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Momentum space treatment of inclusive neutrino scattering off the deuteron and trinucleons
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Selected (anti)neutrino-induced reactions on 2H, 3He, and 3H are studied consistently in momentum space for
(anti)neutrino energies up to 250 MeV. For most of these processes we provide predictions for the total cross
sections, and in the case of the (anti)neutrino-3He and (anti)neutrino-3H inelastic scattering we compute examples
of essential response functions, using the AV18 nucleon-nucleon potential and a single-nucleon weak current
operator. For the reactions with the deuteron we comment on relativistic effects in the final-state kinematics and
compare two-nucleon scattering states obtained in momentum and coordinate spaces. Our results from momentum
space are compared with the theoretical predictions by G. Shen et al. [Phys. Rev. C 86, 035503 (2012)]. The
observed disagreement can be attributed to the differences in kinematics and in the weak current operator.
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I. INTRODUCTION

Neutrino scattering on nuclei has been studied for several
decades. For information on the status of earlier theoretical
treatments of neutrino-nucleus reactions, relevant to the detec-
tion of astrophysical neutrinos, we refer the reader to Ref. [1].
At the beginning of the century theoretical work was motivated
by the establishment of the Sudbury Neutrino Observatory
(SNO) and resulted in important predictions by Nakamura et al.
[2,3]. They calculated cross sections for both charged-current–
(CC) and neutral-current– (NC) driven reactions, for incoming
neutrino energies up to 150 MeV. The results of Ref. [2]
and the bulk of predictions given in Ref. [3] were obtained
within the “standard nuclear physics approach” [4], employing
the AV18 nucleon-nucleon (NN) force [5] and supplementing
the single-nucleon current with two-nucleon (2N) current
contributions related to this potential. Some calculations in
Ref. [3] were done with the CD-Bonn NN potential [6] or
using input from chiral effective field theory (χEFT) in order
to estimate theoretical uncertainties of the results, which were
later used to analyze SNO experimental data [7].

More recent calculations by Shen et al. [8] were also done
within the traditional approach, using the AV18 potential and
corresponding nuclear weak current operators with a one-body
part and two-body contributions, adjusted to the NN force.
The authors of Ref. [8] studied inclusive neutrino scattering
on the deuteron up to neutrino energies of 1 GeV with
configuration space methods. Although they introduced some
changes in the 2N current operator used by Nakamura et al.,
these modifications proved to be of minor importance and the
results obtained by Shen et al. confirmed those of Nakamura

et al. in the energy range up to 150 MeV. Conclusions presented
in Ref. [8] provided important information on the role of
2N currents and final-state interaction effects for the whole
considered neutrino energy range, even though pion production
channels were neglected.

Despite the successes achieved within the traditional ap-
proach, new calculations emerging from χEFT offered com-
petitive results. In 2001 Butler et al. [9] studied the neutrino-
deuteron break-up reactions at next-to-next-to-leading order
(N2LO) in pionless χEFT in the energy range up to 20 MeV.
Their work agreed very well with the previous potential model
calculations from Refs. [2,3].

Attempts to build a complete theoretical framework com-
prising consistent “chiral” 2N and many-nucleon forces as well
as electroweak current operators at a sufficiently high order of
the chiral expansion have a long history. A construction of the
chiral NN potential was pioneered by Weinberg [10,11] almost
30 years ago and developed by several groups. In particular,
Epelbaum et al. have prepared three generations of the chiral
potentials. They started with the version of the NN potential,
where the nonlocal regularization in momentum space was
implemented [12–14]. They derived also the widely used chiral
three-nucleon (3N) potential at N2LO [15], summarizing the
work on chiral forces and their applications to processes involv-
ing few nucleons up to 2005 in Ref. [16]. Further important
contributions from this group, partially reviewed in Ref. [17],
dealt with the 3N force at next-to-next-to-next-to-leading order
(N3LO) [18,19], the four-nucleon force [20], and a formulation
of the �-full chiral perturbation theory [21,22].

The next generation of the chiral NN potential by Epelbaum
et al. used a coordinate space regularization. This improved
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version from Refs. [23,24] led to a significant reduction of
finite-cutoff artifacts, did not require any additional spectral
function regularization, and directly employed low-energy
constants determined from pion-nucleon scattering. These
forces were used to study nucleon-deuteron scattering [25] and
various electroweak processes in 2N and 3N systems [26].

The newest version of the Bochum-Bonn chiral NN po-
tential, prepared up to fifth order in the chiral expansion
(N4LO), was introduced very recently in Ref. [27]. Important
changes include a removal of the redundant contact terms and
regularization in momentum space, resulting in an excellent
description of the proton-proton and neutron-proton scattering
data from the self-consistent Granada-2013 database [28].

The Bochum-Bonn group has also been working on the
chiral electromagnetic [29,30] and weak (axial) [31] current
operators. First results with the 2N electromagnetic currents
from Ref. [29] were published in Refs. [32,33], but full-fledged
calculations with the consistent Bochum-Bonn potentials and
current operators will become possible, when the ongoing work
on the regularization of the current operators is completed.

Concurrent with these studies have been the efforts by the
Moscow(Idaho)-Salamanca group, which resulted in another
family of nonlocal chiral NN potentials [34,35]. The most
recent version of this potential, generated also up to fifth order
in the chiral expansion, was published in Ref. [36]. At N4LO
it reproduces the world NN data with the χ2/datum of 1.08 for
proton-proton and neutron-proton data up to 190 MeV.

Many modern calculations of various electromagnetic pro-
cesses employ the chiral potentials from Refs. [34,35] and
require chiral current operators. The latter were developed
gradually, starting with a pioneering work by Park et al.
[37]. The predictions of Refs. [37,38] were later rederived or
supplemented by many authors [39–42], using various formu-
lations of χEFT. The unknown parameters of the effective
theory were either related to the NN scattering or fixed by
reproducing selected observables in the 2N and 3N systems,
like the magnetic moments [43] and the tritium Gamow-Teller
matrix element [44,45]. The derived current operators were
used with the wave functions obtained with the traditional
potentials and later, more consistently, with the potentials
derived by the Moscow(Idaho)-Salamanca group. Among the
many studied processes were those of direct astrophysical
interest [46,47], muon capture reactions [48–51] and, last but
not least, neutrino-induced processes [52].

Predictions in Ref. [52] for inclusive neutrino scattering off
the deuteron are fully based on a χEFT input. The results
concerning the cross sections are only slightly larger than
the corresponding ones obtained in conventional formulations
based on meson-exchange picture [3,8] and are insensitive
to the value of the regulator parameter. This might indicate
that the theoretical results have a very small uncertainty in the
low-energy neutrino regime.

To give the reader a proper picture of the efforts aiming at the
exact treatment of the neutrino-induced reactions, we mention
here some calculations with heavier than A = 2 nuclei. Gazit
et al. performed a number of calculations for neutrino-induced
break-up reactions with the 3H, 3He, and 4He nuclei [53–55],
in which final-state interactions were included via the Lorentz
integral transform method [56]. The resulting bound-state and

bound-state-like equations were solved using the effective
interaction hyperspherical harmonics approach [57,58], em-
ploying conventional 2N and 3N forces. While in Ref. [53] the
impulse approximation was used, in Refs. [54,55] the nuclear
current operator contained also 2N contributions derived from
χEFT. Finally, we mention that weak inclusive responses of
heavier light nuclei, including 12C, were investigated with the
Green’s function Monte Carlo method [59,60]. The results
of these calculations contributed to the determination of the
nucleon isovector axial form factor [61].

The momentum-space approach offers an independent pos-
sibility to perform calculations not only for the deuteron but
also for the trinucleons’ reactions with neutrinos. In the present
work we calculate cross sections for several such reactions
and build a solid base on which we can improve our dynamics
in the future, adding many-nucleon forces and weak current
operators. The present study, contrary to the very advanced
investigations by Baroni et al. [52], is carried out with rather
simple dynamical input. Namely we work with the traditional
AV18 NN potential and restrict ourselves to the single-nucleon
current. Thus we definitely cannot reach yet the high level of
accuracy achieved by the predictions of Refs. [3,8,52], dealing
solely with the neutrino-induced break-up of 2H. We agree with
the statement in Ref. [52] that the accuracy of these predictions
is very important in the analysis of the SNO experiments and
more generally for our understanding of (anti)neutrino-nucleus
scattering. Thus we decided to confront our momentum-space
framework predictions with the above-mentioned results. We
also agree with Ref. [52] that all these ingredients should be
derived consistently from χEFT. There are, however, still some
open issues in the construction of the 2N electroweak current
operator, and the results for the axial current obtained by Krebs
et al. [31] are not equivalent to those reported in Refs. [42,45].
Even if these differences prove to be of no practical importance,
some fundamental questions about the consistence between
chiral potentials and current operators still should be answered.
Our framework is in any case ready for the improved input
generated by χEFT.

The results obtained within χEFT are usually provided
in momentum space and can be readily incorporated into
momentum-space calculations. We refer the reader especially
to the “three-dimensional” calculations, which avoid totally
partial wave representation of nuclear states and operators
[62,63]. In this approachχEFT potentials and current operators
would be used indeed directly, avoiding also convergence
problems bound with partial wave decomposition. Our present
results might thus provide a benchmark for such planned
calculations.

Last but not least, momentum space framework allows one
to systematically account for relativistic effects not only in the
kinematics but also in the reaction dynamics. Some of such
problems might be difficult to tackle in coordinate space but are
easier to solve in momentum space. For example, the argument
of the nucleon form factors in the single-nucleon current,
which should be actually the four-momentum transfer to the
nucleon squared, is usually replaced by the four-momentum
transfer to the whole nuclear system squared. In momentum
space one can directly use the proper values of the form factor
arguments.
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Relativity plays definitely an important role for higher
neutrino energies. Even at relatively low energies these effects
have to be studied thoroughly, since approximate treatment
of relativity adds to the total theoretical uncertainty of pre-
dictions. Ultimately, theoretical calculations should take into
account complementary roles of kinematic and dynamical
contributions to the Poincaré invariant formulation of reaction
theory. Important examples of such investigations are given in
Refs. [64–70]. A particular result of these studies, showing that
relativistic effects in kinematics and dynamics might in fact
partly cancel, prompted us to retain the nonrelativistic form
of the phase-space factor, consistent with our nonrelativistic
dynamics, in particular with the form of the current operator.
Consequences of this choice will be discussed below.

The paper is organized in the following way. In Sec. II we
introduce elements of our formalism and compare it with the
calculations presented in Refs. [2,8]. In particular we discuss
the differences in the treatment of kinematics and the current
operator. In the following two sections we show selected results
for various processes induced by neutrinos. Finally, Sec. V
contains some concluding remarks and an outlook.

II. ELEMENTS OF THE FORMALISM

Recently, we have developed a framework to study several
muon capture processes on the 2H, 3H, and 3H nuclei [63,71].
For the ν̄l + 2H → l+ + n + n reaction, the transition from
the initial to final state is also governed by the Fermi form of
the interaction Lagrangian [72], again leading to a contraction
of the leptonic (Lλ) and nuclear (N λ) parts in the S matrix
element, Sf i :

Sf i = i(2π )4 δ4(P ′ − P )
GF cos θC√

2
Lλ N λ, (2.1)

where the value of the Fermi constant, GF = 1.1803 ×
10−5 GeV−2, and cos θC = 0.97425 have been deliberately
taken to be the same as in Ref. [8]. The total initial (final)
four-momentum is denoted as P (P ′).

The leptonic matrix element

Lλ = 1

(2π )3 v̄(k,mν̄)γλ(1 − γ5)v(k′,ml+) ≡ 1

(2π )3 Lλ

(2.2)

is given in terms of the Dirac spinors v and the gamma matrices
[73] and depends on the initial antineutrino three-momentum
k and spin projection mν̄ as well as on the final antilepton
three-momentum k′ and spin projection ml+ . The same formula
holds for the three lepton flavors l = e, l = μ, and l = τ .

The nuclear part

N λ = 1

(2π )3 〈�f Pf mf |jλ
CC|�i Pi mi〉 ≡ 1

(2π )3 Nλ
CC

(2.3)

is a matrix element of the nuclear weak charged current (CC)
operator jλ

CC between the initial and final nuclear states. The
total initial (final) nuclear three-momentum is denoted as Pi

(Pf ), mi is the initial nucleus spin projection, and mf is the
set of spin projections in the final state. In this paper we

restrict ourselves to the single-nucleon current operator with
relativistic corrections. This current operator was defined in
Eqs. (2.9) and (2.10) of Ref. [63]. It is very close to the one
used in Ref. [49] and employs form factors, whose explicit
expressions and parametrization can be found in Ref. [8]. Thus,
except for one term which is numerically insignificant, we use
the same single-nucleon current operator as in Ref. [63].

On top of the single-nucleon operators, also many-nucleon
contributions appear in jλ

CC. Their role has been studied, for
example, in Ref. [49]. For the neutrino-induced reactions of
interest, the effects of 2N contributions in the weak current
operator were estimated in Ref. [8] to be smaller than 10%
over the wide energy range from the threshold to GeV energies.
Thus we decided to base our first predictions on the single-
nucleon current only and represent all dynamical ingredients
in momentum space.

The only change in the charged single-nucleon current
operator for the νl + 2H → l− + p + p process compared
to the ν̄l + 2H → l+ + n + n reaction is the replacement of
the overall isospin lowering operator by the isospin raising
operator:

τ− ≡ (τx − iτy)/2 −→ τ+ ≡ (τx + iτy)/2. (2.4)

However, since the matrix elements of the single-nucleon
operator in the 2N isospin space, spanned by the |( 1

2
1
2 )tmt 〉

states, 〈(
1
2

1
2

)
1 − 1

∣∣τ−(1)
∣∣( 1

2
1
2

)
00

〉
and 〈(

1
2

1
2

)
11

∣∣τ+(1)
∣∣( 1

2
1
2

)
00

〉
,

have just an opposite sign, we can use for this reaction exactly
the same single-nucleon current operator. Its matrix elements,
Nλ

CC, are contracted with the altered leptonic matrix elements

Lλ = ū(k′,ml− )γλ(1 − γ5)u(k,mν), (2.5)

expressed through the Dirac spinors u, which depend on the
initial neutrino three-momentum k and spin projection mν

as well as on the final lepton three-momentum k′ and spin
projection ml− . In the following, the energy of the initial
(anti)neutrino will be denoted by E and for the massless
(anti)neutrino E = |k|.

A. Kinematics

Since we compare our nonrelativistic predictions with the
ones published in Ref. [8], where the relativistic kinematics
was employed, we give here some formulas for our kinematics
and cross sections. We believe that they will be useful in
the future benchmark calculations and serve to disentangle
relativistic kinematical effects from dynamical ones. The
difference in the treatment of kinematics is the main reason
our predictions diverge from the results published in Ref. [8],
especially for higher energies.

The kinematics of the ν̄l + 2H → l+ + n + n and νl +
2H → l− + p + p processes is essentially identical (the only
difference being the mass of two identical nucleons in the
final state) and can be treated both relativistically and nonrela-
tivistically. The relativistic formulas for different kinematical
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TABLE I. Threshold energies in MeV for various (anti)neutrino-
induced reactions on the deuteron calculated relativistically (Erel

thr) and
nonrelativistically (Enrl

thr ). We assumed Md = 1875.613 MeV, Mp =
938.272 MeV, Mn = 939.565 MeV, and Me = 0.510999 MeV. Re-
sults for the νl + d → νl + p + n and ν̄l + d → ν̄l + p + n pro-
cesses are identical for all the flavors l = e,μ,τ .

Reaction Erel
thr Enrl

thr

ν̄e + d → e+ + n + n 4.03323 4.03323
νe + d → e− + p + p 1.44279 1.44279
νl + d → νl + p + n 2.22589 2.22589

quantities are given in Refs. [2,8], so we can focus on the
differences between the exact relativistic and our approximate
nonrelativistic treatment of nuclear kinematics. (Note that lep-
ton kinematics is always treated relativistically.) The starting
point is the energy and momentum conservation, where we
neglect the very small (anti)neutrino mass and assume that the
initial deuteron is at rest. In the nonrelativistic formulation for
the nuclear sector it reads:

E + Md =
√

M2
l + k′ 2 + 2Mp + p 2

1

2Mp

+ p 2
2

2Mp

,

k = k′ + p1 + p2, (2.6)

where p1 and p2 stand for the individual momenta of the two
outgoing nucleons. The deuteron, nucleon, and (anti)lepton
masses are denoted as Md , Mp, and Ml , respectively. Starting
from Eqs. (2.6) all the necessary kinematical quantities can be
calculated.

We begin with the (anti)neutrino threshold energy, Ethr,
rewriting Eq. (2.6) as

E + Md =
√

M2
l + k′ 2 + 2Mp + p 2

12

4Mp

+ p 2

Mp

, (2.7)

where p12 ≡ p1 + p2 = k − k′ and p = 1
2 (p1 − p2). Next we

numerically seek the smallest possible value of E (represented
by Enrl

thr ), for which a physical solution of

E + Md =
√

M2
l + k′ 2 + 2Mp + (k − k′ )2 4Mp (2.8)

exists. Obviously the same logic applies to the νl + d →
νl + p + n and ν̄l + d → ν̄l + p + n reactions. In this case
we additionally neglect the small difference between the proton
mass Mp and neutron mass Mn and use the average “nucleon
mass,” M ≡ 1

2 (Mp + Mn). From Table I, where we display
the numerical results for the threshold energies, it is clear that
differences between the relativistic and nonrelativistic results
are insignificant.

We determine also the maximal energy of the emerging
lepton under a given scattering angle θ , where cos θ = k̂ · k̂ ′.
Note that there is no restriction on the scattering angle θ .
Nonrelativistically, the kinetic energy of the 2N system in the
2N total momentum zero frame must be non-negative:

E + Md − 2Mp −
√

M2
l + k′ 2 − (k − k′ )2

4Mp

� 0. (2.9)

This condition yields now a fourth-degree equation:

k′ 4 − 4E cos θk′ 3

+ (
4E2 cos2 θ − 16M2

p − 2W
)
k′ 2

+ 4WE cos θk′ + W 2 − 16M2
pM2

l = 0, (2.10)

with W ≡ 4Mp(E + Md − 2Mp) − E2. One of the roots of
Eq. (2.10) represents the maximal value of the magnitude of
the outgoing lepton momentum, (k′)nrl

max. We compared (k′)nrl
max

with its relativistic analogue (k′)rel
max and found that even at

E = 300 MeV the maximal relative difference between these
values, noticed for the backward angles, did not reach 0.5%.

Finally, we want to discuss the phase-space factor. In
Refs. [2,8] two different relativistic forms are employed.

With ω ≡ E −
√

M2
l + k′ 2 ≡ E − E′ and Q ≡ k − k′ the

nonrelativistic evaluation starts from

dσ

d3k′ ∼ δ

(
ω + Md − 2Mp − p 2

1

2Mp

− p 2
2

2Mp

)

× δ3(Q − p1 − p2) d3p1 d3p2 (2.11)

and the change of variables, p12 = p1 + p2, p = (p1 − p2),
yields after standard steps

dσ

d3k′ ∼
∫ 1

−1
dx

1

2
Mp pnrl, (2.12)

where pnrl =
√

Mp(ω + Md − 2Mp − Q2

4Mp
) and we defined

x ≡ p̂ · Q̂ and Q ≡ |Q|.
In Fig. 1 we compare the relativistic phase-space factor from

Ref. [8], ρrel = p2

| p+Qx/2
E1

+ p−Qx/2
E2

| , and our nonrelativistic one,

ρnrl = 1
2Mp pnrl. For a fixed initial electron neutrino energy

and just one lepton scattering angle θ = π/2, we calculate
the phase-space factors as a function of the outgoing lepton
momentum k′. The relativistic phase-space factor depends not
only on the magnitude of the relative momentum p but also on
x, so we calculate ρrel for seven x values, −1, −2/3, −1/3,
0, 1/3, 2/3, and 1, to check how strong the dependence on x
is. For E = 50 MeV all upper curves representing relativistic
results with different x values essentially overlap, but for
E = 300 MeV the spread due to the different x values is clearly
visible. The relativistic phase-space factors are larger in the
whole range of the k′ momentum. The difference is particularly
strong for small k′ values and for E = 300 MeV it exceeds
20%. For E = 50 MeV it is much smaller and reaches about
3%. As already mentioned, the difference in the phase-space
factor is the main reason why our predictions for the total cross
sections for (anti)neutrino scattering on 2H diverge from the
results presented in Ref. [8].

B. The 2N scattering states in coordinate and momentum spaces

The nuclear matrix element, 〈�f Pf mf |jλ
CC|�i Pi mi〉, in-

volves the initial deuteron state |φd md〉 and the 2N scattering
state |p m1 m2〉(−), where the latter is formally defined as

|p m1 m2〉(−) ≡ lim
ε→0+

−iε

E2N − iε − H0 − V
|p m1 m2〉 (2.13)
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FIG. 1. The relativistic (group of dotted lines) and nonrelativistic (solid line) phase-space factors compared for the initial neutrino energy
E = 50 MeV (a) and E = 300 MeV (b) for the lepton scattering angle θ = π/2 as a function of the outgoing lepton momentum k′. The group
of dotted curves represent results with different values of x (see text). Note that these different predictions overlap for E = 50 MeV.

and in practice is computed from the scattering t matrix as

|p m1 m2〉(−)

= lim
ε→0+

[
1 + G2N

0 (E2N − iε) t(E2N − iε)
]|p m1 m2〉, (2.14)

where G2N
0 (E2N) is the free 2N propagator and the kinetic

energy of the relative motion in the 2N system in our nonrel-
ativistic approximation, E2N = p 2

M
, is given by Eq. (2.7). The

t matrix is obtained, for a given NN potential V , as a solution
of the Lippmann-Schwinger equation:

t(E2N) = V + t(E2N) G2N
0 (E2N) V. (2.15)

Using Eq. (2.14), the nuclear matrix element, Nλ ≡
〈�f Pf mf |jλ

CC|�i Pi mi〉, becomes

Nλ = 〈p Pf = k − k′ m1 m2|
[
1 + t(E2N) G2N

0 (E2N)
]

× jλ
CC|φd Pi = 0 md〉

= 〈p m1 m2|
[
1 + t(E2N) G2N

0 (E2N)
]

× jλ
CC(Pf ,Pi )|φd md〉. (2.16)

As already stated, we generate the deuteron wave function
and solve Eq. (2.15) in momentum space, using the 2N partial
wave states, |p(ls)jmj ; tmt 〉. They carry information about the
magnitude of the relative momentum (p), the relative angular
momentum (l), spin (s), and total angular momentum (j ) with
its corresponding projection (mj ). This set of quantum num-
bers is supplemented by the 2N isospin (t) and its projection
(mt ). In the present work we employ all partial wave states with
j � 4. Such calculations, closely corresponding to the ones
presented in Ref. [63], are fully sufficient for the antineutrino-
induced CC reactions and the NC-driven reactions, where only
short-range potentials act between the two outgoing nucleons.

The neutrino-induced CC reactions lead, however, in the
final state to two protons, which interact also by the long-range
Coulomb potential. The 2N scattering problem involving this
interaction is usually solved in coordinate space. We could
follow the steps outlined in Ref. [8], but we wanted to take
advantage of momentum space framework developed for the
muon capture reaction. That is why we decided to perform
standard momentum space t matrix calculations for the short-

range potential. Thus the proton-proton version of the AV18
potential was supplemented by the restricted Coulomb (RC) -
sharply cut off force VRC, whose matrix elements are given by
the following integral:

〈p′(l′s ′)j ′mj ′ ; t ′mt ′ |VRC|p(ls)jmj ; tmt 〉
= δll′ δss ′ δjj ′ δmj mj ′ δtt ′ δmtmt ′ δt1 δmt 1 8α

×
∫ RC

0
dr r jl(p

′r) jl(pr), (2.17)

where jl(pr) is the spherical Bessel function and α is the
fine structure constant. The value of the sharp cut-off was
taken to be RC = 40 fm. This approach is fully justified
by the observation that the current matrix elements Bessel
transformed to coordinate space,

〈r(ls)jmj |jλ
CC|φdmd〉

= 2

π
il

∫ ∞

0
dk k2 jl(kr)〈k(ls)jmj |jλ

CC|φdmd〉, (2.18)

become negligible for r � 30 fm.
Additionally, we checked that our momentum space gen-

erated 2N scattering states are fully equivalent to the radial
wave functions calculated directly in coordinate space, using
the collocation method from Refs. [74–76]. To this end we
employed the well-known formula (see, for example, Ref. [8]
and references therein), which using our normalization of
states, reads

ψ
j
l′s ls(r) = δl′ l jl(pr) + il−l′ M

×
∫ ∞

0

dk k2 jl′(kr)

p2 − k2 + iε
〈k(l′s)j |t(E2N)|p(ls)j 〉.

(2.19)

C. The cross section

Having discussed all the elements of our formalism, we
can give the main formula for the cross section, consistent
with the momentum space formalism presented in the previous
subsections. We do it for the νe + 2H → e− + p + p reaction
and discuss later some differences if other reactions are

015501-5



J. GOLAK et al. PHYSICAL REVIEW C 98, 015501 (2018)

considered. With our normalization of the Nλ matrix elements
we start with [73]

dσ = 1

|v1 − v2|
1

2E
(Lα)∗ Lβ (Nα)∗ Nβ G2

F cos2 θC

2

×F (Z,k′)
d3k′

2E′
d3p1

(2π )3

d3p2

(2π )3
(2π )4 δ4(P ′ − P )S,

(2.20)

where in the laboratory frame the relative velocity of the
projectile and target |v1 − v2| is equal c (=1) and the S factor
is needed when in the final-state identical particles appear. The
Fermi function F (Z,k′) [77] is introduced to account for the
Coulomb modification of the final lepton wave functions by
the two protons in the final state and is not needed otherwise.
(Note that in Lα we use the following normalization for the
Dirac spinors: ū u = 2Ml and v̄ v = −2Ml .) Defining

˜Lαβ =
∑
mν

∑
ml−

(Lα)∗ Lβ, (2.21)

taking all factors into account and evaluating the phase-space
factor in terms of the relative momentum, we arrive at the
following expression for the total cross section:

σtot = G2
F cos2 θC

2(2π )2

1

4E

∫ 2π

0
dφ

∫ π

0
dθ sin θ

∫ E′
max

Ml

dE′ k′ 1

2
Mp pnrl F (Z,k′)

×
∫ 2π

0
dφp

∫ π

0
dθp sin θp

2

3

∑
m1,m2

∑
md

˜Lαβ (Nα)∗ Nβ,

(2.22)

where the θ and φ angles describe the direction of the
outgoing lepton in the laboratory frame. Note that for the total
unpolarized cross section considered here the integral over the
azimuthal angle φ can be replaced by the factor 2π .

The contraction |T |2 ≡˜Lαβ (Nα)∗ Nβ can be written in
terms of the Vij functions stemming from the lepton arm and
the products of the nuclear matrix elements Nα . For the latter
we use the spherical components and obtain

|T |2 = V00|N0|2 + VMM |N−1|2 + VPP |N+1|2
+VZZ|Nz|2 + VZ0Nz(N

0)∗ + V0ZN0(Nz)
∗, (2.23)

where for the neutrino-induced reactions

V00 = 8(k′ · k + E E′),

VMM = 8 (E + kz) (E′ − k′
z),

VPP = 8 (E − kz) (E′ + k′
z),

VZZ = 8 (−k ′ · k + E E′),

VZ0 = −8 (E k′
z + E′ kz ) + 8i (k′

y kx − k′
x ky ),

V0Z = −8 (E k′
z + E′ kz ) + 8i (k′

x ky − k′
y kx ). (2.24)

The corresponding V̄ij functions for the antineutrino-
induced reactions are given as:

V̄00 = V00,

V̄MM = VPP ,

V̄PP = VMM,

V̄ZZ = VZZ,

V̄Z0 = V0Z,

V̄0Z = VZ0. (2.25)

In the following we assume the system of coordinates,
where Q ≡ k − k ′ ‖ ẑ and ŷ = k×k ′

|k×k ′ | , so

k′
x = kx = |k||k ′| sin θ/|Q|,

k′
y = ky = 0,

kz = |k|(|k| − |k ′| cos θ )/|Q|, (2.26)

k′
z = |k ′|(−|k ′| + |k| cos θ )/|Q|,

|Q| =
√

k 2 + k ′ 2 − 2|k||k ′| cos θ .

As a consequence, we get further simplifications:

V̄0Z = V̄Z0 = V0Z = VZ0. (2.27)

The main reason to use the spherical components of the current
operator and the system of coordinates defined above is that
we get in this case the simplest relations between the total spin
magnetic quantum numbers md and mj for matrix elements
〈p(ls)jmj |jλ

CC|φdmd〉 in the partial wave representation:

〈p(ls)jmj |j 0
CC|φdmd〉 ∝ δmj ,md

,

〈p(ls)jmj |jCC,z|φdmd〉 ∝ δmj ,md
, (2.28)

〈p(ls)jmj |jCC,±1|φdmd〉 ∝ δmj ±1,md
.

For the NC-driven processes Eq. (2.22) has to be modified.
The Fermi function F (Z,k′) and cos2 θC are replaced by 1, but
most importantly the weak CC operator jλ

CC is replaced by the
corresponding NC operator jλ

NC. Its construction is described
in detail in Refs. [2,8] and we follow Ref. [8] for the choice
of the nucleon form factors. Since we employ only the single-
nucleon current, we use the given prescription for the proton
and neutron NC operators and, using the isospin formalism,
define the current of nucleon i as

jNC(i) = 1
2 (1 + τ3(i))jp

NC + 1
2 (1 − τ3(i))jn

NC (2.29)

in full analogy to the electromagnetic single-nucleon current.
Of course, also in this case the relations (2.28) remain true.

D. The 3N matrix elements

We treat the 3He (3H) disintegration process analogously
to the 2N reactions. The 3N Hamiltonian H comprises the 3N
kinetic energy (H0), two-body subsystem potential energies
(V12, V23, and V31), as well as the three-body potential energy
(V123). The latter quantity is usually called a 3N force (3NF)
and is decomposed into three terms,

V123 = V (1) + V (2) + V (3), (2.30)
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where V (i) is symmetric under exchange of nucleons j and
k (i,j,k = 1,2,3, i 
= j 
= k 
= i). The 3N bound-state wave
function is calculated using the method described in Ref. [78].
The Faddeev equation for the Faddeev component |ψ〉 reads

|ψ〉 = G0t23P |ψ〉 + (1 + G0t23)G0V
(1)(1 + P )|ψ〉. (2.31)

Here G0 ≡ 1/( E − H0) is the free 3N propagator and P ≡
P12P23 + P13P23 is the permutation operator built from trans-
positions Pij , which interchange nucleons i and j . Note that the
two-body t operator t23 acts now in the 3N space. The full wave
function |�〉 is easily obtained from the Faddeev component
as

|�〉 = (1 + P )|ψ〉. (2.32)

The 3N current operator j
μ
3N contains the single-nucleon,

2N and, in principle, also the 3N contribution. Therefore we
write:

j
μ
3N = j

μ
1 + j

μ
2 + j

μ
3 + j

μ
12 + j

μ
23 + j

μ
31 + j

μ
123, (2.33)

where the 3N part can be split into three components (just like
the 3NF), j

μ
123 = jμ 1 + jμ 2 + jμ 3. Thus we can decompose

the 3N current operator into three parts, jμ(i) (i = 1,2,3),
which possess the same symmetry properties as V (i):

j
μ
3N = jμ(1) + jμ(2) + jμ(3), (2.34)

where, for example, jμ(1) ≡ j
μ
1 + j

μ
23 + jμ 1.

With all these ingredients, we construct the matrix elements
for the nucleon-deuteron (Nd)

N
μ
Nd = 〈�(−)

Nd |jμ
3N|�〉 (2.35)

and the 3N break-up channel

N
μ
3N = 〈�(−)

3N |jμ
3N|�〉, (2.36)

with the corresponding channel scattering states. To this end
first we solve a Faddeev-type equation for an auxiliary state
|Uμ〉 [79],

|Uμ〉 = [
t23G0 + 1

2 (1 + P ) V (1)G0 (1 + t23G0)
]

× (1 + P )jμ(1)|�〉
+ [

t23G0P + 1
2 (1 + P ) V (1)G0 (1 + t23G0)P

]|Uμ〉,
(2.37)

which depends on the component of the current operator and
two kinematical quantities but is independent of the final-state
kinematics. The two kinematical quantities are the 3N internal,
center of mass (c.m.), energy Ec.m. and the magnitude of the
three-momentum transferred to the 3N system, |Q|. In practice
we use the density operator ρ ≡ j 0

3N as well as the spherical
components of the current operator

j+1 ≡ − 1√
2

(
j 1

3N + ij 2
3N

) ≡ − 1√
2

(jx 3N + ijy 3N ),

j−1 ≡ 1√
2

(
j 1

3N − ij 2
3N

) ≡ 1√
2

(jx 3N − ijy 3N ), (2.38)

and choose Q parallel to the z axis. As in the 2N case,
this yields the simplest relations between the total 3N an-
gular momentum projections of the initial and final nuclear
systems.

The matrix elements N
μ
Nd and N

μ
3N for arbitrary exclusive

kinematics are then obtained by simple quadratures:

N
μ
Nd = 〈φNd|(1 + P )jμ(1)|�〉 + 〈φNd|P |Uμ〉, (2.39)

N
μ
3N = 〈φ3N|(1 + P )jμ(1)|�〉 + 〈φ3N|t23G0(1+P )jμ(1)|�〉

+ 〈φ3N|P |Uμ〉+〈φ3N|t23G0P |Uμ〉, (2.40)

where |φNd〉 is a product of the internal deuteron state
and the state describing the free relative motion of the
third nucleon with respect to the deuteron and |φ3N〉 is a
state [antisymmetrized in the (2,3) subsystem] representing
the free motion of the three outgoing nucleons. Exclusive
observables can be further integrated over suitable phase-
space domains to arrive at the semiexclusive or inclusive
observables.

Inclusive observables can be, however, also computed in
a different way, without any resort to explicit final-state
kinematics [79,80]. In inclusive calculations, where only the
final energy E of the nuclear system is known, one encounters
the so-called response functions, which are defined through the
following integral:

Rinc
AB =

∑
mi,mf

∫
df δ(E − Ef )〈�(−)

f |jA
3N|�〉(〈�(−)

f |jB
3N|�〉)∗,

(2.41)

and depend, in general, on two components of the nuclear
current operator, A and B. In Eq. (2.41) mi and mf represent
the whole sets of the initial and final spin magnetic quantum
numbers, respectively, while the df integral denotes the sum
and the integration over all final 3N states with the energy E.
Using closure, Eq. (2.41) can be rewritten as

Rinc
AB =

∑
mi

∫
df 〈�|(jB

3N

)†
δ(E − H ) jA

3N|�〉, (2.42)

where H is again the full 3N Hamiltonian and the 3N bound
state does not contribute to the df integration for E > 0.
Within the Faddeev scheme [79,80], Rinc

AB can be expressed
in terms of some auxiliary states as

Rinc
AB = 1

2πi

∑
mi

[〈�|(jA
3N

)†|�B〉∗ − 〈�|(jB
3N

)†|�A〉]

= 3

2πi

∑
mi

{〈�|[jA(1)]†G0(1 + P )|V B〉∗

−〈�|[jB(1)]†G0(1 + P )|V A〉}, (2.43)

where in turn (C = A,B)

|�C〉 = G0(1 + P )|V C〉. (2.44)

The state |V C〉 obeys the Faddeev-type equation

|V C〉 = (1 + t23G0) jC(1)|�〉
+ [tG0P + (1 + t23G0)V (1)G0 (1 + P )]|V C〉,

(2.45)

with the same integral kernel as in the treatment of 3N
scattering [81]. Interestingly, the relation between the auxiliary
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FIG. 2. The total cross section for the νe + 2H → e− + p + p reaction as a function of the initial neutrino energy E shown on a linear
scale (a) and on a logarithmic scale (b). The dashed (solid) line shows coordinate space predictions from Tables II and IV of Ref. [8] obtained
with the AV18 potential and with the single-nucleon current (with the inclusion of single- and 2N terms in the weak current operator),
employing the relativistic kinematics. The dotted line displays results of nonrelativistic momentum space calculations from the present work
obtained with the AV18 potential and with the single-nucleon current.

states defined in Eqs. (2.37) and (2.45) is very simple when the
3N force is neglected:

|V C〉 = jC(1)|�〉 + |UC〉. (2.46)

The fact that Rinc
AB can be obtained by direct integrations or

employing the method described above is used by us to test
the numerical performance.

All the 3N Faddeev-type equations are solved by iterations
in the momentum-space basis

|p q α〉 ≡ ∣∣p q (ls)j
(
λ 1

2

)
I (jI )JmJ

(
t 1

2

)
T mT

〉
, (2.47)

which is an extension of the (2,3) subsystem basis |pα2〉. Here
q is the magnitude of the Jacobi momentum, which describes
the motion of the spectator nucleon 1 with respect to the
center of mass of the (2,3) subsystem. Consequently, the orbital
angular momentum λ of the spectator nucleon and its spin 1

2
couple to the total spectator angular momentum I . The total
angular momentum of the subsystem (j ) and the total angular
momentum of nucleon 1 (I ) couple eventually to the total
angular momentum of the 3N system J and its projection mJ .
A corresponding coupling is introduced in the isospin space,
where the (2,3) total subsystem isospin (t) together with the
isospin of nucleon 1 builds the total 3N isospin T with the
projection mT . In practice, the calculations are restricted to a
finite set of |p α2〉 and |p α〉 states, which fulfill the condition
j � jmax and J � Jmax. For the low 3N internal energies and
momentum transfers studied here convergence is achieved with
jmax = 3 and Jmax = 15

2 .
In the following sections we describe our results, which

are obtained, like in Ref. [8], without considering radiative
corrections. Information about possible modifications of the
results due to these effects are discussed in Ref. [52] and
references cited therein.

III. RESULTS FOR NEUTRINO SCATTERING ON 2H

Although on the way to calculate the total cross sections
we evaluate the necessary integrands—the differential cross
sections—we show here only the inclusive observables. For
three selected reactions we compare our momentum-space
results with the predictions from Shen et al. [8], which are also

based on the traditional dynamical input. We restrict ourselves
to the neutrino energies up to 250 MeV.

Let us start with the total cross section for the νe + 2H →
e− + p + p reaction, which is shown in Fig. 2 as a function
of the initial neutrino energy E, both on a linear and on a
logarithmic scale. The dashed and solid lines in this figure show
the predictions from Tables II and IV of Ref. [8] obtained with
the AV18 potential and with the single-nucleon current as well
as with the single-nucleon current supplemented by the 2N
currents linked to the AV18 potential. The difference between
these two curves highlights the importance of the 2N currents
for this reaction. The third, dotted, line is used to display results
of our nonrelativistic calculations, carried out in momentum
space with the AV18 potential and with the single-nucleon
current. Here and in the following by “nonrelativistic calcu-
lations” we mean calculations that combine nonrelativistic
nuclear dynamics with a nonrelativistic approach to nuclear
kinematics. As mentioned, we use realtivistic formulas for
lepton kinematics. Clearly, for the energies E � 100 MeV, all
three predictions essentially overlap, but for higher energies
effects of 2N contributions to the current operator are visible.
The relativistic treatment of the nuclear kinematics by Shen
et al. [8] leads to a clear spread between the dashed and the
dotted line.

Elastic NC-driven (anti)neutrino scattering on 2H has not
been considered in Refs. [8,52]. It was studied, for example,
by Frederico et al. [82] and later by Butler et al. [83], who
investigated also the neutrino-deuteron break-up reactions
within a χEFT approach at next-to-leading order. The authors
of Ref. [83] derived analytical expressions for the elastic
(anti)neutrino-deuteron scattering cross section but did not
yield direct results for the total cross sections. They were
interested in the effects caused by the presence of the strange
quarks in the deuteron. If the strangeness in the deuteron
is neglected, then the results for the elastic channel are
not only flavor independent but just the same for neutrino
and antineutrino scattering. That is exactly the case for our
calculations presented in Fig. 3. At the low (anti)neutrino
energies considered here, this reaction is extremely hard to
measure, due to the very small deuteron recoil energy. In
addition, this reaction channel is strongly suppressed, as can be
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FIG. 3. The total cross section for the elastic NC (anti)neutrino scattering off the deuteron as a function of the initial (anti)neutrino energy
E, shown on a linear scale (a) and on a logarithmic scale (b). The solid line displays results of nonrelativistic momentum space calculations
from the present work obtained with the AV18 potential and with the single-nucleon current. These results are flavor independent and are the
same for neutrino and antineutrino scattering. In addition, the dash-dotted line corresponds to the results from Butler et al. [83], ignoring the
strangeness contents of the deuteron. See text for more details.

seen in Fig. 3, resulting in very small values of the total cross
sections. In Fig. 3, beside our predictions, we show also the
results derived from Eq. (34) in Ref. [83], setting the strange
form factors to zero and calculating the FC form factor using
the simple leading-order (LO) expression given by Eq. (31) in
that reference. For low (anti)neutrino energies, where the LO
formula is valid, both types of results nicely agree and clearly
diverge in the higher-energy region.

The inelastic NC-induced reactions with the deuteron have
been considered in Ref. [8], and in Fig. 4 we again compare
results based on coordinate-space and momentum-space ap-
proaches for the antineutrino scattering. As in Fig. 2, we use
results of Ref. [8], now from Tables II and III, for the total
cross section for the ν̄e + 2H → ν̄e + p + n reaction. The solid
and dashed curves represent results from Ref. [8] with and
without 2N contributions in the weak neutral nuclear current
operator, accordingly. They have been calculated with the
relativistic kinematics, so for higher energies in both figures the
dashed lines visibly deviate from the dotted ones, representing
our nonrelativistic momentum space predictions. These purely
kinematical effects are of course essentially identical for the
CC and NC-driven reactions with electron (anti)neutrinos, as

the electron mass is very small compared to higher beam
energies, where to a good approximation the electron could
be treated as massless.

IV. RESULTS FOR NEUTRINO SCATTERING
ON 3He AND 3H

The results presented in this section have also been ob-
tained with the single-nucleon weak current operator from
Refs. [8,49,63] (see Eqs. (2.9)–(2.10) in Ref. [63]) and with
a nuclear Hamiltonian, which contains only the 2N potential
energy—the 3N force has been neglected.

The same formalism which has been successfully developed
for electron scattering and photodisintegration processes with
3N systems [79,80] as well as for muon capture on the 3N
bound states [63,71] is directly applicable to elastic, quasielas-
tic, and inelastic (anti)neutrino scattering on 3He and 3H. The
key elements of this formalism are presented in Sec. II.

First we consider the quasielastic electron antineutrino
scattering on 3He, leading to the positron and 3H nucleus in
the final state. In this process, the same as in muon capture,
weak CC operator changes the total charge of the nuclear
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FIG. 4. The total cross section for the ν̄e + 2H → ν̄e + p + n reaction as a function of the initial antineutrino energy E shown on a linear
scale (a) and on a logarithmic scale (b). The dashed (solid) line shows coordinate space predictions from Tables II and III of Ref. [8] obtained
with the AV18 potential and with the single-nucleon current (with the inclusion of single- and 2N terms in the weak current operator), employing
the relativistic kinematics. The dotted line displays results of nonrelativistic momentum space calculations from the present work obtained with
the AV18 potential and with the single-nucleon current.
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FIG. 5. The total cross section for the quasielastic CC ν̄e + 3He → e+ + 3H process as a function of the initial antineutrino energy E shown
on a linear scale (a) and on a logarithmic scale (b). The results are obtained with the AV18 NN potential and with the single-nucleon CC operator.

system. In Fig. 5 we show the total cross sections for the
ν̄e + 3He → e+ + 3H reaction as a function of the initial
antineutrino energy.

Further non-break-up reactions with trinucleons are pos-
sible only with the neutral current. In Fig. 6 we display
the predictions for the total cross section of the elastic
ν̄l + 3He → ν̄l + 3He, ν̄l + 3H → ν̄l + 3H, νl + 3He → νl +
3He, and νl + 3H → νl + 3H reactions as a function of the
initial (anti)neutrino energy. Despite very similar reaction
kinematics, the cross sections take quite different values.
The antineutrino-3He cross section is the smallest and the
neutrino-3H cross section reaches the highest values. Lines
representing neutrino-3He and antineutrino-3H cross sections
cross at E ≈ 150 MeV, with the former prevailing for the
higher energies. All four predictions are flavor independent.

It is important to note that the difference between the
predictions for the neutrino and antineutrino-induced reactions
on each nucleus comes solely from the replacement of Vij

functions from Eq. (2.24) by the V̄ij functions defned in
Eq. (2.25). In turn, the difference between the predictions for
the νl + 3He → νl + 3He and νl + 3H → νl + 3H reactions is
caused nearly exclusively by the proton (jp

NC) and neutron (jn
NC)

contributions in the following isospin matrix element:

I(t,mT ) ≡ 〈(
t 1

2

)
1
2 mT

∣∣ 1
2 [1 + τz(1)]jp

NC

+ 1
2 [1 − τz(1)]jn

NC

∣∣(t 1
2

)
1
2 mT

〉
, (4.1)

which yield in the 3He case (mT = 1
2 ) I(0, 1

2 ) = j
p
NC, I(1, 1

2 ) =
2
3jn

NC + 1
3j

p
NC, and in the 3H case (mT = − 1

2 ) I(0,− 1
2 ) = jn

NC,
I(1,− 1

2 ) = 2
3j

p
NC + 1

3jn
NC. The differences introduced by the

slightly different masses and wave functions of 3He and 3H
are practically negligible. The same is also true for the two
antineutrino-induced elastic reactions.

The CC- and NC-driven break-up reactions are definitely
more demanding than the formerly discussed ones due to the
complicated kinematics, which has to take into account two-
and three-body disintegration processes. Full inclusion of the
final-state interactions is even more challenging, especially
for the isospin-raising reactions-induced by the neutrinos, for
which two or three outgoing nucleons are charged.

In the studies of electron scattering on the trinucleons one
usually assumes that the initial electron energy, the electron
scattering angle and the final electron energy are known. This
information allows one to study the 3N scattering states at a
fixed 3N internal energy and at a fixed total 3N momentum.
In the case of the (anti)neutrino induced processes one is
interested predominantly in the total cross sections, which
necessitates a calculation of at least hundreds of the neutrino
kinematics. Even for the (anti)neutrino reactions with the
deuteron calculations are indeed time consuming.

It is then important to realize that the essential dynamical
quantities for inclusive reactions, the so-called response func-
tions Ri , depend on two parameters only. These parameters
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FIG. 6. The total cross section for the elastic NC-driven reactions ν̄l + 3He → ν̄l + 3He (solid line), ν̄l + 3H → ν̄l + 3H (dashed line),
νl + 3He → νl + 3He (dotted line), and νl + 3H → νl + 3H (dash-dotted line) as a function of the initial (anti)neutrino energy E shown on a
linear scale (a) and a logarithmic scale (b). The results are obtained with the AV18 NN potential and the single-nucleon NC operator.

015501-10



MOMENTUM SPACE TREATMENT OF INCLUSIVE … PHYSICAL REVIEW C 98, 015501 (2018)

 0

 20

 40

 60

 80

 100

 0  30  60  90  120  150  180

 E
’ [

M
eV

] 

Θ [deg] 

 (a) 

 0

 40

 80

 120

 160

 200

 0  20  40  60  80  100

 Q
 [M

eV
/c

] 

ω [MeV] 

 (b) 

FIG. 7. The ranges of various kinematical quantities describing the kinematics of the NC-driven break-up of 3H for the initial (anti)neutrino
energy E = 100 MeV. In (a) the outgoing (anti)neutrino energy and the scattering angle are considered, while in (b) the magnitude of the
three-momentum transfer is plotted versus the energy transfer.
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FIG. 8. The inclusive CC response functions R00,CC (a), RZZ,CC (b), RMM,CC (c), RZ0,CC (d) and RPP,CC (e) for the electron antineutrino
disintegration of 3He as a function of the internal 3N energy Ec.m. for the fixed value of the three-momentum transfer Q = 100 MeV/c. The
results are obtained with the AV18 NN potential and the single-nucleon CC operator. The dotted line shows the contribution from final nuclear
states with the total isospin T = 1

2 and the dash-dotted line represents the total response function obtained from the total isospin T = 1
2 and

T = 3
2 states. The dashed line depicts the part of the response function stemming from the two-body break-up channel and the solid line the total

response function, receiving contributions from both two- and three-body break-up states. Note that the dash-dotted and solid lines overlap.
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FIG. 9. The inclusive NC response functions R00,NC (a), RZZ,NC (b), RMM,NC (c), RZ0,NC (d), and RPP,NC (e) for the (anti)neutrino disintegration
of 3H as a function of the internal 3N energy Ec.m. for the fixed value of the three-momentum transfer Q = 100 MeV/c. The results are obtained
with the AV18 NN potential and the single-nucleon NC operator. Lines as in Fig. 8.

are the energy transfer ω and the magnitude of the three-
momentum transfer Q ≡ |Q|. We show in Fig. 7 the ranges
of these quantities for the NC neutrino inelastic scattering for
the initial (anti)neutrino energy E = 100 MeV. Of course the
same statement is true also for the CC-induced reactions, so
in both cases the total cross sections are built from the purely
kinematical input and the response functions, calculated in the
whole physical ω-Q region.

The response functions Ri ≡ Ri(ω,Q) stem from various
products of the nuclear matrix elements: R00 ∝ |N0|2, RZZ ∝
|Nz|2, RMM ∝ |N−1|2, RZ0 ∝ Re(N0(Nz)�), and RPP ∝
|N+1|2, receiving contributions from all the final nuclear states.
Using the approach described in Eq. (2.43), these contributions
can be separately calculated for the two values of the total
3N isospin, T = 1

2 and T = 3
2 . On the other hand, the same

sum over the final nuclear states can be performed over the
physical two-body and three-body fragmentation channels. An
agreement between these two approaches provides a nontrivial
test of numerics.

In this work we restrict ourselves to a sample of results for
the CC and NC response functions. They are calculated for the
fixed value of the three-momentum transfer Q = 100 MeV/c
as a function of the internal 3N energy Ec.m.. The latter quantity
is simply related to the energy transfer. For example, in the case
of the antineutrino CC break-up of 3H it reads

Ec.m. = ω + M3H − 3Mn − Q 2

6Mn

, (4.2)

where the M3H and Mn are the triton and neutron masses,
respectively.

The five inclusive CC response functions Ri,CC for the
electron antineutrino disintegration of 3He are shown in Fig. 8.
They all have a very similar shape, known also from inclusive
electron-nucleus scattering (see, for example, Ref. [84]): They
start from zero at threshold, rise to reach a maximum, whose
position corresponds to antineutrino scattering elastically from
a moving bound nucleon, and slowly tend to zero for higher
Ec.m. values. In Fig. 8 we show also separate contributions
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FIG. 10. The same as in Fig. 9 for the (anti)neutrino disintegration of 3He.

from the total isospin T = 1
2 states (dotted line) and from

the two-body break-up channel (dashed line), while the total
response function is computed either as a sum of the T = 1

2 and
T = 3

2 parts (dash-dotted line) or as a sum over the two- and
three-body break-up contributions (solid line). As expected,
for each Ri the dash-dotted and solid lines overlap and the
relative distance between the solid and dotted lines provides
information about the importance of the T = 3

2 (present only
in the three-body break-up) contribution. The corresponding
difference between the solid and dashed lines provides infor-
mation about the contribution to the total response function
from the three-body break-up channel.

In the same way we display the inclusive NC response
functions Ri,NC for the (anti)neutrino disintegration of 3H in
Fig. 9 and for the (anti)neutrino disintegration of 3He in Fig. 10.
These response functions are the same for the neutrino and
antineutrino-induced reactions. From Figs. 9 and 10 we infer
that both the T = 3

2 and the three-body break-up contributions
to the inclusive NC response functions are relatively much
more important than for the CC response functions. Our
predictions for the (anti)neutrino disintegration of 3He suffer

from the lack of Coulomb force in the calculations of the
final nuclear states. Our experience from investigations of
electron scattering on 3He tells us, however, that the Coulomb
force does not substantially affect inclusive response functions.
Within our present framework we cannot describe CC neutrino-
induced processes with three protons in the final state.

V. SUMMARY AND CONCLUSIONS

A consistent framework for the calculations of several
neutrino-induced processes on 2H, 3He, 3H and other light
nuclei is still a challenge, despite recent progress in this field.
There are many models of the nuclear interactions and weak
current operators linked to these forces, but full compatibility
has not been achieved yet. The work on the regularization of
the chiral potentials and electroweak current operators is in
progress and the crucial issue of the current conservation has
to be ultimately solved. Additional problems arise from the
fact that (anti)neutrinos can transfer a lot of energy and three-
momentum to the nuclear system which requires a relativistic
treatment of both kinematics and dynamics.
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In the present paper we studied selected two- and three-
nucleon reactions with (anti)neutrinos in the framework close
to the one of Ref. [8] but with the single-nucleon current
operator. For most of the reactions we provided predictions
for the total cross sections. In the case of the (anti)neutrino-
3He and (anti)neutrino-3H inelastic scattering, we computed
examples of the essential response functions.

Our calculations for the reactions with the deuteron were a
necessary test before embarking on 3N calculations, although,
contrary to Ref. [8], we restricted ourselves to the lower
(anti)neutrino energies. But even in this more restricted range
of neutrino energies relativistic effects in the kinematics were
thoroughly checked with the result that the main difference be-
tween the relativistic and nonrelativistic kinematics stemmed
from the form of the phase-space factor. We worked exclusively
in momentum space, treating also the Coulomb interaction
between the two outgoing protons in the form of a sharply cut
off potential. This is justified because current matrix elements
become negligible for sufficiently large distances between
two nucleons. Last but not least, very important elements
of the formalism—2N scattering states in the partial wave

representation—were cross checked using the results from the
momentum and coordinate space calculations.

The full understanding of the studied (anti)neutrino-induced
processes requires the inclusion of at least 2N contributions
to the nuclear current operators and, especially at larger
(anti)neutrino energies, consistent relativistic treatment of
kinematics and dynamics. Note that momentum space offers an
easier possibility to use the “boosted potential,” which has been
already employed in various relativistic studies of few-nucleon
systems [64–70]. We plan to work along this line and perform
more complete calculations in the near future, ultimately with
chiral dynamical input. We believe, however, that the predic-
tions presented here can serve as an important benchmark.
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