � λ1 � · · · � μj � λj � μj+1 � · · · � λn−1 � μn. (2)

One can immediately have the following conclusion by re-
peated application of the above inequalities. For any principle
submatrix Bm of An, we have (Theorem 4.3.28.in [8])

μj � λj � μj+n−m (1 � j � m). (3)

Since a unitary transformation does not change the eigenval-
ues of a given Hermitian matrix, the above conclusion can be
naturally generalized to the following Poincaré separation the-
orem. Supposing that �u1, �u2, . . . , �um are orthonormal complex
vectors in the n-dimensional space where An is defined, the
matrix elements (Bm)ij = �u†

i (An)�uj form a Hermitian matrix
Bm, and one can have the same inequalities (3) from the
Poincaré separation theorem (see Theorem 4.3.37 in [8])

However, if �u1, �u2, . . . , �um are not orthonormal but inde-
pendent (if not, we remove the redundant ones), for instance,
the projected states used here, one may solve the following
generalized eigenvalue equation of order m,

m∑
j=1

[(Bm)ij − λk (Nm)ij ]f k
j = 0, (4)

where (Bm)ij = �u†
i (An)�uj and (Nm)ij = �u†

i �uj . To solve
Eq. (4), the first step is the diagonalization of Nm and one
has

m∑
j=1

(Nm)ijR
k
j = nkR

k
i , (5)

where nk > 0 and Rk with k = 1, 2, . . . , m are eigenvalues
and the corresponding eigenvectors, respectively. Then one can
establish a new set of orthonormal vectors �v1, �v2, . . . , �vm in the
space spanned by �u1, �u2, . . . , �um

�vk =
m∑

i=1

Rk
i �ui√
nk

. (6)

It is easy to prove that the eigenvalues λk in Eq. (4) are identical
to those of the Hermitian matrixCm with the elements (Cm)ij =
v
†
i (An)vj . According to the Poincaré separation theorem, we

still have inequalities (3).
In the practical shell model calculations, the Lanczos algo-

rithm is adopted. The Lanczos matrix is enlarged by increasing
the number of iterations. With Cauchy’s interlacing theorem,
one can easily understand why all the calculated energies
decrease monotonically until they converge to the full shell
model energies.

Let us denote the full shell model energies for a given
nuclear Hamiltonian by e1 � e2 · · · . Suppose that we are only
interested in the lowest m nuclear states. In all approximated
shell model methods, efforts have been made to try to find a
proper configuration subspace, so that the calculated lowest m

states are as close to the exact shell model ones as possible.
Denoting the lowest m approximated energies in a configura-
tion subspace by E1 � E2 � · · · � Em, then it is always true
that

Ej � ej (1 � j � m), (7)

according to Cauchy’s interlacing theorem or the Poincaré
separation theorem.

Therefore, one can define the non-negative energy differ-
ences δEj = Ej − ej and the total energy difference

�E =
m∑

j=1

δEj =
m∑

j=1

Ej −
m∑

j=1

ej . (8)

It is obvious that if �E = 0, then δEj = 0 for all calculated
states and we have the exact shell model results. However, in
the approximated methods, �E > 0, and one may expect that
it should be as small as possible by adjusting the configuration
subspace, in which the Hamiltonian is diagonalized. If �E
reaches a minimum, then all the corresponding m lowest
energies are determined, and their approximation can be tested
by comparing them with the shell model results.

Since ej energies in Eq. (8) are fixed for a given Hamil-
tonian, instead of minimizing the �E, one can equivalently
minimize the sum of the m lowest Ej energies, Sm ≡ ∑m

j=1 Ej .
This makes the calculations more practical in the case of
large model space, in which ej energies are impossible to be
obtained.

Generally, it is unnecessary to restrict the form of the
approximated nuclear wave functions. One may take the HF
SDs, or HFB vacua with particle number projection, or their
spin projected states, to form the configuration subspace. As
a testing example of the present algorithm, here we take n
different HF SDs differed by k, |�k〉, in the model space that
the Hamiltonian is defined, and project them onto good spin.
These projected states then form a configuration subspace. The
form of the nuclear states with good spin J in that subspace
can be written as

|�JM〉 =
n∑

k=1

J∑
K=−J

fKkP
J
MK|�k〉, (9)

where P J
MK is the spin (or angular momentum) projection oper-

ator, and n is the number of adopted |�k〉 Slater determinants.
|�k〉 can be established through the Thouless formula [5,9],

|�k〉 = Nke
1
2

∑
μν dk

μνβ
k†
0,μβ

k†
0,ν

∣∣�k
0

〉
, (10)

where Nk is the normalization parameter, and β
k†
0,μ is the

quasiparticle creation operator for the |�k
0〉 vacuum. The initial

|�k
0〉 SDs can be obtained in the same way as in Ref. [5],

and they are assumed to be different from each other. Once
|�k

0〉 SDs are randomly chosen, they no longer change. Thus
|�k〉 can be conveniently varied only by changing the dk

μν

parameters. Like Ref. [5], we also assume the matrix elements,
dk

μν , to be complex numbers, i.e.,

dk
μν = xk

μν + iyk
μν, (11)
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where xk
μν and yk

μν are real numbers. For simplicity, we use
�d to denote the vector of all the independent xk

μν and yk
μν

parameters. With a given �d , all the |�k〉 SDs are determined
and one can establish the Hill-Wheeler equation∑

Kk

(HK ′k′,Kk − ENK ′k′,Kk )fKk = 0 (12)

and the normalization condition∑
K ′k′,Kk

f ∗
K ′k′fKkNK ′k′,Kk = 1, (13)

where

HK ′k′,Kk = 〈�k′ |ĤP J
K ′K |�k〉, (14)

NK ′k′,Kk = 〈�k′ |P J
K ′K |�k〉. (15)

Solving Eq. (12), one can get a set of energies E1 � E2 � · · ·
and the corresponding states |�1

JM〉, |�2
JM〉, . . . . Clearly, those

energies are the functions of �d. Thus the sum of the lowest
m energies, Sm, is also determined by �d, and we can write
Sm = Sm( �d ).

Therefore, one can minimize Sm by changing �d . For sim-
plicity, we still call such energy minimization as variation
after projection (VAP). To make the minimization efficient,
the gradient of Sm( �d ) should be calculated,

∇Sm( �d ) =
m∑

j=1

∇Ej ( �d ), (16)

where the components of ∇Ej are actually ∂Ej

∂xk
μν

and ∂Ej

∂yk
μν

, whose

expressions can be easily deduced based on the formulas in
Refs. [5,10].

Once the quantities of Sm( �d ) and its gradient ∇Sm( �d ) are
available, one might perform the minimization of Sm( �d ) using
the quasi-Newton method. This may work if the Hessian at the
minimum is positive definite. Unfortunately, we have learned
that the Hessian of the projected energy at the the minimum
is actually semi-positive definite [5]. This might be the reason
that the traditional quasi-Newton method does not work well in
our VAP calculations. To make the VAP calculation converge
more reliably, we calculated the exact Hessian matrix, denoted
by H[Sm( �d )]. Similar to Eq. (16), we also have

H[Sm( �d )] =
m∑

j=1

H[Ej ( �d )], (17)

where the matrix elements of H[Ej ( �d )] are ∂2Ej

∂xk
μν∂xk′

μ′ν′
, ∂2Ej

∂xk
μν∂y

k′
μ′ν′

,

and ∂2Ej

∂yk
μν∂y

k′
μ′ν′

. The expressions for such second derivatives can

also be derived without much difficulty based on the deductions
in Refs. [5,10].

To check the correctness of the above calculated quantities,
one can use the following equations by definition:

lim
δ �d→0

Sm( �d + δ �d ) − Sm( �d )

|δ �d| = ∇Sm( �d ) · �e, (18)

lim
δ �d→0

∇Sm( �d + δ �d ) − ∇Sm( �d )

|δ �d| · �e = �et · H[Sm( �d )] · �e, (19)

FIG. 1. Calculated two lowest VAP energies with two Slater
determinants, EVAP, and the corresponding shell model energies, ESM,
as functions of spin J for (a) 24Mg, (b) 25Mg, (c) 26Al, and (d) 26Mg.
The USDB interaction is adopted.

where �e = δ �d
|δ �d| , which shows the direction of δ �d . In the present

numerical calculations, the calculated Sm, its gradient, and
Hessian matrix indeed fulfill the above equations at arbitrary
point �d and �e. With a small |δ �d| = 10−4, the calculated
differences between both sides of Eqs. (18) and (19) are usually
less than 10−6.

Once the above quantities are available, we start from
�d = 0 and take the exact trust region method [11] to search
for the minimum of Sm( �d ). At the minimum, the gradient
∇Sm( �d ) should be zero. Here, the VAP iteration terminates
if |∇Sm( �d )| � 0.01 keV. This is a very strict condition so that
the obtained minimum is precise.

To test the validity of the present algorithm, we performed
the VAP calculations in the sd shell and take the USDB
interaction [12]. The simplest calculation for the non-yrast
states is the one with n = 2 and m = 2; i.e., at a given spin,
we take two SDs to calculate the lowest two nuclear states,
simultaneously. The calculated nuclei are 24Mg, 25Mg, 26Mg,
and 26Al, whose calculated energies are shown in Fig. 1. It
looks like all the calculated VAP energies are very close to
the shell model ones calculated with the NUSHELLX code [13].
To show the differences between the VAP and the shell model
more clearly, we calculated the δEj (j = 1, 2) from Fig. 1, and
show them in Fig. 2. One can see that all the δEj are indeed
non-negative, as predicted by Cauchy’s interlacing theorem.
It is interesting to see that the energy differences of the yrare
states, δE2, are roughly close to the yrast ones, δE1, after the
minimization of Sm=2.

The δEi values are expected to be as small as possible so that
one can obtain satisfactory shell model approximations. This
can be realized by adding more SDs to the VAP wave functions.
As a testing example, we only calculated the yrast states (i.e.,
m = 1) with the cases n = 1, 2, and 3. The calculated δE1
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FIG. 2. Energy differences between the shell model energies,
ESM, and the present VAP energies, EVAP, in Fig. 1.

energy differences are shown in Fig. 3. The case with n = 1
is exactly the Fig. 2 in Ref. [5]. For the n = 2 case, all the
δE1 values (except for the ones at the two highest spins) are
smaller than the corresponding ones with n = 1. Notice that
for the two highest spin states, we have δE1 = 0 in all cases
due to the unphysical tiny configuration space. With more SDs
added in, the VAP results become closer to the shell model
ones. One can see that, again, the δE1 with n = 3 becomes
even smaller.

However, in the practical application, it may not be enough
that only two lowest states are calculated. Here, to show the
validity of the present algorithm, we calculated the lowest 10

FIG. 3. Energy differences δE1 with m = 1 and n = 1, 2, and 3,
as functions of the spin J .

FIG. 4. Calculated 10 lowest J π = 0+ VAP energies with 10 SDs
for the even-even sd shell nuclei and the corresponding shell model
energies. The shell model ground states are set to zero.

states (m = 10) with 10 SDs (n = 10) for the J = 0 states in
even-even sd shell nuclei. The results are shown in Fig. 4.
Like Fig. 1, the VAP energies are also very close to the
corresponding SM ones. Again, all the δEi are non-negative.
Especially for the 20Ne, 28Ne, and 36Ar nuclei, we have
δEi = 0 for all the calculated states. This means we got the
exact shell model results for these three nuclei and confirms
the correctness of the present calculations. Most δEi values
are in the range from 0 to 300 keV. Some of them are a little
larger but the largest one is still within 600 keV. Of course,
such approximation can be further improved by increasing the
number n of the included SDs.

It may be interesting to compare the present algorithm
with the one taken by the VAMPIR. Let us first calculate a
simplest case of m = 1 and n = 2 for the ground 0+ state in
24Mg. The USDB interaction is still adopted and the exact
ground state energy in 24Mg is −87.104 MeV. We vary these
two SDs simultaneously in the present VAP and obtain the
lowest minimum −87.039 MeV. Now let us follow the method
of FED VAMPIR [4]. Varying the first SD, one can get the
energy minimum of −86.936 MeV. Then a second SD is
added to improve the approximation. Fixing the obtained first
SD and varying the second one, this makes the ground state
energy lower to −87.008 MeV which still lies above our
−87.039 MeV. This clearly shows the SDs obtained by the
FED VAMPIR algorithm are not fully optimized. As can be
seen, if one fixes the second SD and comes back to vary the
first SD again, then the ground state energy drops further from
−87.008 MeV to −87.015 MeV.

Another comparison is the case of m = 2 and n = 2 for
the ground 0+ state and the first excited 0+ state in 24Mg.
Our algorithm gives the lowest S2 to be −166.474 MeV which
corresponds to the lowest two 0+ energies E1 = −86.944 MeV
and E2 = −79.530 MeV. While the exact SM results are
e1 = −87.104 MeV and e2 = −79.766 MeV. If we follow the
algorithm in the EXCITED VAMPIR [4], then the ground state
energy obtained by varying the first SD is E1 = −86.936 MeV
as mentioned in the last paragraph. For the minimization of
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E2, the first SD will be fixed and the second SD will be varied
under the Gram-Schmidt orthogonalization. This is essentially
equivalent to the minimization of S2 = E1 + E2 because E1 is
fixed. After the minimization of E2, the VAMPIR performs the
final diagonalization in the space spanned by the two optimized
projected SD states and the final lowest two energies can be
obtained. In the present case of Jπ = 0+, such diagonalization
does not change S2. Therefore, it is clear that the whole
procedure of the EXCITED VAMPIR is exactly equivalent to
the minimization of S2 in our VAP but with the first SD fixed.
In this way, the obtained S2 = 166.341 MeV, corresponding to
E1 = −86.940 MeV and E2 = −79.400 MeV. Both energies
are above the present VAP results, especially E2, which is
130 keV above our −79.530 MeV. This again shows that the
projected states in the VAMPIR method are not fully optimized.

Let us study the Hessian matrix by calculating its eigen-
values. In Fig. 5, we show the eigenvalues of the Hessian
matrix corresponding to the VAP calculations of 24Mg in Fig. 4.
Clearly, the Hessian matrix is indefinite at the starting point.
But after convergence, it becomes semipositive definite. This
is very similar to the case of m = 1 and n = 1 as discussed in
Ref. [5].

Due to the simplicity of the present algorithm, all the
above VAP calculations are performed with a common code,
except for taking different m, n (n � m), and spin J as input
parameters. We hope the present VAP will be an alternative
way of extending the shell model calculations in larger model
spaces. Calculations for heavier nuclei will be performed after
our VAP code is parallelized.

Equation (7) is essentially a mathematical conclusion. The
present method of the Sm minimization may be universal and
applicable to other quantum many-body systems; for instance,
the excited electronic states in a chemical system [14]. One
may also change the form of the approximated wave function

FIG. 5. Eigenvalues of the Hessian matrix corresponding to the
VAP calculation of 24Mg in Fig. 4. The black rectangles show the
ones at �d = 0. The red dots show the ones after Sm=10 converges to
a minimum. The number of total VAP parameters for 24Mg is 1280.
Each SD takes 128 VAP parameters, see Ref. [5].

in a convenient way. For example, if one simply takes the
superposition of the deformed SDs without spin projection,
then the minimization of Sm should be a natural extension of the
Hartree-Fock method for the excited states. Such calculation
can be implemented by simply removing the spin projection
from the present VAP code.
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