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Coherent μ-e conversion at next-to-leading order
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We analyze next-to-leading-order (NLO) corrections and uncertainties for coherent μ-e conversion. The
analysis is general, but numerical results focus on 27Al, which will be used in the Muon-to-electron conversion
(Mu2e) experiment. We obtain a simple expression for the branching ratio in terms of Wilson coefficients
associated with possible physics beyond the standard model and a set of model-independent parameters determined
solely by standard model dynamics. For scalar-mediated conversion, we find that NLO two-nucleon contributions
can significantly decrease the branching ratio, potentially reducing the rate by as much as 50%. The pion-nucleon
σ term and quark masses give the dominant sources of parametric uncertainty in this case. For vector-mediated
conversion, the impact of NLO contributions is considerably less severe, while the present theoretical uncertainties
are comparable to parametric uncertainties.
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I. INTRODUCTION

Despite its many successes, the standard model (SM) has
several phenomenological and theoretical shortcomings. Phe-
nomenologically, the standard model provides no explanation
for cosmic matter-antimatter asymmetry, the relic density of
cold dark matter, or the dark energy associated with cosmic
acceleration. The observation of neutrino oscillations requires
extending the SM to account for nonzero neutrino masses.
Theoretically, the SM suffers from a hierarchy problem, does
not explain the quantization of electric charge, and simply
parameterizes the vast range of elementary fermion masses
and an associated mixing between flavor and mass eigenstates.

The flavor problem remains, indeed, one of the most vexing.
In the charged lepton sector, the presence of flavor mixing
among the light neutrinos implies nonvanishing, though un-
observably small, rates for flavor nonconserving processes,
such as μ → eγ . Scenarios for physics beyond the standard
model (BSM), however, can allow for significantly larger
rates for such processes. The observation of charged lepton
flavor violation (CLFV) may thus point to one or more of
these proposals and shed new light on the flavor problem.
This possibility motivates several current and future CLFV
searches, such as the MEG experiment at the Paul Scherrer
Institute (PSI) that has recently placed a limit of <4.2 × 10−13

on the branching ratio for μ → eγ [1]; the upcoming Mu2e and
COherent Muon to Electron Transition (COMET) experiments
at Fermilab and Japan Proton Accelerator Research Complex
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(J-PARC), respectively, which will search for CLFV through
the process of coherent μ-e conversion in the presence of a
nucleus [2,3]; and the possible search for μ → 3e at PSI. For
recent experimental and theoretical reviews, see Refs. [4,5].

In this study, we focus on the process of coherent μ-e
conversion. The quantity of interest is the branching ratio

B(μ − e) = μ− + A(Z,N ) → e− + A(Z,N )

μ− + A(Z,N ) → νμ + A(Z − 1, N )
, (1)

where the denominator is the rate for muon capture on a
nucleus with Z protons and N neutrons with A = Z + N . The
standard model branching ratio for this process is predicted to
be of the order B(μ − e) ≈ 10−54 [6,7]. At present, the best
experimental bounds are from the SINDRUM II Collaboration
which has constrained B(μ − e) < 7 × 10−13 [2,8]. The next
generation experiments, Mu2e and COMET, are expected to
improve these bounds by roughly four orders of magnitude,
B(μ − e) � 5 × 10−17 [2,3].

Previous studies of coherent conversion have focused on
leading order processes and their uncertainties [9–12]. The
primary goal of this work is to extend the analysis of coherent
conversion to include next-to-leading-order (NLO) corrections
and their uncertainties. We focus primarily on phenomenolog-
ical, dimension-6 effective semileptonic operators that may
induce this CLFV conversion process. The framework of
SU (2) chiral perturbation theory (ChPT) can then be used to
relate operators in the phenomenological CLFV Lagrangian
written in terms of quarks to the hadronic degrees of freedom
relevant for nuclear physics dynamics. As the momentum
transfer scale in coherent conversion is set by the muon
mass and because the nucleons have no net strangeness,
one might expect SU (2) ChPT to be adequate for present
purposes. However, CLFV operators involving strange quarks
will still contribute to the conversion process. To assess the
possible quantitative impact of these operators, we include
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TABLE I. Table of branching ratio parameters for scalar-mediated conversion.

Parameter Value LO contribution NLO loop NLO two-nucleon

α
(1)
S,ud 43+15

−12 65±11 −2.71±0.30 −18.8+9.5
−1.6

α
(1)
S,s 3.71±0.93 3.71±0.93

α
(1)
S,� 8.43±0.13 8.43±0.13

α
(2)
S,ud 32+11

−8 47.1±8.3 −1.96±0.22 −13.6+6.9
−1.2

α
(2)
S,s 2.69±0.67 2.69±0.67

α
(2)
S,� 6.11±0.10 6.11±0.10

α
(3)
S,ud −32+8

−11 −47.4±8.3 1.96±0.22 13.7+1.2
−7.0

α
(3)
S,s −2.70±0.68 −2.70±0.68

α
(3)
S,� −6.15±0.10 −6.15±0.10

α
(4)
S,ud −43+12

−15 −65±11 2.68±0.29 18.7+1.6
−9.5

α
(4)
S,s −3.70±0.93 −3.70±0.93

α
(4)
S,� −8.41±0.13 −8.41±0.13

their leading-order contributions via SU(2) flavor singlet terms
in the chiral Lagrangian. Doing so is preferable to the use of full
SU(3) ChPT as it allows for better control of both theoretical
uncertainties and uncertainties introduced by the low-energy
constants of the chiral Lagrangian as shown in Refs. [12,13].
We find that the strange quark contributions are generally small
compared to other theoretical and parametric uncertainties, as
seen in Table I. Thus, the use of SU(2) ChPT in this context
should be robust.

The primary results of this investigation are given in
Eqs. (2), (3), and (9) and Tables I and II. We summarize these
results here for convenience. The branching ratio for coherent
conversion can be written as a sum of four separate amplitudes,
one for each spin configuration of the system,

B(μ − e)A =
( v

�

)4[∣∣τ (1)
A
∣∣2 + ∣∣τ (2)

A
∣∣2 + ∣∣τ (3)

A
∣∣2 + ∣∣τ (4)

A
∣∣2].

(2)
Here, A = S(V ) indicates a scalar (vector)-mediated conver-
sion process; v = 246 GeV is the Higgs vacuum expectation
value (VEV); � is the mass scale associated with the BSM
CLFV dynamics; and the indices w ∈ {1, 2, 3, 4} denote each
unique configuration as defined in Appendix F.

TABLE II. Table of branching ratio parameters for
vector-mediated conversion.

Parameter Value

α
(1)
V,u 12.25 ± 0.13

α
(1)
V,d 12.23 ± 0.27

α
(2)
V,u −9.65± 0.11

α
(2)
V,d −9.63± 0.21

α
(3)
V,u −9.68± 0.11

α
(3)
V,d −9.67± 0.21

α
(4)
V,u 12.19 ± 0.13

α
(4)
V,d 12.18 ± 0.27

Within each conversion amplitude, it is possible to separate
all model-independent parameters from the Wilson coeffi-
cients of the specific CLFV theory. Doing so for the case of
scalar-mediated conversion yields∣∣τ (w)

S

∣∣2 =
∣∣∣∣∣α(w)

S,ud

(
CS,L

u ± CS,R
u

2

)
+ α

(w)
S,ud

(
C

S,L
d ± C

S,R
d

2

)

+α
(w)
S,s

(
CS,L

s ± CS,R
s

2

)
+ α

(w)
S,�

(
C

S,L
� ± C

S,R
�

2

)∣∣∣∣∣
2

,

(3)
where the CS,L

q (CS,R
q ) denote the Wilson coefficients for

a scalar interaction involving a left- (right-)handed muon
interacting with a light quark of flavor q = (u, d, s) as defined
in Eq. (14); where C

S,L
� (CS,R

� ) give the corresponding heavy
quark contributions entering via the energy-momentum tensor;
and where positive (negative) signs are used for w ∈ {1, 3}
(w ∈ {2, 4}). All model-independent parameters have been
absorbed in the definitions of the α’s. These parameters are
defined in Appendix G and their numerical values are given in
Table I.

Important for this work are the relative magnitudes of the
LO, NLO one-loop, and NLO two-nucleon contributions for
the scalar-mediated amplitudes. Each contribution contains a
common factor of√

mμ

ωcapt

( mμ

4πv

)2
= 0.5563 ± 0.0005, (4)

where ωcapt is the muon capture rate. For u and d quarks, the
LO contribution is obtained from the pion-nucleon σ term

α
(1)
S,ud (LO) =

√
mμ

ωcapt

( mμ

4πv

)2 σπN

2m̂

(
I

(1)
S,p + I

(1)
S,n

) = 65 ± 11,

(5)
where m̂ is the average of u- and d-quark current masses, σπN

is the pion-nucleon σ -term, and the I
(1)
S,N are integrals involving

the overlap of incoming and outgoing lepton wave functions
with the distributions of nucleons N . The definition of I

(1)
S,N in

terms of overlap integrals can be found in Appendix F.

015208-2



COHERENT μ-e CONVERSION AT NEXT-TO- … PHYSICAL REVIEW C 98, 015208 (2018)

The NLO one-loop contribution is given by

−α
(1)
S,ud (NLO loop) =

√
mμ

ωcapt

( mμ

4πv

)2
(

3B0mπg̊2
A

64πf̊ 2
π

)
�

(1)
S

= 2.71 ± 0.30, (6)

where B0 = 2.75 ± 0.11 GeV normalizes the scalar source in
the chiral Lagrangian (see Sec. III below); mπ and f̊π are the
pion mass and LO pion decay constant; g̊A is the LO nucleon
axial coupling; and

�
(1)
S = (Ĩ (1)

S,p + Ĩ
(1)
S,n

)− (I (1)
S,p + I

(1)
S,n

) = 3.96 ± 0.39, (7)

with the Ĩ
(1)
S,N denoting additional overlap contributions asso-

ciated with the one-loop amplitudes. The latter depend on
the momentum transfer |�q| to the outgoing electron. The
appearance of the difference between the Ĩ

(1)
S,N and I

(1)
S,N reflects

the vanishing of the one-loop amplitudes in the |�q| → 0 limit.
Note that for finite |�q|, α

(1)
S,ud (NLO loop) is finite in the mq →

0 limit; the explicit mπ appearing in the prefactor of Eq. (6) is
compensated by a 1/mπ in �

(1)
S .

The NLO two-nucleon contribution generates a signifi-
cantly larger correction, given by

−α
(1)
S,ud (NLO NN) =

√
mμ

ωcapt

( mμ

4πv

)2
(

3B0KF g̊2
A

64πf̊ 2
π

)
× f SI

eff

(
I

(1)
S,p + I

(1)
S,n

) = 18.8+1.6
−9.5, (8)

where KF is the nuclear Fermi momentum and f SI
eff =

1.05+0.07
−0.53 is obtained by performing a one-body Fermi gas

average of the two-nucleon amplitude over a spin- and isospin-
symmetric core. Note that both the NLO loop and NLO two-
nucleon contributions enter with an opposite sign compared
to the LO amplitude, thereby reducing the sensitivity to the
CS,L

q . The impact of the two-nucleon term may be particularly
severe, with a reduction of up to ∼25% (50%) of the LO
amplitude (rate), although the uncertainty in that estimate is
also significant. A similar decomposition applies to the relative
magnitudes of the α

(w)
S,ud . We discuss the details leading to these

results in the subsequent sections of the paper.
In the case of vector-mediated CLFV, the conversion am-

plitudes are given by

∣∣τ (w)
V

∣∣2 =
∣∣∣∣∣α(w)

V,u

(
CV,L

u ± CV,R
u

2

)
+ α

(w)
V,d

(
C

V,L
d ± C

V,R
d

2

)∣∣∣∣∣
2

.

(9)
Once again, the positive signs are used for w ∈ {1, 3}, while the
negative signs are used for w ∈ {2, 4}. The model-independent
α’s are defined in Appendix G and their numerical values are
given in Table II. The coherent vector amplitudes receive no
NLO contributions via either loops or two-nucleon amplitudes.
In the latter instance, the result is well known from the analysis
of meson-exchange contributions to the nuclear electromag-
netic current. The leading nontrivial corrections to the charge
operator appear at NNLO, whereas the three-current receives
NLO contributions. The latter, however, is not a coherent
operator, so we do not consider the analogous current for the
vector-mediated conversion process.

Numerical results for the model-independent parameters
α

(1)
S,ud etc. are given in Tables I and II. As noted above, the

NLO two-nucleon contributions may significantly degrade
the sensitivity to the scalar-mediated interactions, whereas
the vector-mediated sensitivities are unaffected to this order.
We also note that the dominant sources of uncertainty in the
scalar-mediated branching ratio comes from the LO and NLO
two-nucleon terms. The LO uncertainties are limited by the
determination of the nucleon σ terms and quark masses. At
NLO, the one-body Fermi gas averaging of the two-nucleon
term is the dominant source of uncertainty. This is again in
contrast to the case of vector-mediated conversion, for which
the parametric and nuclear uncertainties are of the same order
of magnitude as one expects for the NNLO contributions which
are not explicitly computed in this work.

This paper is organized as follows: In order to facilitate the
reader following the primary logic of our study, we relegate
significant material to a number of appendixes that accompany
the various sections. In Sec. II, we introduce the low-energy
phenomenological effective CLFV Lagrangian and discuss the
corresponding Wilson coefficients. Section III and the accom-
panying Appendixes A and B review the formalism of ChPT.
We apply this framework to scalar-mediated CLFV in Sec. IV,
deriving the LO and NLO matching of the phenomenological
CLFV operators onto the low-energy hadronic interactions at
the one- and two-nucleon level. The one-body average of the
two-nucleon interaction is discussed in Sec. V and Appendix D.
In Sec. VI, we consider the case of vector-mediated CLFV. The
focus then turns to the sources of theoretical hadronic uncer-
tainties in Sec. VII and Appendix C. Section VIII discusses the
calculation of the muon and electron wave functions, while
Sec. IX and Appendix E examine uncertainties introduced
by the nuclear density distributions. The branching ratio is
calculated in Sec. X and the accompanying Appendixes F
and G, leading to our master formula in Eq. (2). The impact
of the next-to-leading-order corrections and uncertainties on
the upcoming CLFV experiments is discussed in Sec. XI.
We summarize our main results in Sec. XII and provide
Appendix G as a summary of how these results may be
utilized.

II. QUARK-LEVEL CLFV LAGRANGIAN

There are a wide variety of extensions to the standard model
that allow for CLFV. For an incomplete list of representative
models, see, e.g., Refs. [14–24], and for more comprehensive
surveys of the literature, see Refs. [5,25]. Assuming that the
process mediating CLFV occurs at a mass scale significantly
greater than that of the momentum transfer involved in coherent
μ-e conversion, q2

T ≈ m2
μ, it suffices to concentrate on the low-

energy effective Lagrangian which includes only SM fields as
explicit degrees of freedom.

In principle, one may start with an effective Lagrangian
that respects the SU(3)C × SU(2)L × U(1)Y symmetry of the
SM. Since our focus is on physics at the hadronic scale and
below, we follow other authors [9–11] and work with an
effective theory in which only the SU(3)C × U(1)EM symmetry
is manifest. The lowest dimension conversion operators of
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interest appear at mass dimension 6:

LCLFV =
∑

f =u,d,s,c,b,t

1

�2

[
λ

S,L
f ēPLμ+ λ

S,R
f ēPRμ+ H.c.

]
q̄f qf

+
∑

f =u,d,s,c,b,t

1

�2

[
λ

V,L
f ēγ νPLμ + λ

V,R
f ēγ νPRμ

+ H.c.
]
q̄f γνqf . (10)

In principle, parity-odd terms that couple to the pseudoscalar
and axial-vector quark currents could be included, but this is
not done as these contributions will be suppressed in coherent
conversion. We also do not include the dipole operators relevant
to μ → eγ as their contributions to the coherent conversion
process are typically suppressed relative to contributions from
the scalar and vector interactions in Eq. (10).

In coherent conversion, the momentum transfer is roughly
equal to the muon rest mass. As such, the dominant con-
tributions from heavy quarks arise through loop diagrams.
Integrating out the heavy quarks results in an effective gluonic
coupling that can be related to the stress energy tensor through
the trace anomaly [26]. This procedure yields the Wilson
coefficients

C
S,X
f = λ

S,X
f − 2

27

∑
h=c,b,t

mf

mh

λ
S,X
h , (11)

C
V,X
f = λ

V,X
f , (12)

CX
� = 2

27

∑
h=c,b,t

mN

mh

λ
S,X
h , (13)

where mN is the nucleon mass andX = L,R denotes the muon
handedness. The resulting CLFV effective Lagrangian is

LCLFV =
∑

f =u,d,s

1

�2

[
C

S,L
f ēPLμ + C

S,R
f ēPRμ + H.c.

]
q̄f qf

+
∑

f =u,d,s

1

�2

[
C

V,L
f ēγ νPLμ+ C

V,R
f ēγ νPRμ+ H.c.

]
× q̄f γνqf

+ 1

MN�2

[
CL

�ēPLμ + CR
� ēPRμ + H.c.

]
�μ

μ. (14)

For compactness of notation, we will define the effective CLFV
currents

Jf = C
S,L
f ēPLμ + C

S,R
f ēPRμ + H.c., (15)

J ν
f = C

V,L
f ēγ νPLμ + C

V,R
f ēγ νPRμ + H.c., (16)

J� = CL
�ēPLμ + CR

� ēPRμ + H.c., (17)

which couple to the quark scalar current, quark vector current,
and trace of the stress energy tensor respectively.

The Lagrangian in (14) enables a model-independent analy-
sis of different theories with high-scale CLFV. However, it will
be used to describe CLFV processes involving light quarks
at the energy scales where QCD is nonperturbative and the
relevant degrees of freedom are nucleons and mesons. The
appropriate framework for doing this is ChPT.

III. CHIRAL POWER COUNTING AND CHIRAL
LAGRANGIANS

ChPT is the low-energy effective field theory of QCD
[27]. At low energies QCD becomes confining, which makes
perturbative calculations with quarks and gluons intractable.
Rather than using quarks and gluons as the fundamental
degrees of freedom, ChPT replaces them with the bound states
of mesons and baryons. Beyond these dynamical fields, ChPT
can also include external source fields. These external sources
will be used to incorporate the effective CLFV operators.

Starting from (14), one may use ChPT to relate the CLFV
currents to an effective theory with multiple unknown LECs
that must be matched onto experimental results. As is done
in Appendix A, it can be shown that these LECs are related
to known nuclear matrix elements that appear in standard
ChPT. The scalar and vector CLFV currents then appear in
the chiral Lagrangian in an analogous manner to the quark
mass and electromagnetic insertions, respectively. However,
as the CLFV currents do not scale with the quark mass, they
are assigned chiral order O(1). While O(1) in chiral power
counting, the CLFV operators are still small in the sense that
they correspond to high-scale physics and thus we may restrict
our attention to terms with only a single CLFV insertion.

The inclusion of baryons in the chiral Lagrangian introduces
additional complications in power counting beyond leading
order. One well-established method for dealing with these dif-
ficulties is heavy baryon chiral perturbation theory (HBChPT)
[28]. This method requires a choice of reference velocity
Vμ such that the decomposition of a nucleon’s momentum,
Pμ = mNVμ + kμ, yields a value of kμ that is small compared
to the chiral scale. For present purposes, the reference velocity
is chosen to be Vμ = (1, 0, 0, 0) in the rest frame of the
target nucleus. As a result, the magnitude of the residual
three-momentum will be of the same order as the nuclear Fermi
momentum, |�k| ≈ KF ∼ O(q ).

As noted in Sec. II, the momentum transfer scale for
coherent conversion is set by the muon mass, mμ ≈ 106 MeV,
which is comparable to the strange quark mass, ms ≈ 92 MeV.
Consequently, one should explicitly include the strange quark
in the effective theory. On the other hand, the momentum
transfer scale is not much greater than the strange quark mass
and the nucleons have no net strangeness. Therefore, one might
expect that the contributions of CLFV operators containing
strange quark fields will be significantly smaller than the
contributions of those coupling through the up and down
quarks. If so, it may be advantageous to use SU(2) ChPT with
the leading-order contributions of the strange quark operators
treated as additional singlets under the flavor symmetry rather
than resorting to SU(3) ChPT. As has been demonstrated
previously [12,13], chiral SU(2) allows for better control of
both theoretical uncertainties and uncertainties introduced by
the low-energy constants (LECs) of the chiral Lagrangian than
is possible with chiral SU(3). A priori, the choice of chiral
SU(2) is not necessarily justified. However, the smallness of
the strange quark contribution is borne out numerically in the
results of Tables I and II, justifying this approach.

Including the strange quark singlets in the chiral Lagrangian
introduces an additional set of LECs that must be matched onto
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experimental results. The full set of relevant building blocks
for the chiral Lagrangian and the complete chiral Lagrangian
can be found in Appendix A.

Lastly, chiral power counting for complete Feynman dia-
grams needs to be examined, in particular, how chiral power
counting applies to multinucleon diagrams. One convenient
power counting scheme only depends on the vertices and
topological properties of the diagram [29–31]. An operator
from the purely pionic sector L(n)

ππ is assigned the effective
chiral power ε = n − 2 while operators from the pion-nucleon
Lagrangian L(n)

πN are given ε = n − 1. This effective chiral
power is lower than the chiral order of the Lagrangian because
the scaling of the propagators associated with a vertex must
now be included with the vertex. This allows any diagram to be
assigned an effective chiral order based on the following rule,

ν = 4 − A − 2C + 2L +
∑

i

Viεi + εCLFV, (18)

where A is the number of external nucleons, C is the number
of connected parts of the diagram, L is the number of loops,
Vi is the number of vertices with effective chiral power εi , and
εCLFV is the effective chiral power of the CLFV operator used.

IV. SCALAR-MEDIATED CONVERSION

For the case of scalar-mediated conversion, the CLFV
vector currents can be eliminated, leaving the Lagrangian

L(0)
ππ = f̊ 2

π

4
Tr[χ (U † + U )], (19)

L(0)
πN = N̄

(
c̄5
{
χ (U + U †) − 1

2 Tr[χ (U + U †)]
}

+ c̄1Tr[χ (U + U †)] + dS
1 χs

)
N. (20)

The operators χ and χs encapsulate insertions of the CLFV
currents while the coefficients c̄1, c̄5, and dS

1 are LECs that
must be matched onto experimental data; see Appendix A.
The constant c̄1 is related to the nucleon mass in the isospin-
symmetric limit, the constant c̄5 corresponds to the tree-level,
isospin-breaking difference in the proton and neutron masses,
and dS

1 is related to the strange quark contribution to the
nucleon mass.

There are only two types of scalar insertion vertices that
contribute at LO or NLO: insertion on a pion line fromL(0)

ππ with
effective chiral power εCLFV = −2 and insertion on a nucleon
line fromL(0)

πN with εCLFV = −1. It should be stressed that these
are the effective chiral powers used with the power counting
scheme in (18) and do not correspond to how these terms in the
Lagrangian scale with the power of mπ or small momentum q.
There are additional types of vertices at the same chiral order,
but these will involve an even number of extra pions connected
to the vertex; as such, these vertices can only contribute to
diagrams at NNLO and beyond.

There are four possible diagrams that may contribute at LO
and NLO. These can be divided into three categories:

(1) Single nucleon, tree level: The diagram of interest can
be seen in Fig. 1(a). This consists of just the scalar
insertion from L(0)

πN on a single nucleon line that enters
at effective chiral order ν = 3 − 3A.

k1 k
′
1

(a)

k1 k
′
1

(b)

k1 k
′
1

(c)

k2

k1

k
′
2

k
′
1

(d)

FIG. 1. The set of Feynman diagrams that contribute to coherent
μ-e conversion through NLO in a scalar-mediated model of CLFV.
The fermionic and scalar lines correspond to nucleons and pions
respectively. The shaded vertex represents an insertion of a CLFV
operator. For diagrammatic simplicity, the leptonic line is not featured
but would connect to the CLFV vertex. (a) Leading order diagram
consisting of a tree level insertion of a CLFV vertex. (b) Next-to-
leading order diagram with a purely pionic loop and single nucleon.
(c) Next-to-leading order sunset diagram with an internal pion and
single nucleon. (d) Next-to-leading order diagram that involves the
exchange of a pion between two nucleons.

(2) Single nucleon, one loop: There are two possible dia-
grams that involve a pionic loop and a single nucleon.
One diagram, Fig. 1(b), consists of a single pion-
nucleon vertex where the pion lines make a loop with
the scalar insertion. The other, shown in Fig. 1(c), is a
sunset diagram with two pion-nucleon vertices where
the scalar insertion happens on the internal pion line.
Both of these diagrams involve the insertion of a CLFV
operator from L(0)

ππ and enter at effective chiral order
ν = 4 − 3A. The diagram with a purely pionic loop,
Fig. 1(b), must vanish because the scalar insertion is
symmetric in flavor indicies while the pion-nucleon
vertex is antisymmetric.

(3) Two-nucleon, tree level: The diagram of interest can be
seen in Fig. 1(d). Two nucleons exchange a pion and
the scalar insertion occurs on the internal pion line. The
CLFV vertex is from L(0)

ππ and thus this diagram enters
at effective chiral order ν = 4 − 3A.

It should be noted that these four diagrams have been
analyzed previously in the context of dark matter direct
detection with an SU(3) chiral Lagrangian [31]. The present
formulation differs primarily in the use of an SU(2) chiral
Lagrangian to allow better control of uncertainties and a
different treatment of the two-nucleon contribution. The
present results were derived independently and agree with
those of Ref. [31] in the limit of chiral SU(2). We also note
that recent studies of two-nucleon scalar currents relevant
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to dark matter-nucleus scattering have been performed in
Refs. [32–34] using chiral effective field theory.

The diagrams involving only a single nucleon can be readily
evaluated. Taken together, these three diagrams result in an
effective nucleon-level CLFV Lagrangian,

L1−N = N̄

{
(2c̄1 − c̄5)Tr[χ ] + 2c̄5χ + dS

1 χS + 1

�2
Jθ

− 3B0mπg̊2
A

64πf̊ 2
π �2

(Ju + Jd )

×
[

2 + Xπ√
Xπ

arccot

(
2√
Xπ

)
− 1

]}
N, (21)

where the quantity Xπ = (�qT )2/m2
π depends on the three-

momentum transferred to the nucleus, �qT . The contribution
from the stress-energy tensor has also been included in this
effective Lagrangian.

The Lagrangian (21) can be further simplified by relating
the LECs from SU(2) ChPT to the contributions of the quark
condensates to the proton and neutron masses. The difference
between the proton and neutron masses is a NNLO effect that
arises from isospin-symmetry breaking [35,36]. Thus, we may
take c̄5 = 0 as this is the LEC responsible for the mass splitting.
The remaining LEC, c̄1, may be expressed at NLO accuracy in
terms of f N

u (f N
d ), the fraction of the nucleon mass due to the

u- (d-)quark condensate, as

−4B0c̄1 = mNf N
u

mu

= mNf N
d

md

. (22)

Similarly, as shown in Appendix B, the unknown LEC for
the strange operator, dS

1 , can be matched onto the nucleon
mass contribution from the strange quark condensate, f N

s .
Rewritting χ and χS in terms of the effective CLFV currents
(see Appendix A), one finds the effective Lagrangian

L1−N = 1

�2
N̄

{
mNf N

u

mu

Ju + mNf N
d

md

Jd + mNf N
s

ms

Js + Jθ

− 3B0mπg̊2
A

64πf̊ 2
π

(Ju + Jd )

×
[

2 + Xπ√
Xπ

arccot

(
2√
Xπ

)
− 1

]}
N. (23)

However, as we are working to NLO in SU(2) ChPT, it
is more appropriate to parametrize the effective Lagrangian
in terms of the isospin-symmetry-breaking parameter ξ =
md−mu

md+mu
. We will also introduce the isospin-symmetric quantities

m̂ = mu+md

2 , the isospin-averaged quark mass, and σπN , the
pion-nucleon σ term.

As has been shown previously in the literature [12,13],
significant care must be taken to disentangle three flavor
uncertainties when providing the chiral expansion for f N

u

and f N
d . These chiral expansions are known through NNLO

[13]. As the present analysis of coherent μ-e conversion only
extends to NLO, one finds

mNf N
q = 1

2σπN (1 ∓ ξ ). (24)

In this expression, q is a placeholder index for the u- (d-)quark
condensate, which is given by the negative (positive) sign. In
terms of the isospin average quark mass, the u- (d-)quark mass
is given by the negative (positive) sign in mq = m̂(1 ∓ ξ ). It
is then straightforward to show using (24) that

mNf N
q

mq

= σπN

2m̂
. (25)

Making use of (25), one may rewrite (23) to arrive at the final
effective Lagrangian for the one-nucleon sector

L1−N = 1

�2
N̄

{
σπN

2m̂
(Ju + Jd ) + σsN

ms

Js + Jθ

− 3B0mπg̊2
A

64πf̊ 2
π

(Ju + Jd )

×
[

2 + Xπ√
Xπ

arccot

(
2√
Xπ

)
− 1

]}
N. (26)

In this expression, we have defined the strange-nucleon σ term
σsN = mNf N

s .
The two-nucleon sector only includes a single tree-level

diagram. This yields the effective two-nucleon Lagrangian

L2−N = − B0g̊
2
A

f̊ 2
π �2

(Ju + Jd )
1(

q2
1 − m2

π

)(
q2

2 − m2
π

)
×
∑

a

(N̄
′
1S · q1τaN1)(N̄

′
2S · q2τaN2). (27)

The quantities q1 = k1 − k
′
1 and q2 = k2 − k

′
2 are defined as

the difference between the initial and final momenta of the two
nucleons. The Lagrangians (26) and (27) closely mirror the
results from the SU(3) chiral Lagrangian [31].

V. APPROXIMATE ONE-BODY INTERACTION

The effective Lagrangian (27) explicitly involves two ex-
ternal nucleons. Consequently, one requires the many-body
wave functions for the initial and finial nuclei to calculate
decay rates with this term. Carrying out such a complete,
many-body computation goes beyond the scope of the present
study. Nevertheless, in order to estimate the possible magnitude
and relative sign of the two-nucleon contribution, we perform
an average of the interaction over all core nucleons. In this
approximation, it is assumed that every nucleon except for
one valence nucleon is part of a spin-symmetric nuclear
core. For the spatial wave function, the core nucleons can
be approximated as being a degenerate Fermi gas. Such a
distribution is fully characterized by its Fermi energy, EF , or
alternatively the Fermi momentum, KF . For our purposes, it
suffices to assume a common Fermi momentum for neutrons
and protons. Isospin-breaking corrections should be of order
(N − Z)/A. For earlier applications of this procedure to
electroweak properties of nuclei, see, e.g., Refs. [37–39].

After making these approximations and summing over all
contributions from the core nucleons, the spin-dependent and
spin-independent parts of the resulting effective interaction can
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be expressed in momentum space as

Lone-body
eff = − 3B0KF g̊2

A

64π (2π )3f̊ 2
π �2

(Ju + Jd )

× N̄ (kf )

{
f SI (�qT , �k)1l − f SD (�qT , �k)i �σ

·
[( �qT

KF

)
×
( �k

KF

)]}
N (ki ), (28)

where the Pauli matrices are given by �σ , �k = 1
2 (�ki + �kf ) is

the average of the initial and final nucleon three-momentum,
and �qT = �kf − �ki is the three-momentum transferred to the
nucleon. As this is an approximate one-body operator, �qT is the
same as the three-momentum transferred to the nucleus. The
complicated dependence of the effective Lagrangian on �qT and
�k is encapsulated in the dimensionless functions f SI (�qT , �k)
and f SD (�qT , �k). The full analytic forms of these functions are
given in Appendix D.

For purposes of performing our numerical estimate, it is
desirable to approximate these functions by constants. Doing
so ensures that the effective interaction (28) remains local
in position space, allowing seamless inclusion with (26) as
a single effective interaction. As is demonstrated in Appendix
D, the dimensionless functions f SI (�qT , �k) and f SD (�qT , �k) can
be well approximated by the constants f SI

eff = 1.05 ± 0.07 and
f SD

eff = 0.81 ± 0.12 respectively. The uncertainties in these
constants include both the experimental uncertainties in the
Fermi momentum of 27Al and the anticipated errors induced
by approximating the functions f SI (�qT , �k) and f SD (�qT , �k) by
constants.

It is still necessary to include the errors induced by the core-
averaging procedure itself. As a first pass, one may estimate
these errors by examining previously studied cases in the
literature where both core-averaged quantities and numerical
many-body results were calculated. Analyzing previous results
for the nuclear anapole moment [38], we infer that the core-
averaging procedure may introduce an uncertainty of 30% to
50% when the core is treated as a Fermi gas without short-range
correlations. It should also be noted that the core-averaged
quantities generically overestimate the many-body contribu-
tion. Thus, we may conservatively take f SI

eff = 1.05+0.07
−0.53 and

f SD
eff = 0.81+0.15

−0.42.
It is entirely possible, of course, that the results of a complete

many-body computation would yield a result that falls outside
of the aforementioned estimate. While the simplest single-
particle shell-model description of 27Al is a 1d5/2 proton hole in
28Si, there is significant configuration mixing with two-particle
excitations into the higher lying s1/2 and d3/2 orbitals.1 On the
other hand, the results of elastic, magnetic electron scattering
appear to agree well with the 1d5/2 proton hole configuration
description [41].2 Clearly, a detailed many-body computation

1We thank C. Johnson for a discussion of this point as well as for
a numerical assessment using the Brown-Richter USDB interaction
[40].

2We thank T. W. Donnelly for alerting us to these results.

using the two-body operator derived here will be needed for
a definitive, quantitative assessment of the NLO two-body
contribution.

As the conversion process is coherent, the spin-independent
part of (28) couples equally to all nucleons while the spin-
dependent part is only relevant for unpaired nucleons. In the
nuclear shell model, 27Al has only one unpaired proton. This
results in a relative 1/A suppression of the spin-dependent
term. This term may then be neglected as its contributions are
comparable in magnitude to NNLO terms not considered in
this analysis.

Returning to position space and combining this approximate
one-body interaction with the effective Lagrangian for the
single-nucleon sector yields the approximate effective inter-
action for scalar-mediated conversion,

Lscalar = 1

�2
N̄

{
σπN

2m̂
(Ju + Jd ) + σsN

ms

Js + Jθ

−3B0KF g̊2
A

64πf̊ 2
π

(Ju + Jd )f SI
eff − 3B0mπg̊2

A

64πf̊ 2
π

(Ju + Jd )

×
[

2 + Xπ√
Xπ

arccot

(
2√
Xπ

)
− 1

]}
N. (29)

We emphasize that the NLO loop and two-nucleon contribu-
tions enter with the opposite sign relative to the LO single-
nucleon terms, a feature reflected by the numerical results given
in Table I.

VI. VECTOR-MEDIATED CONVERSION

For the case of vector-mediated conversion, the scalar
CLFV operators in the effective Lagrangian from Appendix A
can be removed. The vector CLFV operators enter the pion-
nucleon Lagrangian at order L(0)

πN but do not enter the purely
pionic Lagrangian until L(1)

ππ . This is because the vector CLFV
current cannot couple to the scalar field except through a
derivative. Thus pion loop and two-nucleon diagrams for
vector-mediated CLFV will enter at NNLO instead of NLO
as happened for scalar-mediated CLFV. Therefore, the only
relevant diagrams will be tree-level insertions of the vector
current. Replacing derivates with explicit factors of nucleon
momentum, the CLFV Lagrangian may be rewritten as

Lvector = N̄f

{[
V μ + (kf + ki )μ

2MN

− V (kf + ki )

2MN

V μ

]
× (v + v(s) )μ − i

MN

εμνρσVρSσ (kf − ki )μ

× [(1 + k̊V )v + (1 + k̊s )v(s) + μsv
(s)
s

]
ν

}
Ni, (30)

where we have used the relation [Sμ, Sν] = iεμνρσVρSσ , see
Ref. [28], and identified the unknown LEC for the strange
sector with the nucleon’s strangeness magnetic moment, as
demonstrated in Appendix B.

The second set of terms that appear in the Lagrangian are
spin dependent while the first set are spin independent. As
discussed in Sec. V, the spin-dependent terms are suppressed
by a factor of 1/A and it suffices to retain only the coherent,
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spin-independent terms. The Lagrangian also has terms of the
form V · ( k(i,f )

MN
). As the external nucleons will be on shell, these

terms are suppressed and actually enter at NNLO instead of
NLO. Thus, these terms can be dropped from the effective
nucleon CLFV Lagrangian, leaving

Lvector = N̄f

[(
V + kf + ki

2MN

)
· (v + v(s) )

]
Ni. (31)

This Lagrangian depends not only on the magnitude of
(kf + ki )μ but also its direction. By parity symmetry, the
spatial components of (kf + ki )μ must vanish, but this still
leaves the component (kf + ki )0, the sum of nucleon kinetic
energy. However, in the rest frame of the nucleus, this is equal to
V · (kf + ki ), which enters at NNLO as mentioned before. As
a result, the final Lagrangian for vector-mediated conversion
through NLO is just given by

Lvector = N̄ [V · (v + v(s) )]N. (32)

VII. HADRONIC UNCERTAINTIES

The effective one-nucleon Lagrangians for scalar-mediated
conversion, (29), and vector-mediated conversion, (32), intro-
duce a variety of physical parameters that must be matched onto
experimental results. These include the light quark masses,
pion decay constant, and nucleon axial-vector coupling, among
others.

The values of σπN, m̂, and ξ in addition to the other
low-energy parameters that appear in (29) and (32) can be
determined by making use of lattice QCD results. Modern
Nf = 2 + 1 lattice QCD simulations provide realistic insight
into several of these parameters with uncertainties that are
smaller than their experimental counterparts. The low-energy
constants f̊π and B0 along with the three light quark masses
can be taken from the world average of lattice QCD results
published by FLAG [42]. Similar world averages have been
performed for both σsN and σπN [43,44]. We observe that more
recent lattice determinations of σπN [45–48] lead to somewhat
smaller values than obtained in Ref. [44]. On the other hand,
phenomenological analyses of πN scattering yield a larger
value that is in tension with the recent lattice results [49,50].
The older result given in Ref. [44], based on a fit to earlier lattice
results, lies between the recent lattice and phenomenological
determinations. For present purposes, then, we will utilize this
value and the quoted uncertainty (see Table III), recognizing
that a more robust determination will require further effort by
the lattice QCD and phenomenological communities.

While lattice QCD simulations do provide better uncertain-
ties for some quantities, others are best taken from experi-
mental results. The pion and nucleon masses presented by the
Particle Data Group are known to an exceptional degree of
precision [51]. Similarly, the nuclear axial-vector coupling,
gA, has been determined with high precision in ultracold
neutron studies [52]. It should be stressed, however, that the
experimentally observed values of the nucleon pole masses
and nucleon axial-vector coupling are not quite the same as the
objects that appear in the HBChPT Lagrangian. This is because
the parameters in the HBChPT Lagrangian are the tree-level
values taken in the chiral limit. Despite this difference, the

experimental and chiral values only differ at NNLO and can
thus be treated as equivalent for present purposes.

The full collection of low-energy constants and their sources
is summarized in Table III along with the set of parameters that
are derived from these constants.

VIII. WAVE FUNCTIONS OF THE MUON AND ELECTRON

Calculation of the coherent μ-e conversion rate requires
knowledge of the wave functions for the bound muon and
outgoing electron. Once captured by a nucleus, the muon
relaxes to its ground state on a timescale much shorter than its
mean lifetime. As such, one only needs to consider the captured
muon in its ground state. The outgoing electron, however, is
in a scattering state of fixed energy. These scattering states
are highly relativistic as the electron receives nearly all of the
decaying muon’s energy, up to higher order corrections from
nuclear recoil. To properly describe the wave function of the
electron, the Dirac equation must be used.

While the nucleus and electron or muon technically form
a two-body system, reduced mass effects enter at NNLO and
therefore the nucleus can be treated as a static source of a cen-
tral potential. Following standard conventions [9,10,53], the
time-independent Dirac equation in a spherically symmetric
potential may be expressed as

Wψ =
[
−iγ5σr

(
∂r + 1

r
− β

r
K

)
+ V (r ) + mβ

]
ψ, (33)

where

β =
(

1l2 0

0 −1l2

)
, γ5 =

(
0 1l2

1l2 0

)
,

σr =
(

r̂ · �σ 0

0 r̂ · �σ
)

, K =
(

�σ · �l + 1l2 0

0 −(�σ · �l + 1l2)

)
.

(34)

In these expressions, the energy and mass of the particle
are given by W and m respectively. The operator K has
been introduced for convenience as it commutes with the
Hamiltonian while �σ · �l does not. This operator also has
the useful property that K2 = Ĵ 2 + 1

4 . If we let κ denote the
eigenvalue of K and j (j + 1) denote that of Ĵ 2, it follows that
κ = ±(j + 1

2 ).
As the operators J 2, Jz, and K commute with the Hamil-

tonian and each other, it is possible to work in a basis of states
that have definite energy and eigenvalues for these operators.
The two-component spinors in this basis will be denoted by
χμ

κ (θ, φ), where μ is the eigenvalue of Jz. This then allows the
wave function to be decomposed as

ψ =
(

gκ (r )χμ
κ (θ, φ)

ifκ (r )χμ
−κ (θ, φ)

)
, (35)

where g(r ) and f (r ) are real valued functions. Expressed in
terms of g(r ) and f (r ), the Dirac equation can be rewritten as
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TABLE III. Table of low-energy constants.

Quantity Accepted value Source Notes

m̂ 3.373 ± 0.080 MeV [42,64–68]
mu/md 0.46 ± 0.03 MeV [42,64–68]
ms 92.0 ± 2.1 MeV [42,64–67,69]
fπ 92.07 ± 0.99 MeV [42,70–72] See footnotea

fπ/f̊π 1.064 ± 0.007 [42,67,71,73–75]
� 274 ± 3 MeV [42,67,68,73,74]
gA 1.2759 ± 0.0045 [52]
σπN 52 ± 9 MeV [44]
fs 0.043 ± 0.011 [43]
v 246.220 GeV [51] See footnoteb

mπ 138.039 MeV [51] Isospin-averaged pole massb

mN 938.919 MeV [51] Isospin averaged pole massb

mμ 105.658 MeV [51] Pole massb

KF 238 ± 5 MeV [76] For 27
13Alc

ωcapt 705.4 ± 1.3 ms−1 [77] For 27
13Al

ωcapt 464.30 ± 0.86 peV Derived Unit conversion with h̄ = 1
ξ 0.37 ± 0.02 Derived ξ ≡ 1−mu/md

1+mu/md

f̊π 86.5 ± 1.1 MeV Derived f̊π ≡ fπ ( fπ

f̊π
)
−1

B0 2.75 ± 0.11 GeV Derived B0 = �3

f̊ 2
π

σsN 40 ± 10 MeV Derived σsN ≡ fsmN

aDue to a difference in definitions, the value of fπ presented here is the value from [42] divided by
√

2.
bThese quantities presented in Ref. [51] are known to a precision far beyond the other values in this table. As such, they are presented without
uncertainties.
cFrom linear interpolation between the experimentally measured Fermi momenta of 24

12Mg and 40
20Ca.

the system of coupled differential equations

d

dr

(
g

f

)
=
(

− κ+1
r

W − V (r ) + m

−[W − V (r ) − m] κ−1
r

)(
g

f

)
.

(36)
These coupled equations can then be solved numerically using
the shoot-and-match procedure [54].

As the muon is in its ground state, its wave function is
normalized using the usual scheme∫

d3xψ
(μ)†
κ ′,μ′ (x)ψ (μ)

κ,μ(x) = δμ′,μ δκ ′,κ . (37)

The electron, however, is described by a scattering state which
require a different normalization scheme. Because the wave
function takes continuous energy eigenvalues, these states are
normalized as∫

d3xψ
(e)†
κ ′,μ′,E′ (x)ψ (e)

κ,μ,E (x) = 2πδ(E′ − E)δμ′,μ δκ ′,κ . (38)

IX. NUCLEAR DENSITY DISTRIBUTIONS

Beyond the wave functions of the muon and electron, it is
also necessary to determine the distribution of protons and
neutrons in the nucleus of 27Al. These distributions directly
enter the calculation of the decay rate and the proton density
distribution indirectly impacts the muon and electron wave
functions by virtue of determining the electric potential in the
vicinity of the nucleus.

As the proton is electrically charged, its nuclear density
distributions have been thoroughly explored through electron

scattering experiments [55]. These experiments have deter-
mined the nuclear charge density distribution of many nuclei
to high precision in a model-independent manner [56]. One
such model-independent decomposition of the nuclear charge
density distribution is the Fourier-Bessel expansion. Using this
expansion, the distribution is given by the piecewise function

ρp(r ) =
{∑

n anj0
(

nπr
R

)
r � R

0 r > R
. (39)

There are a variety of ways to normalize this distribution,
though the scheme

∫
4πr2ρ(r )dr = Z will be used here. In

(39), the parameter R acts as a cutoff radius for the charge and
the set of parameters an correspond to independent components
of the charge density distribution. While the distribution is cut
off at r = R, the distribution is defined such that it goes to
zero in a continuous manner. The experimentally determined
values of these parameters for 27Al are given in Table IV.

While the Fourier-Bessel parameters of Table IV are
given without individual uncertainties, the uncertainty in the
root-mean-square charge radius is known. Experimentally,
〈r2〉1/2

p = 3.035 ± 0.002 fm, which corresponds to a relative
uncertainty of less than .1% [56]. As this uncertainty is far
smaller than the already neglected NNLO contributions, the
parameters in Table IV can be treated as exact for current
purposes.

The neutron has no electrical charge and it is corre-
spondingly much more challenging to precisely measure the
neutron density distribution. One experimental technique uses
measurements from pionic atoms which allows for indirect
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TABLE IV. Parameters for proton density distribution.

Quantity Accepted value

〈r2〉1/2
p [fm] 3.035 ±0.002

R [fm] 7.0
a1 [fm−3] 4.3418 ×10−1

a2 [fm−3] 6.0298 ×10−1

a3 [fm−3] 2.8950 ×10−2

a4 [fm−3] − 2.3522 ×10−1

a5 [fm−3] − 7.9791 ×10−2

a6 [fm−3] 2.3010 ×10−2

a7 [fm−3] 1.0794 ×10−2

a8 [fm−3] 1.2574 ×10−3

a9 [fm−3] − 1.3021 ×10−3

a10 [fm−3] 5.6563 ×10−4

a11 [fm−3] − 1.8011 ×10−4

a12 [fm−3] 4.2869 ×10−5

determination of the neutron density from the isospin depen-
dence of the pion-nucleon interaction [55]. Because of the lim-
itations of this data, the neutron density distribution is usually
parameterized in terms of the two-parameter Fermi distribution
rather than the model-independent Fourier-Bessel expansion
[57]. The two-parameter Fermi distribution is given by

ρn(r ) = ρ0

1 + e
r−c
z

. (40)

The thickness parameter, z, and radial parameter, c, describe
the shape of the neutron density distribution while ρ0 is a
normalization factor. This factor will be chosen such that∫

4πr2ρ(r )dr = A − Z.
The neutron thickness parameter, z, is usually taken to

be equal to the proton thickness parameter for the same
nucleus, assuming a two-parameter Fermi distribution for the
protons. Coming from the proton distribution, z has a negligible
experimental uncertainty but a difficult to quantify systematic
uncertainty. Treating this thickness parameter as fixed, it is
possible to determine the experimental value and uncertainties
of the radial parameter [57]. Furthermore, the systematic errors
associated with fixing the thickness parameter from the proton
distribution can be estimated [57]. These systematic errors can
be incorporated in the uncertainty in the radial parameter as is
done in Table V.

X. CALCULATION OF THE BRANCHING RATIO

The primary quantity of experimental interest is the branch-
ing ratio for coherent μ-e conversion. Expressed in terms of

TABLE V. Parameters for neutron density distribution.

Quantity Accepted value

〈r2〉1/2
n [fm] 3.17 ± 0.11

c [fm] 3.18 ± 0.19
z [fm] 0.535

the coherent conversion rate, �μ−e, and the muon capture rate
for the target nucleus, ωcapt, the branching ratio is given by

B(μ − e) = �μ−e

ωcapt
. (41)

To calculate the coherent conversion rate, it will be conve-
nient to treat the CLFV Lagrangians (29) and (32) as a series
of operators acting along the lepton and nucleon lines of the
generic form

LCLFV = 1

�2

∑
j

ēOL,jμ N̄ON,jN. (42)

It will be necessary to introduce effective wave functions for
the nucleons. The isospin index α will be used to distinguish
the proton and neutron wave functions as ψα (x). The wave
functions will be defined such that |ψα (x)|2 = ρα (x), where
ρα (x) is the nuclear density distribution as defined in Sec. IX.
Given these definitions, the wave functions are normalized to
the nucleon number and not unity. Furthermore, it will be more
convenient to work in momentum space and thus one defines
the Fourier transformed wave functions as

ψ̃α (�kN ) =
∫

d3x e−i �x·�kN ψα (x). (43)

For the conversion process, the system is initially in a bound
state composed of the nucleus and the muon. As the muon is
in the ground state, its allowed eigenvalues are κi = −1 and
μi = ± 1

2 . The eigenvalue of κi = −1 is required because the
muon’s ground state has angular momentum l = 0. The final
state consists of the nucleus and an outgoing electron that may
take the eigenvalues κf = ±1 and μf = ± 1

2 . Furthermore, the
wave function of the electron is also parameterized by the
energy of the electron far away from the nuclear potential,
Ee. Neglecting corrections from nuclear recoil which enter
at NNLO, conservation of energy requires Ee = mμ − BE ,
where BE is the binding energy of the muon bound state.

The conversion rate can then be expressed as a sum of
transition probabilities over all possible spin configurations,

�μ−e = 1

2

∑
μi

∑
μf ,κf

m5
μ

�4
|τ (Ee,μi, μf , κf )|2, (44)

where conservation of energy requires Ee = mμ − BE . The
conversion amplitude may be written in a dimensionless form
as

τ (Ee,μi, μf , κf )

= 1

m
5/2
μ

∑
j

∫
d3k′

N

(2π )3

∫
d3kN

(2π )3

×
[∫

d3xei(�kN −�k′
N )·�xψ (e)†

κf ,μf ,Ee
(x)OL,jψ

(μ)
−1,μi

(x)

]
× [ψ̃∗

α′ (�k′
N )Oα,α′

N,j (|�k′
N − �kN |)ψ̃α (�kN )]. (45)

The isospin indices α and α′ have been introduced for the
hadronic operator as it may have isospin dependence, as occurs
in the case of vector-mediated conversion. The summation over

015208-10



COHERENT μ-e CONVERSION AT NEXT-TO- … PHYSICAL REVIEW C 98, 015208 (2018)

TABLE VI. Table of spin configurations.

κi μi κf μf w

−1 − 1
2 −1 − 1

2 1

−1 + 1
2 −1 + 1

2 1

−1 − 1
2 −1 + 1

2 2

−1 + 1
2 −1 − 1

2 2

−1 − 1
2 +1 + 1

2 3

−1 + 1
2 +1 − 1

2 3

−1 − 1
2 +1 − 1

2 4

−1 + 1
2 +1 + 1

2 4

the index j corresponds to summing over the contributions of
each operator in the CLFV Lagrangian.

The structure of the phase space integrals in (45) does not
depend on the model of CLFV and thus it is straightfoward to
numerically evaluate these overlap integrals for each possible
operator in the Lagrangians (29) and (32). This procedure
is detailed in Appendix F, and the numerical values and
accompanying uncertainties for the phase space integrals of
27Al are given in Table VII of the same appendix.

As stated previously, there are eight possible spin configu-
rations. However, there is a twofold symmetry in the choice
of overall sign for the spins. This reduces the number of
independent configurations to only four. For compactness of
notation, an index w ∈ {1, 2, 3, 4} will be used to denote each
unique configuration. The relationship between all possible
spin configurations and w is given in Table VI. The branching
ratio can then be written in terms of four separate ampli-
tudes, one for each configuration, leading to Eq. (2). The
corresponding expression for the τ

(w)
S and τ

(w)
V are given in

Eqs. (3) and (9), respectively. The expressions (2), (3), and
(9) and the model-independent parameters of Tables I and
II allow one to start with an arbitrary model of CLFV and
calculate in a straightforward manner the coherent conversion
branching ratio including NLO contributions and uncertainties.
These expressions and their model-independent parameters
constitute the primary results of this paper and their use is
summarized in Appendix G.

XI. DISCUSSION AND ANALYSIS

Having expressed B(μ − e) in terms of products of CLFV
model-dependent Wilson coefficients and model-independent
SM factors, we now discuss the implications in terms of
sensitivity to various CLFV scenarios. We first consider the
case of scalar-mediated conversion. The model-independent
parameter α

(w)
S,ud is given by

α
(w)
S,ud =

√
mμ

ωcapt

( mμ

4πv

)2
[

σπN

2m̂

(
I

(w)
S,p + I

(w)
S,n

)
− 3B0KF g̊2

A

64πf̊ 2
π

f SI
eff

(
I

(w)
S,p + I

(w)
S,n

)− 3B0mπg̊2
A

64πf̊ 2
π

�
(w)
S

]
,

(46)

where the kinematic factor �
(w)
S is defined as

�
(w)
S = (Ĩ (w)

S,p + Ĩ
(w)
S,n

)− (I (w)
S,p + I

(w)
S,n

)
. (47)

As is done in Table I, one can consider the LO, NLO loop,
and NLO two-nucleon contributions independently. Consider
the ratio of the NLO loop contribution to the LO contribution,

−α
(w)
S,ud (NLO loop)

α
(w)
S,ud (LO)

=

(
3B0mπ g̊2

A

64πf̊ 2
π

)
�

(w)
S

σπN

2m̂

(
I

(w)
S,p + I

(w)
S,n

)
=
[

2m̂

σπN

(
3B0mπg̊2

A

64πf̊ 2
π

)][
�

(w)
S(

I
(w)
S,p + I

(w)
S,n

)]. (48)

We have written the ratio as the product of two terms. The first
term only depends on the dimensionful low-energy constants
parametrizing the relative strength of the LO and NLO cou-
plings. The second term is kinematic in nature, arising from
overlap integrals, and is dependent on the spin configuration.
Using the numerical values for the low-energy constants and
overlap integrals found in Appendices C and F respectively,
one finds

2m̂

σπN

(
3B0mπg̊2

A

64πf̊ 2
π

)
= 0.160 ± 0.029, (49)

�
(w)
S(

I
(w)
S,p + I

(w)
S,n

) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0.261 ± 0.026 w = 1

0.260 ± 0.027 w = 2

0.260 ± 0.027 w = 3

0.259 ± 0.025 w = 4

. (50)

As can be seen from (49), the NLO contribution is small
compared to the LO contribution just due to the hierarchy
of their dimensionful parameters, exactly as expected from
ChPT. However, (50) shows that the NLO term is addition-
ally suppressed by kinematic considerations. As discussed in
Sec. I, the NLO loop contribution depends on �

(w)
S which

vanishes in the limit of zero momentum transfer. Because of
the relatively low momentum transfer involved in coherent
conversion, |qT | ≈ mμ, this further reduces the size of the
NLO loop contribution. Taken together, (49) and (50) result in
the NLO loop contribution being particularly small—roughly
5% of the LO contribution. The NLO loop contribution is
sufficiently small that even the parametric uncertainty in the
LO contribution is larger than it.

This should be contrasted with the NLO two-body con-
tribution, which is sizable and may appreciably reduce the
conversion amplitude. The ratio of the NLO two-nucleon
contribution to the LO contribution is

−α
(w)
S,ud (NLO NN)

α
(w)
S,ud (LO)

=
3B0KF g̊2

A

64πf̊ 2
π

f SI
eff

(
I

(w)
S,p + I

(w)
S,n

)
σπN

2m̂

(
I

(w)
S,p + I

(w)
S,n

)
= 2m̂

σπN

(
3B0KF g̊2

A

64πf̊ 2
π

)
f SI

eff = 0.29+0.06
−0.16.

(51)
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TABLE VII. Table of overlap integrals.

Proton overlap Value Neutron overlap Value
integral integral

I 1
S,p 7.58 I 1

S,n 7.58 ± 0.24

I 2
S,p 5.50 I 2

S,n 5.49 ± 0.17

I 3
S,p − 5.53 I 3

S,n − 5.52 ± 0.17

I 4
S,p − 7.56 I 4

S,n − 7.55 ± 0.24

Ĩ 1
S,p 9.57 Ĩ 1

S,n 9.55 ± 0.31

Ĩ 2
S,p 6.93 Ĩ 2

S,n 6.92 ± 0.23

Ĩ 3
S,p − 6.96 Ĩ 3

S,n − 6.96 ± 0.23

Ĩ 4
S,p − 9.52 Ĩ 4

S,n − 9.51 ± 0.30

I 1
V,p 7.35 I 1

V,n 7.32 ± 0.24

I 2
V,p − 5.79 I 2

V,n − 5.76 ± 0.19

I 3
V,p − 5.81 I 3

V,n − 5.79 ± 0.19

I 4
V,p 7.31 I 4

V,n 7.29 ± 0.24

While there is significant uncertainty in the value of the
two-nucleon contribution due to the one-body averaging pro-
cedure of Sec. V, the two-nucleon contribution is expected
to be 15–30% of the LO contribution. As the two-nucleon
contribution has the opposite sign of the LO contribution,
this can result in the coherent conversion branching ratio
decreasing by as much as 25–50%. It may seem surprising
that the NLO two-nucleon contribution is so much larger
than the loop contribution, but this difference is due to the
fact that the loop contribution is suppressed for kinematic
reasons encapsulated in �

(w)
S which are unrelated to the chiral

expansion of ChPT. Given the potentially significant impact of
the NLO two-nucleon contribution on the sensitivity of B(μ-e)
to scalar-mediated interactions, a state-of-the-art many-body
computation of this contribution should be performed.

Lastly, we consider the relative size of parametric un-
certainties in scalar-mediated conversion to the theoretical
uncertainties which arise from our neglect of NNLO contri-
butions. For the LO contribution, the dominant uncertainty is
in determining the quark content of the nucleons. Ignoring
factors common to all the model-independent parameters,
α

(w)
S,ud (LO) = σπN

2m̂
(I (w)

S,p + I
(w)
S,n ). Both the isospin average quark

mass and the sum of overlap integrals are known to within
∼2%; see Tables III and VII of Appendices C and F, respec-
tively. However, the pion-nucleon σ term, σπN , has a relative
uncertainty of ∼ 17%; see Table III. This is significantly larger
than the NLO loop contribution and is comparable in size to
the NLO two-nucleon contribution. Even if the NNLO contri-
butions are comparable in size to the NLO loop contribution
and are ∼ 5% of the LO term, significant improvements must
be made in the determination of the pion-nucleon term before
the theoretical uncertainty from neglecting NNLO corrections
becomes relevant.

We now turn our attention to the case of vector-mediated
coherent conversion. As shown in Sec. VI, the NLO contribu-
tions to the vector-mediated process are spin dependent and
suppressed by a factor of 1/A. This suppression makes them
comparable in size to the already neglected NNLO contri-

butions. Consequently, the model-independent parameters are
completely determined by the leading-order contributions

α
(w)
V,u =

√
mμ

ωcapt

( mμ

4πv

)2(
2I

(w)
V,p + I

(w)
V,n

)
, (52)

α
(w)
V,d =

√
mμ

ωcapt

( mμ

4πv

)2(
I

(w)
V,p + 2I

(w)
V,n

)
. (53)

These parameters are known to within ∼ 2% and the dominant
uncertainty is from the overlap integrals, which in turn is a
reflection of uncertainties in the neutron distribution of 27Al;
see Table V. Of course, these are parametric uncertainties
and theoretical uncertainties from the neglect of NNLO terms
are not included. Given that the NLO contributions were
suppressed, it is difficult to estimate the magnitude of the
NNLO contributions. However, one naively expects NNLO
corrections in SU(2) HBChPT to contribute at roughly the
2% level, and the NLO loop correction for scalar mediated
conversion was found to be 5% of the LO term. Thus, one
may conservatively estimate the theoretical uncertainty to be
roughly 5% .

XII. CONCLUSIONS

In this work, we have performed an analysis of coherent
μ-e conversion at next-to-leading order and have carefully
tracked possible sources of uncertainty. The primary results
of this analysis are the expressions Eqs. (2), (3), and (9) and
the corresponding model-independent parameters of Tables I
and II. These results are summarized in Appendix G.

Starting with a CLFV Lagrangian of the generic form
(10), one may define the Wilson coefficients (11)–(13). It
is then straightforward to use Eqs. (2), (3), and (9) and the
corresponding model-independent parameters to calculate the
branching ratio for coherent conversion at next-to-leading
order including uncertainties. Similarly, one can use these
expressions to determine the permitted regions of parameter
space in the event of a detection or nondetection at the
upcoming Mu2e and COMET experiments.

In our analysis of scalar-mediated CLFV, we find that the
contributions from the next-to-leading-order loop diagram are
generally small. However, the contributions from the next-to-
leading-order two-body diagram have the opposite sign of the
leading-order contribution and could be up to 30% of its size.
This can result in an order 1 change in the branching ratio for
a model of CLFV. For a fixed mediator mass, the sensitivity of
the upcoming Mu2e and COMET experiments can be reduced
by up to a factor of 2.

In the case of scalar-mediated conversion, we find that
the dominant source of uncertainty is the determination of
the nucleon σ terms and quark masses. These uncertainties
result in a 30% uncertainty in the amplitude for coherent
conversion. This severely limits the ability of a single target
detector to discriminate different models of CLFV. Generally,
these hadronic uncertainties need to be improved by at least a
factor of 4 before NNLO corrections become relevant. Another
significant source of uncertainty comes from the one-body
averaging of the two-nucleon effective operator. A more careful
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treatment of this operator including a full many-body treatment
of the nucleus would result in improved uncertainties.

Compared to scalar-mediated conversion, vector-mediated
conversion has significantly smaller uncertainties. The dom-
inant source of uncertainty comes from the determination of
the neutron distribution in 27Al and this only contributes at the
2% level. This is comparable to the theoretical uncertainties
from the neglected NNLO corrections. As such, to improve
the precision of the vector-mediated case, it will be necessary
to calculate the NNLO contributions. This will be technically
challenging as it requires a careful treatment of the many-body
nuclear wave function with spin dependence.

While the analysis presented here is specific to 27Al, it
should be straightforward to extend the present approach to
other potential targets. As has been shown in the literature
[11], multiple targets will be required in the event of detection
to determine the channel of CLFV. Given the large hadronic
uncertainties in the branching ratio for scalar-mediated con-
version, the use of multiple targets is highly desirable because
it should allow an improved determination of CLFV model
parameters over what is naively indicated by the hadronic
uncertainties.
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APPENDIX A: CHIRAL LAGRANGIAN

Ignoring the stress-energy tensor, the quark-level CLFV
Lagrangian, (14), written in terms of the CLFV currents, (15)
and (16), is given by

LCLFV =
∑

f =u,d,s

1

�2
Jf q̄f qf +

∑
f =u,d,s

1

�2
J ν

f q̄f γνqf . (A1)

HBChPT can then be used to relate (A1) to the physics of
nucleons and mesons. The resulting effective theory will have
several unknown LECs that can be determined by matching
to experimental determinations of hadronic matrix elements.
Through the electromagnetic interaction, the matrix elements
for the vector current 〈N |q̄f γνqf |N〉 are known in terms of
the Pauli and Dirac or Sachs form factors. For scalar quark
currents, the relevant matrix elements are 〈N |mf q̄f qf |N〉,
not 〈N |q̄f qf |N〉. To make contact with the known matrix
elements, we introduce factors of the quark mass to rewrite
the scalar CLFV term of (A1) as

LCLFV =
∑

f =u,d,s

(
Jf

mf �2

)
mf q̄f qf . (A2)

This has the same form as the operator responsible for inser-
tions of the quark mass. Explicitly including this term in the

Lagrangian,

L =
∑

f =u,d,s

[
−1 +

(
Jf

mf �2

)]
mf q̄f qf . (A3)

Given the form of (A3), it is apparent that the scalar CLFV
current enters the chiral Lagrangian with the same matrix
elements as the quark mass insertion. However, the scalar
CLFV current also carries inverse factors of �2 and mf . Thus,
up to these additional factors, the LECs of the effective theory
can be expressed in terms of known nuclear matrix elements.

In constructing the Lagrangian for HBChPT, one has
dynamical fields corresponding to the pions (π0, π±) and
nucleons (�P , �N ), along with insertions of the CLFV cur-
rents. These currents and dynamical fields can be organized
into a collection of objects with well-defined transformation
properties under the chiral SU(2) symmetry,

φ =
(

π0
√

2π+
√

2π− −π0

)
, vμ = 1

�2
· J

μ
u − J

μ
d

2

(
1 0

0 −1

)
,

U = exp

(
iφ

f̊π

)
, v(s)μ = 1

�2
· 3

2

(
Jμ

u + J
μ
d

)
,

u = exp

(
iφ

2f̊π

)
, v(s)μ

s = 1

�2
Jμ

s ,

N =
(

�P

�N

)
, uμ = i[u†(∂μ − ivμ)u − u(∂μ − ivμ)u†],

χ = −2B0
1

�2

(
Ju 0

0 Jd

)
, χs = −2B0

1

�2
Js,

In these expressions, f̊π is the tree-level pion decay constant
in the chiral limit and B0 normalizes the scalar sources. The
chiral Lagrangian can then be constructed from these objects by
considering all possible combinations that are invariant under
chiral SU(2) transformations. These terms can be grouped by
chiral order so that the chiral Lagrangian corresponds to a well-
defined expansion in chiral powers. In our power counting, we
will assign the CLFV currents Jf and J ν

f chiral order O(1) as
they do not scale with the quark mass.

As complete expressions for the chiral Lagrangian beyond
NLO can be found in the literature [58–61], only terms that
include CLFV operators will be listed here. The relevant CLFV
terms present in the pionic Lagrangians are given by

L(0)
ππ = f̊ 2

π

4
Tr[χ (U † + U )], (A4)

L(1)
ππ = f̊ 2

π

2
Tr[i(∂μU †U + ∂μUU †)vμ]. (A5)
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Fixing a reference velocity V μ for HBChPT, the CLFV terms in the pion-nucleon Lagrangians are

L(0)
πN = N̄

[
1

2
V μ
(
u†vμu + uvμu† + 2v(s)

μ

)+ dS
1 χs + c̄5

(
χ
(
U + U †)− 1

2
Tr[χ (U + U †)]

)
+ c̄1 Tr[χ (U + U †)]

]
N, (A6)

L(1)
πN = N̄

[
−i

1

2MN

V μV ν
(
∂μvν + 2vν∂μ + ∂μv(s)

ν + 2v(s)
ν ∂μ

) + i
1

2MN

(
∂μvμ + 2vμ∂μ + ∂μv(s)

μ + 2v(s)
μ ∂μ

)
−i

1

2MN

[Sμ, Sν](1 + k̊V )(∂μvν − ∂νvμ) − i
1

2MN

[Sμ, Sν](1 + k̊s )
(
∂μv(s)

ν − ∂νv
(s)
μ

)
−i

1

2MN

[Sμ, Sν]dV
1

(
∂μv(s)

s ν − ∂νv
(s)
s μ

)]
N, (A7)

where Sμ is the spin operator for HBChPT. In these expressions
for the pion-nucleon Lagrangian, the coefficients dV

1 and dS
1

have been introduced. These are new LECs that correspond to
strange quark operators that do not normally appear in SU(2)
HBChPT. The coefficients c̄1 and c̄5 have also been introduced
and should be distinguished from the usual LECs c1 and c5

of SU(2) HBChPT. As explained previously, the LECs of the
CLFV effective theory differ from the usual matrix elements
by a factor of 1/mq ; see, e.g., (22).

An additional set of terms of the form
N̄ (Tr[χ+]iV · ∂ + · · · )N should also appear in L(2)

πN .
However, for coherent μ-e conversion, these operators
will only appear as insertions on an on-shell nucleon line.
For on-shell momenta, V · k is of order O(q2) and thus these
operators should be treated as O(q3). Thus, these terms can
be neglected.

It is worth noting that [Sμ, Sν](∂μv(s)
s ν − ∂νv

(s)
s μ) is not the

only SU(2) invariant term one could write for a generic
isoscalar operator. Naively one could write additional terms in-
volving v(s)

s μ; however, in addition to being isoscalar, v(s)
s μ carries

strangeness. As the nucleons do not carry net strangeness, the
only allowable term at this order is [Sμ, Sν](∂μv(s)

s ν − ∂νv
(s)
s μ).

APPENDIX B: LOW-ENERGY CONSTANTS OF THE
ISOSCALAR STRANGE OPERATORS

The low-energy constants that appear in the effective
Lagrangian of Appendix A can be assigned numerical values
by making contact with experimental results. This is done by
matching analytical expressions for nucleon matrix elements
in HBChPT onto those from QCD. However, the normalization
schemes for nucleon states in QCD and HBChPT are different.
HBChPT treats nucleons as nonrelativistic fields with the
appropriate nonrelativistic normalization while QCD is fully
relativistic. The differences between these schemes are of order
O( k2

2mN
) and thus only enter at NNLO. As such, these schemes

may be treated as equivalent for present purposes.
Most of the LECs appear in standard SU(2) HBChPT

and are well known; however, the additional constants in-
troduced by including the isoscalar strange operators must
be determined. For the scalar strange operator, there is only
one unknown LEC. Comparing terms in the chiral and QCD
Lagrangians, there is the equivalency

−msq̄sqs � N̄
[
2B0d

S
1 ms + O(q2)

]
N. (B1)

Using the matrix element for the contribution of the
strange quark condensate to the nucleon mass, mNf N

s =
〈N (0)|msq̄sqs |N (0)〉, one immediately arrives at the result

mNf N
s

ms

= −2B0d
S
1 . (B2)

For the vector strange operator, one must compare the vector
current to the electric and magnetic nucleon form factors.
Written in terms of the Sachs form factors and only keeping
terms through NLO [62],

〈N (k′)|q̄sγμqs |N (k)〉

= u(k′)
{
γμGS

E

(
q2

T

)+ iσμνq
ν
T

2mN

[
GS

M

(
q2

T

)− GS
E

(
q2

T

)]}
u(k).

(B3)

These form factors are functions of the three-momentum
transfer, q2

T . As the momentum transfer is much smaller than
the nucleon mass, the Sachs form factors can be rewritten as
series expansions in the momentum transfer. Because nucleons
have no net strangeness, the leading-order terms of these

expansions are GS
E (q2

T ) = ρs
q2

T

4MN
and GS

M (q2
T ) = μs + O(q2

T )
where ρs is the strangeness radius and μs is the strange
magnetic moment [63]. Thus, keeping terms only through NLO
the matrix element is given by

〈N (k′)|q̄sγμqs |N (k)〉 = u(k′)
[
− 1

MN

[Sμ, Sν]qν
T μs

]
u(k).

(B4)
This matrix element must then be matched onto the correspond-
ing matrix element for the strange vector current in HBChPT.
This vector current can be directly read off of the Lagrangian
(30). This fixes the value of the unknown LEC to be dV

1 = μs .

APPENDIX C: VALUES OF LOW-ENERGY CONSTANTS
AND PHYSICAL QUANTITIES

All parameters that depend on renormalization are given in
the MS scheme at μ = 2 GeV except where otherwise noted.
All values taken from the world lattice data [42] make use of
results from Nf = 2 + 1 simulations whenever possible.
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APPENDIX D: MOMENTUM DEPENDENCE OF
APPROXIMATE ONE-BODY INTERACTION

In Sec. IV, it was shown that a two-nucleon operator enters
the effective scalar CLFV Lagrangian at NLO. This two-
nucleon operator can be reduced to an effective one-nucleon
interaction, (28), by treating the nuclear core as a degenerate
Fermi gas and averaging over core nucleons, as explained
in Sec. V. The dependence of (28) on both the momentum
transfered to the nucleus, qT , and the average of the initial and

final nucleon momenta, k, is encapsulated in the dimensionless
functions f SI and f SD . For compactness of notation, define
the following dimensionless parameters in terms of the Fermi
momentum KF ,

q = qT

KF

, k = k

KF

, m = mπ

KF

. (D1)

In terms of these dimensionless parameters, the functions f SI

and f SD can be expressed as

f SI (q, k) = 1

2π

∫ 1/2

−1/2
dβ

{
2

(
1 + −β k · q + β2 q2

k
2 − 2β k · q + β2 q2

)
−
⎡⎣4
(

1
4 − β2

)
q2 + 3m2√(

1
4 − β2

)
q2 + m2

⎤⎦ arctan

⎡⎣ 2
√

m2 + ( 1
4 − β2

)
q2

m2 + 1
4q2 − 2β k · q + k

2−1

⎤⎦
+ 1

2
√

k
2 − 2β k · q + β2 q2

[
1 + 2m2 +

(
3

4
− 4β2

)
q2 − k

2 + 2β k · q

+ β

(
1 + 1

4q2 + m2 + k
2 − 2β k · q

)
(k · q − β q2)

k
2 − 2β k · q + q2

]

× ln

⎛⎝1 + 2
√

k
2 − 2β k · q + β2 q2 + k

2 − 2β k · q + 1
4q2 + m2

1 − 2
√

k
2 − 2β k · q + β2 q2 + k

2 − 2β k · q + 1
4q2 + m2

⎞⎠⎫⎬⎭, (D2)

f SD (q, k) = − 1

2π

∫ 1/2

−1/2
dβ

1√
k

2 − 2β · kq + q2

⎡⎣ 1√
k

2 − 2β k · q + q2
− 1 + m2 + k

2 − 2β k · q + 1
4q2

k
2 − 2β k · q + q2

⎤⎦

× ln

⎡⎣1 + 2
√

k
2 − 2β k · q + β2q2 + k

2 − 2β k · q + 1
4q2 + m2

1 − 2
√

k
2 − 2β k · q + β2q2 + k

2 − 2β k · q + 1
4q2 + m2

⎤⎦. (D3)

To determine the Fermi momentum of 27
13Al, we linearly inter-

polate between the experimentally measured Fermi momenta
of 24

12Mg and 40
20Ca [76]. This results in a Fermi momentum of

KF = 238 ± 5 MeV.
Note that f SI and f SD have an angular dependence due

to the presence of k · q. However, f SI and f SD do not vary
significantly over the range of possible angular values. As such,
the functions can be averaged over all angular values so that
they effectively only depend on the magnitude of k and q.
Furthermore, it is expected that |q| ≈ mμ

KF
because the process

of interest is coherent μ-e conversion. Thus, f SI and f SD are
effectively only functions of |k|.

Importantly, the momentum dependence of f SI and f SD

is only of interest over the range of momenta common for
nucleons in 27Al. Using the model-independent Fourier-Bessel
expansion of the proton density distribution [56], the cor-
responding momentum distribution is shown in Fig. 2(a). It
is important to note that Fig. 2(a) is a plot of the linear
probability density which integrates to unity with respect
to d|k|.

Figures 2(b) and 2(c) show f SI and f SD , respectively, over
the same range of momenta with KF = 238 MeV. With the
goal of arriving at a local approximate interaction in position
space, it is necessary to approximate f SI and f SD by constants

independent of the nucleon momentum. These constants, f SI
eff

and f SD
eff , are chosen to minimize the weighted rms error with

respect to f SI and f SD . The rms weights are given by the
nucleon momentum distribution. Taking into account both the
rms error and uncertainty in the Fermi momentum, we find
f SI

eff = 1.05 ± 0.07 and f SD
eff = 0.81 ± 0.12.

APPENDIX E: NUCLEAR DENSITY PARAMETERS

The proton density distribution of a nucleus can be param-
eterized in a model-independent manner using the Fourier-
Bessel expansion

ρp(r ) =
{∑

n anj0
(

nπr
R

)
r � R

0 r > R
. (E1)

This distribution is normalized such that
∫

4πr2ρ(r )dr = Z
and depends on the cutoff radius, R, and the magnitude of
the various components, an. The values for 27Al are given in
Table IV as determined by electron scattering experiments
[56].

The neutron density distribution of a nucleus is usually
given in terms of the two-parameter Fermi distribution,

ρn(r ) = ρ0

1 + e
r−c
z

. (E2)

015208-15



ANTHONY BARTOLOTTA AND MICHAEL J. RAMSEY-MUSOLF PHYSICAL REVIEW C 98, 015208 (2018)

FIG. 2. Momentum dependence of the functions f SI and f SD . (a) Probability distribution of the magnitude of nucleon momenta in 27Al
as a function of the dimensionless momentum. (b) The angle averaged value of f SI and its constant approximation f SI

eff as a function of the
dimensionless average momentum. (c) The angle averaged value of f SD and its constant approximation f SD

eff as a function of the dimensionless
average momentum.

The normalization factor ρ0 is chosen such that∫
4πr2ρ(r )dr = A − Z while the thickness parameter, z,

and radial parameter, c, describe the shape of the distribution.

The values of these parameters for 27Al are given in Table V
where the experimental and systematic uncertainties have
been combined [57].

APPENDIX F: MODEL INDEPENDENT OVERLAP INTEGRALS

In Sec. X, the coherent conversion rate (44) was expressed as a sum of transition probabilities over eight possible spin
configurations. However, there is a twofold symmetry in the choice of overall sign for the spins. Thus, there are only four
independent configurations. For compactness of notation, an index w ∈ {1, 2, 3, 4} is used to denote each unique configuration.
The relationship between all possible spin configurations and w is given in Table VI.

For a fixed spin configuration, one can perform the position space integral over the leptonic part of (45) to arrive at a function
of the momentum transfer. For the case of scalar-mediated conversion, these are given in terms of the muon and electron wave
functions (Sec. VIII) by the dimensionless functions

Z
(1)
S (|qT |) = √

mμ

∫
dx

1

2π2
|x|2j0(|x||qT |)(g(e)

−1(x)g(μ)
−1 (x) + f

(e)
−1 (x)f (μ)

−1 (x)
)
, (F1)

Z
(2)
S (|qT |) = √

mμ

∫
dx

1

8π
|x|2j1(|x||qT |)(g(e)

−1(x)f (μ)
−1 (x) − f

(e)
−1 (x)g(μ)

−1 (x)
)
, (F2)

Z
(3)
S (|qT |) = √

mμ

∫
dx

1

8π
|x|2j1(|x||qT |)(g(e)

+1(x)g(μ)
−1 (x) + f

(e)
+1 (x)f (μ)

−1 (x)
)
, (F3)

Z
(4)
S (|qT |) = √

mμ

∫
dx

1

2π2
|x|2j0(|x||qT |)(f (e)

+1 (x)g(μ)
−1 (x) − g

(e)
+1(x)f (μ)

−1 (x)
)
. (F4)

One can then perform the remaining momentum integrals of (45) in a model-independent manner. The only CLFV operator
that depends on momentum transfer is the arccot term in the NLO loop contribution of (29). This term will be associated with the
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overlap integral Ĩ
(w)
S,α . All other CLFV operators are independent of momentum transfer and will be accompanied by the overlap

integral I
(w)
S,α . Defining the Fourier-transformed nucleon density as ρ̃α (k) = ψ̃∗

α (k)ψ̃α (k), the definitions for these two overlap
integrals are given by

I
(w)
S,α = 1

m
5/2
μ

∫
dqT

∫
dqA|qT |2|qA|2Z(w)

S (|qT |)ρ̃α

(
1

2

√
|qT |2 + |qA|2

)
, (F5)

Ĩ
(w)
S,α = 1

m
5/2
μ

∫
dqT

∫
dqA|qT |2|qA|2Z(w)

S (|qT |)ρ̃α

(
1

2

√
|qT |2 + |qA|2

)
2 + Xπ√

Xπ

arccot

(
2√
Xπ

)
. (F6)

In the case of vector-mediated conversion, one instead finds that the leptonic part of (45) can be reduced to the functions

Z
(1)
V (|qT |) = √

mμ

∫
dx

1

2π2
|x|2j0(|x||qT |)(g(e)

−1(x)g(μ)
−1 (x) − f

(e)
−1 (x)f (μ)

−1 (x)
)
, (F7)

Z
(2)
V (|qT |) = √

mμ

∫
dx

1

8π
|x|2j1(|x||qT |)(g(e)

−1(x)f (μ)
−1 (x) + f

(e)
−1 (x)g(μ)

−1 (x)
)
, (F8)

Z
(3)
V (|qT |) = √

mμ

∫
dx

1

8π
|x|2j1(|x||qT |)(g(e)

+1(x)g(μ)
−1 (x) − f

(e)
+1 (x)f (μ)

−1 (x)
)
, (F9)

Z
(4)
V (|qT |) = −√

mμ

∫
dx

1

2π2
|x|2j0(|x||qT |)(f (e)

+1 (x)g(μ)
−1 (x) + g

(e)
+1(x)f (μ)

−1 (x)
)
. (F10)

Unlike the case of scalar-mediated CLFV, no term in the vector-mediated CLFV Lagrangian depends on the momentum
transfer. The only type of overlap integral is

I
(w)
V,α = 1

m
5/2
μ

∫
dqT

∫
dqA|qT |2|qA|2Z(w)

V (|qT |)ρ̃α

(
1

2

√
|qT |2 + |qA|2

)
. (F11)

The numerical values of I
(w)
S,α , Ĩ

(w)
S,α , and I

(w)
V,α can readily be calculated using the proton and neutron distributions of Appendix

E along with the muon and electron wave functions calculated from them (see Sec. VIII). The values of I
(w)
S,α , Ĩ

(w)
S,α , and I

(w)
V,α along

with their uncertainties are cataloged in Table VII.

APPENDIX G: FORMULA FOR THE BRANCHING RATIO

Given a CLFV Lagrangian of the form (10), one can define the Wilson coefficients (11)–(13). As explained in Sec. X, the
branching ratio for coherent μ-e conversion can be written as a sum over separate amplitudes for each spin configuration (44).
Accounting for symmetry in the spin configurations, the index w ∈ {1, 2, 3, 4} indicates the four independent spin configurations
of the system as outlined in Table VI. Written as a sum over these four independent configuration, this yields the master equation
for the branching ratio, (2).

Each conversion amplitude for a specific spin configuration can then be expressed in terms of Wilson coefficients and a set of
model-independent parameters. This is done for scalar-mediated conversion in (3) and for vector-mediated conversion in (9). The
only model-dependent parameters that appear in these expressions are the Wilson coefficients; all model-independent parameters
have been absorbed into the definitions of the α’s. Using the definition of �

(w)
S from (47), these are defined as

α
(w)
S,ud =

√
mμ

ωcapt

( mμ

4πv

)2
[

σπN

2m̂

(
I

(w)
S,p + I

(w)
S,n

)− 3B0KF g̊2
A

64πf̊ 2
π

f SI
eff

(
I

(w)
S,p + I

(w)
S,n

)− 3B0mπg̊2
A

64πf̊ 2
π

�
(w)
S

]
, (G1)

α
(w)
S,s =

√
mμ

ωcapt

( mμ

4πv

)2 σsN

ms

(
I

(w)
S,p + I

(w)
S,n

)
, (G2)

α
(w)
S,� =

√
mμ

ωcapt

( mμ

4πv

)2(
I

(w)
S,p + I

(w)
S,n

)
, (G3)

α
(w)
V,u =

√
mμ

ωcapt

( mμ

4πv

)2(
2I

(w)
V,p + I

(w)
V,n

)
, (G4)

α
(w)
V,d =

√
mμ

ωcapt

( mμ

4πv

)2(
I

(w)
V,p + 2I

(w)
V,n

)
. (G5)

The quantities I
(w)
S,x , Ĩ

(w)
S,x , and I

(w)
V,x are the overlap integrals defined in Appendix F and given numerically in Table VII. The

quantity f SI
eff = 1.05+0.07

−0.53 characterizes the approximate one-body interaction which is discussed in Sec. V and Appendix D. The
remaining physical constants are given in Table III.
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As the α parameters are model independent, they can be calculated in advance and their numerical values and uncertainties are
given in Tables I and II of Sec. I. In the case of scalar-mediated conversion, the LO contributions and those of the loop diagram
and two-nucleon diagram that enter at NLO can be analyzed separately.
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