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Recently, a new � method for the calculation of asymptotic normalization coefficients (ANC) from phase-shift
data has been formulated, proved, and used for bound states. This method differs from the conventional one
by fitting only the nuclear part of the effective-range function which includes a partial phase shift. It should be
applied to large-charge nuclei when the conventional effective-range expansion or the Padé approximations using
the effective-range function Kl (k2) fitting do not work. A typical example is the nucleus vertex α + 12C ←→ 16O.
Here we apply the � method, which totally excludes the effective-range function, to isolated resonance states. In
fact, we return to the initial renormalized scattering amplitude with a denominator which defines the well-known
pole condition. Concrete calculations are made for the resonances observed in the 3He-4He, α-α, and α-12C
collisions. We use the experimental phase-shift and resonant energy data including their uncertainties and find
the ANC variations for the states considered. The corresponding results are in a good agreement with those for
the S-matrix pole method which uses the differing formalism. The simple formula for narrow resonances given
in the literature is used to check the deduced results. The related ANC function clearly depends on the resonance
energy (E0) and width (�), which is used to find the ANC uncertainty (�ANC) through the energy (�E0) and
the width (��) uncertainties.
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I. INTRODUCTION

It is known that many reactions in supernovae explosions
proceed through subthreshold bound states and low-energy
resonance states. To calculate the rate of such reactions, one
needs to find the asymptotic normalization coefficient (ANC)
of the radial wave function for bound and resonance states,
which can be used to calculate radiative capture cross sections
at low energies. The radiative capture process is one of the
main sources of new element creation.

In our recent paper [1], we validate a new algorithm for
the bound states ANC calculation when the input data include
a phase-shift energy dependence at low-energy region and
bound-state pole position. The related form of the renormalized
scattering amplitude is proposed (without proof) in Ref. [2]
(see also Ref. [3]). We call this algorithm the � method. This
new method allows us to avoid the problems arising when the
charges of colliding particles increase. In Ref. [1], we note that
the effective-range expansion (ERE) and Padé approximations
for finding the ANC are especially limited by the values of
the colliding particle charges. These approaches do not work
for large charges when the nuclear term of the effective-range
function (ERF) is too small compared with the Coulomb term.
The α12C is just a proper example of such a situation. This
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problem is revealed in our work [4] where we see that the ERF
for α12C have a similar behavior in the different 16O states
because the Coulomb term in the ERF does not depend on
nuclear state.

In the present paper, we apply the � method to resonance
states. The first attempt to use the ERF approach for resonances
is made in Ref. [5]. In Ref. [6] the problem of calculating
resonance pole properties is solved using the S-matrix pole
approach in the frame of a potential model.

In the S-matrix pole method (SMP) (see Ref. [7]), an
analytical continuation to the resonance pole is accomplished
for the so-called potential (or no resonant) phase shift in the
complex k plane. Having found the ANC, we now know the
asymptotic part of the Gamow wave function. This allows us
to normalize it correctly if we choose a nuclear potential of the
interaction between the two nuclei considered. In Refs. [6,7]
there is a more detailed discussion about the Gamow states and
its normalization.

The ANC method has been explored as an indirect experi-
mental method for determining the cross sections of peripheral
reactions at low energy [8]. There are several methods of
deriving the bound state ANCs from experimental data (see
Refs. [9,10] and references therein). Recently, the ERE method
has been developed to find the ANC for bound states from
the elastic-scattering phase-shift δl analysis (see Refs. [11,12]
and references therein). A renormalized scattering amplitude,
taking into account the Coulomb interaction, is derived in
Ref. [13] to enable an analytic continuation of this amplitude
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to negative energies. It is shown in Ref. [13] that the ERF is
a real analytic function with the possible exception of single
poles. This means that the ERF can be presented by the ERE
or Padé approximations, whose coefficients can be found by
fitting the experimental phase shifts. The same is valid for the
� method as long as the �l function is included in one of the
two terms defining the ERF.

An important step in calculating a bound state ANC using
the ERF was first taken by Iwinski et al. [14], who discuss a
radiative capture process 3He(4He, γ )7Be and calculate ANCs
for the bound P states with total angular momentum J and
parity π (Jπ = 3/2− and 1/2−) of the 7Be nucleus applying
the Padé approximant. In the past, the results of the scattering
phase-shift analyses were often presented in the form of the
ERF. Consequently, from 1984 onwards, the ERF has been
used to deduce the ANC. It is much simpler to use the few
ERF parameters instead of the δl tables. A first example is the
nucleon-nucleon scattering when the expansion coefficients
are considered as independent characteristics of the NN inter-
action. The scattering lengthal , effective range rl , and the shape
parameter Pl for the orbital momentum l were introduced,
although ERE should be convergent and, consequently, may
include an unlimited number of terms. The denomination of the
coefficients in the polynomial Kl (k2) = −1/al + (rl/2)k2 −
Plr

3
l k4 is due to the fact that one can truncate the series in the

low-energy region. Another approximation for Kl (k2) with a
limited number of fitting parameters is the Padé approximant
when the ERF has poles.

In fact, it is necessary to fit only the nuclear part. Excluding
the ERF leads to the original renormalized scattering amplitude
form which does not include the Coulomb part of the ERF.
Simple algebra gives an inverse transformation from the
amplitude including the ERF to this original form. When
charges are large enough, the original renormalized scattering
amplitude form should be used to deduce resonance properties,
including ANC, from the experimental phase shifts. This can
be used for smaller charges as well.

Below we apply the�method to the concrete systems 3Heα,
αα, and α12C. Processes such as the scattering of α particles,
triple-α reaction, and radiative α capture play a major role
in stellar nucleosynthesis. In particular, α capture on carbon
determines the ratio of carbon to oxygen during helium burning
and affects the subsequent carbon, neon, oxygen, and silicon
burning stages. The authors of a recent paper [15] describe an
ab initio calculation of α-α scattering that uses lattice Monte
Carlo simulations to a two-cluster system.

The article is organized as follows. In Sec. II we present the
main formulas of the � method for resonances and show that
the original renormalized scattering amplitude should be used,
which can be analytically continued to a resonant pole. It is
important that this amplitude does not include the ERF and its
Coulomb part. The ratio of Coulomb to nuclear parts increases
quickly with the growth of the product of the colliding nuclei
charges. In our paper [1], one can see from Eqs. (9) and (12)
that the nuclear term includes exp(2πη) in the denominator.
That is why the relatively small variation of η (or charges
product) leads to a strong reduction of the nuclear component
compared with the Coulomb term in square brackets in Eq. (9)
in Ref. [1]. It is notable that η = 1/(aBk) is the only argument

of the functions responsible for the Coulomb effects. Here aB

is the Bohr radius. η has a scaling property: a decrease of aB

is equivalent to the same decrease of the relative momentum k
of the colliding nuclei and the corresponding decrease of the
energy when the role of the Coulomb barrier increases. As a
result, the nuclear part, including the phase shift, is a small
addition to the Coulomb part h(η) which can be ignored with
reasonable precision. The ratio of the Coulomb to nuclear parts
is about 103 for the α-12C system due to a relatively large value
of the Sommerfeld parameter η. As a result, the corresponding
phase shift is unreproducible from the experimental ERF fit
which leads to an incorrectly calculated ANC. By definition,
the �l-function fit reproduces the input phase shift. That is
why we named the corresponding algorithm the � method. So
the final equation for the renormalized scattering amplitude
can be applied to calculate the nuclear vertex constant (NVC)
or G̃l , the residue Wl , and the ANC (Cl). The relationships
between these observables are well known in the literature. The
simple analytic ANC formula for narrow resonances is written,
borrowed from Ref. [16]. This simple formula clearly depends
on the resonance energy and width. The ANC uncertainty
equation is due to the uncertainties in the E0 and � and is
derived from this ANC expression.

In Sec. III we present the main SMP-method equations
which describe a different formalism compared with the �

method. The only common elements in both approaches are
the one-channel approximation and model which does not
take into account the internal structure of colliding nuclei. The
SMP-method results are published in Ref. [7] for the resonance
states of 5He, 5Li, and 16O.

In Sec. IV the results are given for the �-method cal-
culations for the resonance levels of 7Be, 8Be, and 16O.
Tables I–III for the three nuclear systems studied here include
the experimental and calculated resonant energies E0 and the
widths � for the different methods. The resulting ANCs are
compared with those calculated by the SMP method and with
those using the simple formula for narrow resonances. These
tables show a good agreement between the results obtained
by both of these methods. The results for narrow resonances
serve to check our �-method calculation results. We give
the absolute values |Cl| because the Schrödinger equation is
uniform, so the phase multiplier can be omitted.

The effects in the calculated ANCs of the experimen-
tal uncertainties in the phase shift and resonant energy are
investigated. The conclusions following from the analysis of
the results of all the tables are formulated. We stress the stability
of the different results found for the 8Be ground state, which
plays a special role in astrophysics.

In Sec. V we summarize the main points of the present
paper. In the following we use the unit system h̄ = c = 1.

II. � METHOD FOR RESONANT STATES WITHOUT
USING THE EFFECTIVE-RANGE FUNCTION

The partial amplitude of the nuclear scattering in the
presence of the Coulomb interaction is

fl (k) = exp(2iσl )[exp(2iδl ) − 1]/2ik, (1)
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where

exp(2iσl ) = �(l + 1 + iη)/�(l + 1 − iη). (2)

Here δl is the nuclear phase shift modified by the Coulomb
interaction, and η = ξ/k is the Sommerfeld parameter; ξ =
Z1Z2μα; k = √

2μE is the relative momentum; μ and E are
the reduced mass and the center-of-mass energy of the colliding
nuclei with the charge numbers Z1 and Z2, respectively; and
α is the fine-structure constant.

The amplitude (1) has a complicated analytical property
in the complex momentum plane due to the Coulomb factor.
According to Ref. [13], we renormalize the partial amplitude
of the elastic-scattering multiplying it by the function [the
Coulomb correcting or renormalizing factor CFl (k)]

CFl (k) = (l!)2eπη

[�(l + 1 + iη)]2
. (3)

The general pole condition cot δl − i = 0 follows from
the expression for the renormalized amplitude of the elastic
scattering (see, for example, Ref. [1])

f̃l (k) = 1

k(cot δl − i)ρl (k)
, (4)

where the function ρl is defined by the equation

ρl (k) = 2πη

e2πη − 1

l∏
n=1

(
1 + η2

n2

)
. (5)

Writing the expression cot δl in a nonphysical energy region
in Eq. (4) and elsewhere, we mean its analytical continuation,
since the phase shift is defined only in the positive energy
region. The renormalized scattering amplitude of the conven-
tional method is written as

f̃l (k) = k2l

Kl (k2) − 2ξDl (k2)h(η)
(6)

(see, for example, Ref. [11] and definitions below), where the
effective-range function Kl (k2) borrowed from Ref. [17] has
the form:

Kl (k
2) = 2ξDl (k

2)
[
C2

0 (η)(cot δl − i) + h(η)
]
, (7)

h(η) ≡ �(iη) + (2iη)−1 − ln(iη), (8)

where �(iη) is the digamma function.
It is easy to derive (4), substituting (7) into the denominator

of (6). Using simple algebra we obtain the expression

f̃l (k) = k2l

2ξDl (k2)C2
0 (η)(cot δl − i)

, (9)

where the function h(η) (8) is absent. In Eqs. (6)–(9) we use
the following notations:

C2
0 (η) = π

exp(2πη) − 1
, (10)

Dl (k
2) =

l∏
n=1

(
k2 + ξ 2

n2

)
, D0(k2) = 1. (11)

We define the �l (k2) function as in Ref. [1]

�l (k
2) = C2

0 (η) cot δl (12)

in the positive energy semiaxis. Using (12) we can recast (9)
as

f̃l (k) = k2l

2ξDl (k2)
[
�l (k2) − iC2

0 (η)
] . (13)

We note that C2
0 (η) → k/2ξ and Dl (k2) → k2l if η =

ξ/k → 0. Therefore f̃l (k) → 1/k(cotδl − i) and Kl (k2) →
k2l+1cotδl, as it should be when there is no Coulomb interac-
tion. The factor C2

0 (η) secures a regularity of the �l function
at point E = 0. The physical meaning of the function C2

0 (η)
is its role as the compensating factor, excluding the essential
phase-shift singularity in the function δl . Moreover, this is
a multiplier in the Coulomb penetration factor squared [see
Eq. (5)]. Separating this factor from the total partial amplitude
leads to the renormalized amplitude (or “effective amplitude”
as it is called in Ref. [13]). This has analytic properties similar
to amplitude properties for a short-range potential.

It is easy to show that the expression (13) is equivalent to
the original formula (4), although this is obvious because (13)
is derived from (4) and from the expression (7) for Kl (k2). To
prove this, we express the function kρ(k) in terms of C2

0 (η)
and Dl (k2) as

kρ(k) = 2ξC2
0 (η)Dl (k

2)/k2l

and include it in Eq. (4). The function C2
0 (η), having the

analytical form (10), does not need fitting. This function clearly
depends on the momentum k through η(k) which leads to the
square root cut of the renormalized amplitude in the E plane.

The results of the �l (k2) fitting using the experimental
phase shifts can be applied to resonances, taking into account
that the resonance energy position is defined by the condition

�l (k
2) − iC2

0 (η) = 0. (14)

Next we write down the expression for the residue of the
f̃l (k) at the resonance pole. This residue of the renormalized
amplitude can be written as

Wl

(
k2
r

) = (kr )2l

2ξDl

(
k2
r

)
limk→kr

{
d
dk

[
�l (k2) − iC2

0 (η)
]} . (15)

Here Er = E0 − i�/2, kr = √
2μEr, kr = k0 − iki .

According to the known relations between the NVC (G̃l),
ANC (Cl), and the residue Wl we can write

G̃2
l = −2πkr

μ2
Wl, (16)

Cl = i−lμ√
π

�(l + 1 + iηr )

l!
e− πηr

2 G̃l, (17)

where ηr = ξ/kr . A simple relation for the ANC derived in
Ref. [16] for narrow resonances, which we call the Dolinsky-
Mukhamedzhanov (DM) method,

∣∣Ca
l

∣∣ =
√

μ�

k0
, (18)

is used to check our calculations.
The uncertainty of the absolute value of the ANC which

follows from Eq. (18) is obtained by deducing a differential of
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the right-hand side of Eq. (18) which is the function of the two
arguments E0 and �:

�Cl = ∣∣Ca
l

∣∣(��

2�
+ �E0

4E0

)
, (19)

where we put the increment signs instead of the differentials,
which should not be confused with the already-used signs for
the � method and the �l (k) function. One can see from the
last equation that the uncertainty in the width (��) contributes
twice as much compared to that (�E0) in the resonance energy
into the relative ANC uncertainty �Cl/|Ca

l |.

III. THE ANC FROM THE ELASTIC-SCATTERING
AMPLITUDE BASED ON THE ANALYTIC PROPERTIES

OF THE S MATRIX (SMP METHOD)

Near an isolated resonance the partial S-matrix element can
be represented as in Ref. [18]

Sl (k) = e2iνl (k) (k + kr )(k − k∗
r )

(k − kr )(k + k∗
r )

, (20)

where kr = k0 − iki is the complex wave number of a res-
onance [k0 > ki > 0, and the symbol (*) means the complex
conjugate operation]. Here k0 > ki because we do not consider
subthreshold resonances. Energy E0 of this resonance and its
width � are

E0 = k2
0 − k2

i

2μ
, � = 2k0ki

μ
. (21)

The partial scattering nonresonant phase shift νl (k) is a smooth
function near the pole of the S-matrix element, corresponding
to the resonance. The S-matrix element defined by Eq. (20)
fulfills the conditions of analyticity, unitarity, and symmetry.
It is possible to recast Eq. (20) in the form

Sl (k) = e2i(νl+δr+δa ), (22)

where

δr = − arctan
ki

k − k0

represents the resonance phase shift, while

δa = − arctan
ki

k + k0

is the additional phase shift which contributes to the whole
scattering phase shift. Thus the total phase shift is

δl = νl + δr + δa. (23)

After simplification and replacing exp(2iδl) by Sl (k), we
get

f̃l (k) = Sl (k) − 1

2ikρl (k)
, (24)

This renormalized amplitude f̃l (k) can be analytically
continued like the partial scattering amplitude, corresponding
to the short-range interaction and has its pole at the point kr

according to Eq. (20). In the vicinity of pole kr , the partial

scattering amplitude (24) can be represented as

f̃l (k) = Wl

k − kr

+ f̃l,nonres(k), (25)

where the function f̃l,nonres(k) is regular at this point. The
simple derivation of the residue Wl leads to the expression

Wl = resf̃l = lim
k→kr

[(k − kr )f̃l (k)] = −kie
i2νl (kr )

k0ρl (kr )
. (26)

Using the relationship between the NVC (G̃l) and ANC (Cl)
(17), we obtain

Cl = i−lμ√
π

�(l + 1 + iηr )

l!
e− πηr

2 G̃l

= i−l

√
μ�

k0
e− πηr

2
�(l + 1 + iηr )

l!

× eiνl (kr )
√

(1 − iki/k0)/ρl (kr ). (27)

The derived equations are valid for both narrow and broad
resonances. For narrow resonances, when � � E0 (ki � k0),
one can simplify Eq. (27) for the ANC replacing kr by k0 and
using the equality

e− πη
2

�(l + 1 + iη)

l!
√

ρl (k0)
= eiσl (28)

to obtain

Ca
l =

√
μ�

k0
ei(νl (k0 )+σl (k0 )−πl/2), (29)

which coincides with the result obtained in Ref. [16].
The nonresonant phase shift νl (k) is the analytical function,

excluding the origin. In Ref. [19], the authors present the
behavior of νl (k) near the origin as

νl (k) = − 2π

(l!)2
k2l+1η2l+1ale

−2πη, (30)

whereal is the scattering length for colliding nuclei. We see that
k = 0 is the point of the essential singularity of the scattering
phase shift. However, as a function of the momentum k, it has
normal analytical properties near the point corresponding to
the resonance. Therefore we can expand νl (k) to a series

νl (k) =
∞∑

n=0

cn(k − ks )n (31)

in the vicinity of the pole corresponding to the resonance. If
we wish to determine the value of the phase shift νl (k) by
applying Eq. (31) at a point in the complex plane close to the
centered point ks , then only the first few terms of the convergent
series may be taken into account with reasonable precision. The
expansion coefficients cn of Eq. (31) as well as k0 and ki are
determined by fitting the experimental values of the elastic-
scattering phase shifts δl given by Eq. (23).
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IV. RESONANCE ANC CALCULATED BY THE � METHOD
AND ITS COMPARISON WITH SMP-METHOD RESULTS

FOR LOW-ENERGY 7Be, 8Be, and 16O LEVELS

As mentioned in the Introduction we apply the � method
described above to the 7Be, 8Be, and 16O resonances using a
model with the configurations 3He + α, α + α, and α + 12C.
For the α-12C collision the absolute value of the nuclear part
of the ERF is very small compared with those for the Coulomb
part (see Ref. [1]) due to the “large” product of the colliding
particle charges. As explained above, this is due to exp(2πη)
in the denominator in Eq. (10) for C2

0 . Therefore, the ERF
approach is not valid for this nucleus.

In Ref. [1] we find that the results of the fitting are quite
sensitive to the selection of the energy region. For bound
states the low-energy area is especially important, while for
resonances it is necessary to secure a proper description of �l

in the vicinity of resonance energy E0.
We need to satisfy this demand in our calculations while

choosing a fitting model. In Ref. [1] we use different models
for the orbital momenta l = 0, 1, 2 of the bound states.

Here we change the model only for 16O states to secure
a proper agreement of the resonance energy defined from
Eq. (14) with the experimental values of E0 and �.

The figures for the �l fit are given for the experimental
phase-shift values as well as for E0 and �, written in the
corresponding captions for the different nuclear systems and
states.

The results in the tables below are given for the different
methods and take into account the uncertainties in the reso-
nance energy and in the experimental phase shifts when known.

A simple model of the �l fit is used for 7Be (7/2−, 5/2−)
and 8Be (0+, 2+):

�l (E) = a0 + a1E + a2E
2. (32)

For 16O (4He + 12C) we use the following more complex
fitting models:

(1) Jπ = 0+. There is a narrow resonance in this state (in
the R-matrix fit in Ref. [20] � = 3 keV). The input
phase shift δ0 is zero or π at Ez = 4.8823 MeV. So the
following fitting is used:

�0 = a0 + a1(E−Ez) + a2(E−Ez)2 + a3(E−Ez)3

1 − E/Ez

.

(33)
(2) Jπ = 1−. Due to the near-threshold bound state at E =

−ε1 = −0.045 MeV (� = 0 at a bound pole [1]) we
choose

�1 = (1 + E/ε1)(a0 + a1E + a2E
2). (34)

(3) Jπ = 2+. There are two resonances which are observed
in the energy interval 2.5–5.0 MeV. The bound state
pole is situated at E = −ε2 = −0.245 MeV. The input
phase shift δ2 is zero or π at Ez1 = 2.680 MeV where
cot δ2 goes to infinity. Consequently, the fitting model
in the region of the lowest resonance may be taken as

�2 = (1 + E/ε2)(a0 + a1E + a2E
2)

1 − E/Ez1
. (35)

The second energy value where sin δ2 = 0 is Ez2 =
3.970 MeV. Therefore, the fitting model in the region

FIG. 1. Dependence of the fitted �l functions [Eq. (32)] vs. the
center-of-mass energy E of the 3He-α collision. Solid and dashed
lines are for J π = 7/2− and 5/2−, respectively. The experimental data
(dots) correspond to the phase shifts taken from Ref. [21]. Results of
the extracted resonance energy are E0 = 3.017 MeV, � = 177 keV for
J π = 7/2− and E0 = 5.106 MeV, � = 1.212 MeV for J π = 5/2−.

of the second resonance can be taken as

�2 = a0 + a1(E − Ez2) + a2(E − Ez2)2

1 − E/Ez2
, (36)

where we take Ez2 as the centered point.

(a)

(b)

FIG. 2. As for Fig. 1 for the α-α collision for J π = 0+ (a) and
2+ (b). The experimental data (dots) correspond to the experimental
phase shifts taken from Ref. [22]. The extracted resonance energy
and width are E0 = 0.093 MeV, � = 0.0055 keV for J π = 0+ and
E0 = 3.096 MeV, � = 1.512 MeV for J π = 2+.
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(a)

(b) (d)

(c)

FIG. 3. As for Fig. 1 for the α-12C collision. The fitting models are given in Eqs. (33)–(37). Solid lines are for J π = 0+ (a), 1− (b), 2+

(c), left curve, and for 3− (d). Dashed line is for J π = 2+ (c), right curve. The state 2+ includes two resonances. The experimental data (dots)
correspond to the R-matrix fit phase shifts taken from Ref. [20]. The extracted resonance energy and width are E0 = 4.887 MeV, � = 3.52 keV
(0+); E0 = 2.364 MeV, � = 0.333 MeV (1−); E0 = 2.693 MeV, � = 0.597 keV (2+); E0 = 4.359 MeV, � = 78 keV (2+); E0 = 4.228 MeV,
� = 0.817 MeV (3−).

(4) Jπ = 3−. For the fitting we use an expansion with the
centered point at Ez = 4.32 MeV in the vicinity of the
resonance pole:

�3 = a0 + a1(E − Ez) + a2(E − Ez)2. (37)

In Figs. 1–3, we show a comparison between the experi-
mental �l-function values and the fitting curves for the models
given in Eqs. (32)–(37). The phase-shift experimental data are
taken from papers [21] for 7Be, [22] for 8Be and [20] for
the R-matrix phase-shift fit for 16O. There is a fairly good
agreement between the fitting curves and the experimental data
in the energy intervals considered.

In the Tables I–III all the experimental data for the energies
and widths of the resonances are taken from Ref. [23]. The
left column “Method” in all tables includes the following
designations. �(1) means the calculation by the � method,
using the models given above with the experimental phase-shift
values. �(up) and �(low) mean the calculation by the �

method, using the upper and lower experimental phase-shift
values taken from Ref. [22] (the α-α scattering phase shifts)
and Ref. [24] (the α-12C scattering phase shifts).

The rows DM(+) and DM(−) show the results of the
calculations by the Eq. (18) for narrow resonances, where “+”
and “−” are related to the maximal and minimal values of the
experimental energy and width of the resonance in accordance
with the uncertainty defined by the Eq. (19), respectively. In
Tables I and II, the row denoted by SMP shows our new
calculations for 7Be and 8Be using the SMP method. In
Table III, all the SMP-method results are taken from our paper
[7]. In Table II, for the ground 0+ state the results noted ERE(1)
and ERE(2) are calculated by the conventional method using
the G2

l results found in Ref. [25] for differing resonant energies.
The corresponding results for the 2+ state are noted by the
ERE(1, 2, 3). These ERF-method results also show the effects
of the resonant energy and width variations. One can compare
these ERF results with those using other methods.

Analysis of the calculation results in all the tables leads to
the following conclusions:

(1) For narrow resonances, different accepted methods
lead to good agreement between the |Cl| and |Ca

l |.
Such agreement can be considered as a criterion of a
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resonance narrowness. This is slightly better for �(1)
compared with the SMP-method results.

(2) For wider resonances, as a rule there is an inequality
|Cl| < |Ca

l |, but the differences are not very big for the
nuclear systems considered. We include the results of
|Ca

l | for broad resonances to find out how large the
differences are between |Ca

l | and |Cl|.
(3) There is very good agreement between |Cl| and |Ca

l |
for both DM(+) and DM(−) in Tables I and II
with one exception in Table III for Jπ = 0+. This
is due to the high sensitivity of |Cl| to the � value.
Significantly bigger variations of the resonant width
are visible in this case, which lead to the variation
|C0| = 0.0094–0.0174 fm−1/2 although the difference
between |C0| for �(1) model (0.0174 fm−1/2) and SMP
method (0.0160 fm−1/2) is rather small. In Table I
for Jπ = 5/2−E0 changes while � is mostly stable.
This lead to the variation |C2| = 0.260–0.277 fm−1/2.
For the narrow resonance in the 7/2− state which
is most pronounced experimentally, the variation is
smaller |C3| = 0.118–0.123 fm−1/2. We note that in
Ref. [26] the resonance energy E0(2+) = 3.03 ± 0.01
MeV, � = 1.49 ± 0.02 MeV. These E0(2+) and � are
slightly smaller compared with the experimental data
[23] as are some values given in Table II.

(4) Table II shows for the α-α system good agreement
(|C0| = 0.0016–0.0017 fm−1/2) for all the models,
including the ERF for the Jπ = 0+ state, which is
especially important in astrophysics. For the 2+ state,
the experimental uncertainties in the resonant en-
ergy and the phase shift lead to the variation |C2| =
0.32–0.35 fm−1/2.

(5) Table III for the α + 12C system is the most important in
the present paper because the ERF method is invalid. It
contains much more information than the other tables,
including the effects of uncertainties of the phase shifts
for all the states considered except the 0+ and first 2+
resonance states. In the second state 2+ where we find
a stability of E0 but also an essential � variation which
significantly affects the value of the |Cl|. Nevertheless,

TABLE I. 7Be ↔ α + 3H. Calculation method, J π , resonance
energy E0 and its width �, corresponding values of ANCs |Cl |
and |Ca

l | calculated by Eq. (18) for narrow resonances. Energy
values given in the center-of-mass system. Experimental data [23]:
E0(5/2−) = 5.143 ± 0.1 MeV, �(5/2−) = 1.2 MeV; E0(7/2−) =
2.983 ± 0.05 MeV, �(7/2−) = 175 ± 7 keV.

Method J π E0(MeV) �(keV) |Cl |(fm−1/2) |Ca
l |(fm−1/2)

�(1) 5/2− 5.106 1212 0.260 0.277
DM(+) 5.243 1200 0.276 0.274
DM(−) 5.043 1200 0.274 0.276
SMP 4.983 1275 0.264 0.286

�(1) 7/2− 3.017 177 0.120 0.121
DM(+) 3.033 182 0.123 0.122
DM(−) 2.933 168 0.118 0.119
SMP 2.987 182 0.122 0.123

TABLE II. 8Be ↔ α + α. The definitions of the method, state,
and the calculated results are the same as in Table I. Experimental
data [23]: E0(0+) = 91.84 keV, �(0+) = 5.57 ± 0.25 eV; E0(2+) =
3.122 ± 0.010 MeV, �(2+) = 1.513 ± 0.015 MeV.

Method J π E0(MeV) �(keV) |Cl |(fm−1/2) |Ca
l |(fm−1/2)

�(1) 0+ 0.093 0.0055 0.0016 0.00170
ERE(1) 0.0918 0.0058 0.00169 0.00172
ERE(2) 0.0918 0.0053 0.00165 0.00165
DM(+) 0.0918 0.0058 0.00172 0.00172
DM(−) 0.0918 0.0053 0.00165 0.00165
SMP 0.0093 0.0056 0.0016 0.00170

�(1) 2+ 3.096 1512 0.321 0.363
�(up) 2.925 1456 0.329 0.362
�(low) 2.899 1669 0.348 0.387
ERE(1) 2.87 1310 0.348 0.345
ERE(2) 2.91 1370 0.361 0.351
ERE(3) 3.04 1510 0.387 0.365
DM(+) 3.132 1528 0.366 0.365
DM(−) 3.112 1498 0.362 0.362
SMP 3.122 1513 0.291 0.362

there is quite good agreement between the results for
the �(1) and the SMP methods.

TABLE III. 16O ↔ α + 12C. The definitions of the method,
state, and the calculated results are the same as in Table I.
Experimental data [23]: E0(0+) = 4.887 ± 0.002 MeV, �(0+) =
1.5 ± 0.5 keV; E0(1−) = 2.423 ± 0.011 MeV, �(1−) = 0.420 ±
0.020 MeV; E0(2+) = 2.683 MeV± 0.5 keV, �(2+) = 0.625 ±
0.100 keV; E0(2+) = 4.358 MeV ± 4 keV, �(2+) = 71 ± 3 keV;
E0(3−) = 4.438 MeV ± 20 keV, �(3−) = 0.800 ± 0.1 MeV.

Method J π E0(MeV) �(keV) |Cl |(fm−1/2) |Ca
l |(fm−1/2)

�(1) 0+ 4.887 3.52 0.0174 0.0174
DM(+) 4.889 2.0 0.0132 0.0131
DM(−) 4.885 1.0 0.0094 0.0093
SMP 4.887 3.0 0.0160 0.0160

�(1) 1− 2.364 333 0.179 0.185
�(up) 2.213 319 0.178 0.202
�(low) 2.327 323 0.177 0.200
SMP 2.364 356 0.185 0.209

�(1) 2+ 2.693 0.597 0.0083 0.0085
DM(+) 2.683 0.725 0.0092 0.0092
DM(−) 2.682 0.525 0.0078 0.0078
SMP 2.364 0.760 0.0094 0.0094

�(1) 2+ 4.359 78 0.0835 0.0842
�(up) 4.380 80.35 0.0846 0.0853
�(low) 4.386 73.84 0.0810 0.0817
SMP 4.350 79.1 0.0840 0.0847

�(1) 3− 4.228 817 0.236 0.274
�(up) 4.266 809 0.240 0.272
�(low) 4.257 825 0.238 0.275
SMP 4.350 79.1 0.230 0.273
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V. CONCLUSION

In the present paper we apply the � method to resonances.
We use the original form (4) of the renormalized scattering
amplitude where there is no expression for the ERF. We
emphasize that the renormalized scattering amplitude does not
include the Coulomb term h(η) (8) which is part of the ERF in
Eq. (7). The function h(η) forms a background for the nuclear
term and obviously leads to a wrong ANC for “large” charges of
colliding nuclei. The 16O states with the configuration α + 12C
is an example. We show that the � or SMP methods should be
applied when the calculations using the ERF fitting are invalid.
In Table III, the calculation results denoted by SMP are taken
from Ref. [7].

We include some uncertainties of the experimental data in
our ANC calculations. The formula for narrow resonances
is used to derive a simple expression for the increment �Cl

related to both the uncertainties of the resonance energy
(�E0) and width (��). Some experimental uncertainties of the
phase-shift data are also included and their effects in ANCs are
analyzed. The system α + 12C is studied in more detail using
the � method as the conventional ERF method is not valid
for this system or for those with larger charge product. We
also study the lighter systems 3He4He, and αα. The ground

state of 8Be is especially important in astrophysics for the
creation of the organic elements and life itself on Earth [27].
While considering the different pole conditions for bound and
resonance state, we stress the role of the square root cut on the
complex energy plane of the partial scattering amplitude. In
addition, the renormalized amplitude is real on the imaginary
momentum axis. This is due to the similarity of its analytical
properties to those of the amplitude for a short-range potential
(see, for example, Ref. [28]).

The reasonable agreement between the resonant energies
and the ANC results obtained by both the � and SMP
methods, as well as that between the ANC results and the
ANCs calculated for narrow resonances mean that these results
are credible for the nuclear systems considered within the
found limits of the variations. They can be used in nuclear
astrophysics and in the nuclear reactions theory based on
Feynman diagrams.
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