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First extraction of the scalar proton dynamical polarizabilities from real Compton scattering data
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We present the first attempt to extract the scalar dipole dynamical polarizabilities from proton real Compton
scattering data below pion-production threshold. The theoretical framework combines dispersion relations
technique, low-energy expansion, and multipole decomposition of the scattering amplitudes. The results are
obtained with statistical tools that have never been applied so far to Compton scattering data and are crucial to
overcome problems inherent to the analysis of the available data set.
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I. INTRODUCTION

Real Compton scattering (RCS) is one of the fundamental
processes to access information on the internal structure of
the nucleon. The RCS amplitude can be separated into a Born
contribution, describing the scattering off a pointlike nucleon
with anomalous magnetic moment, and a structure-dependent
part referred as a non-Born term. The non-Born contribution is
parametrized by polarizabilities, which describe the response
of the nucleon’s internal degrees of freedom to an external
electromagnetic field. In the low-energy expansion of the non-
Born amplitudes, the leading-order effects are given by static
polarizabilities that are defined in the limit of zero frequency
of the photon field and therefore measure the response to a
static external electromagnetic field. The leading-order spin-
independent polarizabilities are the scalar dipole electric and
magnetic polarizabilities, αE1 andβM1, respectively, while four
spin-dependent polarizabilities appear at the next order and
involve the nucleon-spin degrees of freedom. They have been
the subject of intense research both experimentally and theo-
retically [1–6]. The currently accepted values for the proton
scalar polarizabilities are αE1 = (11.2 ± 0.4) × 10−4 fm3 and
βM1 = (2.5 ∓ 0.4) × 10−4 fm3 [7], while the first extraction
of the individual four spin polarizabilities has been obtained
only recently from double-polarized Compton scattering [8].

As it is well known from many branches of physics, polar-
izabilities become energy dependent due to internal relaxation
mechanisms, resonances, and particle production thresholds
in a physical system [9–11]. This energy dependence is
subsumed in the definition of dynamical polarizabilities, which
parametrize the response of the internal degrees of freedom
of a composite object to an external, real-photon field of
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arbitrary energy. The enriched information encoded in the
dynamical nucleon polarizabilities has been pointed out in
different theoretical calculations, using dispersion relations or
effective field theories [12–16]. In this work, we attempt for the
first time to extract information on the scalar dipole dynamical
polarizabilities (DDPs) from a fit to all available unpolarized
RCS data below pion-production threshold. To this aim, we
apply a statistical analysis based on the parametric bootstrap
technique (see, for instance, Ref. [17] and references therein).
Such a method has never been exploited to analyze RCS data
and it is crucial to deal with problems inherent to both the low
sensitivity of the RCS cross section to the energy dependence
of the dynamical polarizabilities and to the poor accuracy of
the available data sets.

A feasibility study for the extraction of two spin dynamical
polarizabilities from unpolarized Compton scattering data
has been presented previously in Refs. [18,19], following a
different strategy from the present work. These fits did not turn
out to be conclusive, mainly because of the scarce accuracy
of the data set at disposal and the smaller sensitivity of the
unpolarized cross section to the spin polarizabilities rather
than the scalar polarizabilities. More recently, a partial-wave
analysis of the unpolarized Compton scattering data has been
discussed also in Ref. [20], pointing out the need to improve
the accuracy of the experimental data set to pin down the values
of the static scalar dipole polarizabilities with more precision.

The paper is organized as follows: In Sec. II, we introduce
the theoretical framework to analyze the unpolarized Compton
scattering cross section. In Sec. III we describe and motivate
our fitting procedure based on the bootstrap technique, in
comparison with the standard χ2 minimization technique.
Section IV contains our results for the fit of the scalar DDPs,
and Sec. V summarizes our conclusions.

II. THEORETICAL FRAMEWORK

The theoretical framework for the analysis relies on the
multipole expansion of the scattering amplitude, the low-
energy expansion (LEX) of the scalar DDPs and disper-
sion relations (DRs) for the calculation of the higher-order
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multipole amplitudes and the energy dependence of the scalar
DDPs near the pion-production threshold.

The definition of the dynamical polarizabilities rests on the
multipole expansion of the RCS amplitude in the center-of-
mass (cm) frame [1,21–23]. The multipole amplitudes f l±

T T ′
with T , T ′ = E,M , correspond to transitions T l → T ′l′ and
the superscript indicates the angular momentum l of the
initial photon and the total angular momentum j = l ± 1/2.
In particular, for the scalar DDPs one has [13]:

αE1(ω) = 2f̄ 1+
EE + f̄ 1−

EE

ω2
, βM1(ω) = 2f̄ 1+

MM + f̄ 1−
MM

ω2
, (1)

where f̄ indicates the non-Born contribution to the multipoles.
In the calculation of the cross section, we compute the full
Born contribution, given by pole diagrams involving a single
nucleon exchanged in s or u channels and γNN vertices
taken in the on-shell regime [1]. For the non-Born part, we
use the multipole expansion. As also observed in Ref. [13],
the multipole expansion of the non-Born contribution has a
very fast convergence below pion-production threshold. In
our analysis, we take into account the non-Born amplitudes
f̄ l±

T T ′ up to l = 3: the scalar DDPs are fitted to the data, and
the remaining contributions are calculated through subtracted
DRs.

DRs have been proven to be a powerful tool to analyze
RCS data [3,8,24–26], as they allow us to minimize the
model dependence using as input available experimental in-
formation from other processes. The dispersion calculation
is performed in terms of six independent invariant ampli-
tudes Ai , i = 1, . . . , 6, which can be recast in terms of the
multipole amplitudes f l±

T T ′ as explained in Appendix A of

Ref. [13]. In the subtracted formalism, the six invariant am-
plitudes are obtained from subtracted dispersion integrals in
both the s and t channels, and subtraction constants that are
directly related to the six leading-order static polarizabilities.
The subtracted integrals are saturated by πN , ππN and
heavier-meson intermediate states in the s channel, and ππ
intermediate states in the t channel [27]. In the present analysis,
the input for the pion-photoproduction amplitudes has been
updated to the most recent version of MAID [28], while we
refer to Refs. [27,29] for the calculation of the contributions
beyond πN in the s channel and for the t-channel contribution.
Four of the subtraction constants are fixed to the values of the
static leading-order spin polarizabilities extracted in Ref. [8].
The two remaining constants are given in terms of the static
dipole scalar polarizabilities as specified in the following.

We are interested in the energy dependence of the scalar
DDPs below pion-production threshold, where they are real
functions. By performing a LEX of the scalar DDPs, one recov-
ers the limiting values of the static dipole polarizabilities at zero
energy. Higher-order terms contain dispersive or retardation
effects, which can be parametrized in terms of higher-order
polarizabilities [1,16,30].

The static polarizabilities are best defined via the effective
nonrelativistic Hamiltonian in the Breit frame, and hence the
next-to-leading-order coefficients of the LEX of Eq. (1) are
not given only in terms of higher-order static polarizabilities
related to retardation effects of the E1 and M1 radiation. The
direct link is spoiled by recoil corrections in the cm frame. We
have calculated the relevant recoil corrections up to O(ω5),
obtaining the following expressions for the LEX of the scalar
DDPs:

αL
E1(ω) = αE1 + βM1

M
ω +

(
αE1,ν + 5αE1 − 2βM1

8M2

)
ω2 +

(
8αE1,ν + αE2 + 12βM1,ν

8M
+ γM1E2 − γM1M1

8M2

+ βM1 − 2αE1

8M3

)
ω3 +

{
αL

4 − 1

40M
[15(γE1E1,ν − γE1M2,ν) − 69γE2E2 + 12(γE2M3 − γM2E3)

+ 25(γM1E2,ν − γM1M1,ν) + 51γM2M2] + 1

480M2
(1248αE1,ν + 95αE2 + 540βM1,ν + 26βM2)

+ 1

80M3
[25(γE1E1 − γE1M2) + 39(γM1E2 − γM1M1)] − 1

160M4
(24αE1 + 19βM1)

}
ω4

+
{
αL

5 + 1

200M2
(55(γE1E1,ν − γE1M2,ν) − 6(35γE2E2 − 22γE2M3 + 5γM1E2,ν

− 5γM1M1,ν + 38γM2E3) + 555γM2M2) + 1

480M3
(612αE1,ν + 38αE2 + 1008βM1,ν + 89βM2)

+ 1

160M4
(−46(γE1E1 − γE1M2) + 33(γM1M1 − γM1E2)) + 1

160M5
(αE1 − 14βM1)

}
ω5, (2)

βL
M1(ω) = βM1 + αE1

M
ω +

(
βM1,ν + 5βM1 − 2αE1

8M2

)
ω2 +

(
8βM1,ν + βM2 + 12αE1,ν

8M
+ γE1M2 − γE1E1

8M2
+ αE1 − 2βM1

8M3

)
ω3

+
{
βL

4 − 1

40M
[15(γM1M1,ν − γM1E2,ν) − 69γM2M2 + 12(γM2E3 − γE2M3) + 25(γE1M2,ν − γE1E1,ν) + 51γE2E2]

+ 1

480M2
(1248βM1,ν + 95βM2 + 540αE1,ν + 26αE2)
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+ 1

80M3
[25(γM1M1 − γM1E2) + 39(γE1M2 − γE1E1)] − 1

160M4
(24βM1 + 19αE1)

}
ω4

+
{
βL

5 + 1

200M2
[55(γM1M1,ν − γM1E2,ν) − 6(35γM2M2 + 22γM2E3 − 5γE1M2,ν

+ 5γE1E1,ν − 38γE2M3) + 555γE2E2) + 1

480M3
(612βM1,ν + 38βM2 + 1008αE1,ν + 89αE2)

+ 1

160M4
(−46(γM1M1 − γM1E2) + 33(γE1E1 − γE1M2)) + 1

160M5
(βM1 − 14αE1)

}
ω5. (3)

In Eqs. (2) and (3), the terms with even power of ω contain both
retardation effects of the dipole radiations and recoil terms. The
terms with odd powers of ω are recoil contributions, which, in
addition to the contributions from the static polarizabilities
of lower orders, can include terms with the static scalar and
spin-dependent polarizabilities of higher multipolarity.

In particular, the first dispersive contributions enter atO(ω2)
and correspond to the static polarizabilities αE1,ν and βM1,ν .
The recoil terms at O(ω3) are given in terms of the static
dipole scalar and spin polarizabilities, the fourth-order dipole
scalar polarizabilities αE1,ν and βM1,ν and the quadrupole
scalar polarizabilities αE2 and βM2. In particular, αE1,ν , βM1,ν

and the quadrupole polarizabilities enter as recoil terms with
the same suppression factor in 1/M . The static spin dipole
polarizabilities enter with a coefficient in 1/M2 and the static
scalar dipole polarizabilities enter with a factor in 1/M3.

At O(ω4), the recoil terms contain different combinations
of the same polarizabilities entering at O(ω3), weighed with
an additional power in 1/M . Furthermore, they involve the
higher-order spin polarizabilities defined in Ref. [30], with a
coefficient in 1/M , and the dispersive coefficients αL

4 and βL
4

corresponding to sixth-order scalar polarizabilities, which have
never been defined in literature. Following Ref. [1], we can
write them as combinations of the second-order derivatives of
the non-Born contribution to the Lorentz invariant amplitudes
Ai , i.e.,

ai,νν = ∂ANB
i

∂2ν2
, ai,νt = ∂2ANB

i

∂ν2∂t
, ai,tt = ∂2ANB

i

∂2t
,

(i = 1, . . . ,6). (4)

At O(ω5), one finds a recoil contribution in 1/M given by
combinations of these 18 constants, which correspond to a
combination of the dispersive effects of the sixth-order scalar
polarizabilities entering at O(ω4) and new scalar sixth-order
polarizabilities, which have never been discussed so far in
literature. These terms are collectively indicated with the αL

5
and βL

5 coefficients in Eqs. (2) and (3), respectively.
The convergence radius of such Taylor expansion is limited

by the first singularity, which is set by the pion-production
branch cut. In particular, the LEX of αE1(ω) fails to repro-
duce the nonanalytical behavior of the polarizability when
approaching the pion production threshold. The contribution
beyond the LEX in Eqs. (2) and (3) can be taken into account
by introducing two residual functions f̃ defined by

αE1(ω) = αL
E1(ω) + f̃α(ω), βM1(ω) = βL

M1(ω) + f̃β(ω).
(5)

The two functions f̃α(ω) and f̃β(ω) can be calculated using
DRs, and the results from DRs can be parametrized using
the following functional form: f̃α(ω) = α̃4ω

4 + α̃5ω
5 and

f̃β(ω) = β̃4ω
4 + β̃5ω

5. This particular choice allows us to
merge the αL

4 , αL
5 , βL

4 , and βL
5 coefficients in Eqs. (2) and

(3) with the polynomial coefficients of f̃α, β(ω) and to write
the whole energy dependence of the scalar DDPs as

αE1(ω) = α
L0
E1(ω) + fα(ω), βM1(ω) = β

L0
M1(ω) + fβ(ω),

(6)

where

α
L0
E1(ω) ≡ αL

E1(ω)|αL
4 =αL

5 =0, fα(ω) ≡ α4ω
4 + α5ω

5,

β
L0
M1(ω) ≡ βL

M1(ω)|βL
4 =βL

5 =0, fβ(ω) ≡ β4ω
4 + β5ω

5 (7)

with

α4,5 ≡ αL
4,5 + α̃4,5, β4,5 ≡ βL

4,5 + β̃4,5. (8)

The analytical expressions for the scalar DDPs in Eqs. (6) are
the same as in Eqs. (2) and (3), provided that the (α,β)L

4,5
coefficients are replaced by the coefficients (α,β)4,5 in Eq. (8).

In Fig. 1, we show the predictions for the scalar DDPs from
the full DR calculation, without LEX, in comparison with the
results obtained from Eq. (6), using the predictions from DRs
for all the static polarizabilities entering the α

L0
E1(ω) and β

L0
M1(ω)

contributions and the results from the fit to the DR calculation
for the residual functions fα(ω) and fβ(ω). We note that the
parametrization in Eq. (6) is able to reproduce very well the
full energy dependence of the scalar DDPs in the energy range
considered in the present fit, giving us confidence that it can
be conveniently adopted for our fitting procedure of the scalar
DDPs to the Compton scattering data.

III. FITTING STRATEGY

In this section, we outline the fitting strategy for the
coefficients of the LEX in Eq. (6). As we are interested into
the genuine dispersive effects of the E1 and M1 radiation in
the LEX of the scalar DDPs, we fixed the recoil contributions
in α

L0
E1(ω) and β

L0
M1(ω) from the static leading-order spin

polarizabilities to the experimental values of Ref. [8], and the
recoil terms from higher-order spin polarizabilities as well as
from quadrupole scalar polarizabilities to the values predicted
from subtracted DRs [30].

As input for the subtracted dispersion integrals we used
the updated MAID solution, which is employed also for the
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FIG. 1. The scalar DDPs αE1(ω) (top) and βM1(ω) (bottom) as
function of the center-of-mass energy ω. The solid red curves show the
results from the DR calculation, with the full energy dependence. The
dashed black curves are the results from Eq. (6), using the predictions
from DRs for all the static polarizabilities entering the α

L0
E1(ω) and

β
L0
M1(ω) contributions and the results from the fit to the DR calculation

for the residual functions fα(ω) and fβ (ω).

calculation of the multipole amplitudes, which are not fit-
ted. We used two different data sets, i.e., all the available
experimental data for the unpolarized cross sections below
pion-production threshold, denoted as FULL data set1 (for a
total of 150 data points) [26,31–34,36–42], and the data set
given by the TAPS experiment alone (55 data points) [26],
which is, by far, the most comprehensive available subset.
“Improved” data sets have been defined in recent fits of RCS
observables, by discarding some data points from different
experiments [4,20,43]. Here we do not apply any selection
to the data, and we postpone a more detailed discussion of the
statistical consistency of the different data subsets to a future
work [44], entirely devoted to the extraction of the static scalar
dipole polarizabilities from data.

As a first attempt, we tried to fit αE1, βM1, αE1,ν , βM1,ν

and the four coefficients parametrizing the residual functions
fα(ω) and fβ(ω), for a total of eight parameters. This choice

1For the data sets of Refs. [31–33] and [34] we used the compilation
of Baranov [35], as also done in Ref. [4].

has the advantage of fitting the full energy dependence of the
scalar DDPs with a minimum of model dependence. We then
applied the gradient method in the χ2 minimization procedure
of MINUIT [45]. Unfortunately, this method did not show
convergence since the positive-definiteness condition of the
covariance matrix could not be achieved. This is because of
too strong correlations between the fitted parameters, resulting
from the very low sensitivity of the available experimental data
to the higher-order dispersive coefficients (note that the fitting
parameters enter to all orders in the LEX of the scalar DDPs,
both as genuine dispersive effects and as recoil contributions).

To circumvent this problem, we used a combination of
the simplex [46] (which is a purely geometric minimization
algorithm) and bootstrap (which is a Monte Carlo technique)
methods. Each bootstrap measurement is assumed to be
Gaussian distributed around a given experimental data point
with a standard deviation given by its statistical error. All
bootstrapped points of a given subset are then shifted by the
same quantity proportional to the published systematic error,
assumed to be uniformly distributed. If we define as cycle a
number of bootstrapped points equal to the total number of
points in the considered experimental data set, the bootstrap
sampling can be finally described as:

Si,k,j = ξk,j

[Sexp
i +γi,j σ

exp
i

]
, (9)

where S stands for the differential cross section, with the
superscript exp indicating the experimental values for the mean
value Sexp

i and the statistical error σ
exp
i . In Eq. (9), the index

i runs over the data points in the whole set, the index k labels
each subset, and the index j indicates the bootstrap cycle.
Furthermore, ξk,j are random numbers uniformly distributed as
U [1 − �k,1 + �k] (with ±�k the published systematic error),
while the numbers γi,j are sampled from the standard Gaussian
distribution N [0,1]. When different systematic-error sources
are quantified, ξk,j is the combination of all the contributions.
According to Ref. [26], σ

exp
i for the TAPS data set includes

a ±5% point-to-point systematic error added in quadrature to
the statistical error of each individual data point.

The minimization is performed after a complete cycle,
and the output for the fitted values of the polarizabilities is
stored. Repeating the bootstrap cycle a very large nR number
of replicas (we choose nR = 10000), we are finally able
to reconstruct the probability distributions for every fitted
parameter.

In order to obtain a cross-check for our fitting method,
we first assumed as fit parameters only αE1–βM1, using the
constraint from the Baldin’s sum rule for the polarizability sum,
with the TAPS value αE1 + βM1 = (13.8 ± 0.4) × 10−4 fm3

[26],2 fixing the leading-order spin polarizabilities to the
central values of Ref. [8], all the other static polarizabilities
as well as the residual functions fα(ω) and fβ(ω) to subtracted
DRs. This configuration with only one free parameter allows
the gradient method to converge, thus providing a benchmark
both for our new minimization algorithm and for the theoretical

2This value is consistent with the weighed average over the available
evaluations of the Baldin sum rule [5].
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TABLE I. Results for the static polarizabilities, using different
fitting procedures and the FULL data set. See text for further
explanation.

αE1(10−4fm3) βM1(10−4fm3)

fit 1 11.8 ± 0.2 2.0 ∓ 0.2
fit 2 11.9 ± 0.2 1.9 ∓ 0.2
fit 3 11.8 ± 0.2 2.0 ∓ 0.2
PDG 11.2 ± 0.4 2.5 ∓ 0.4

framework. The validation of the method should pass the
following tests:

(i) The one-parameter fit with our strategy (the combi-
nation of subtracted DRs, LEX, multipole expansion,
and bootstrap technique, labeled as fit 1) should be
consistent with the fit using the complete DR calcu-
lation (without multipole expansion and LEX), and the
gradient method for the minimization of theχ2 function
(labeled as fit 2).

(ii) The results of the fit 1 should be consistent with the
results obtained from the combination of subtracted
DRs, LEX, multipole expansion, and gradient method
(labeled as fit 3).

For the purposes of this test, the bootstrap sampling proce-
dure was performed after fixing to unity all ξk,j parameters in
Eq. (9). The results from the three fits using the FULL data set
are shown in Table I. They are all consistent with each other
and also agree with the PDG values [7]. In addition, the errors
evaluated using fit 1 are Gaussian distributed, in agreement
with the statistical expectations (see, for instance, Ref. [47]).

The bootstrap solution does not significantly change when
the uncertainty in the Baldin’s sum rule value is taken into
account by randomly generating, for each cycle, a different
αE1 + βM1 value sampled from the N [13.8,(0.4)2] distribu-
tion. Similarly, the results of the fit parameters change at most
by 1% when the values of the leading-order spin polarizabilities
are varied within the uncertainties quoted in Ref. [8].

All this gives us confidence in both the theoretical frame-
work, based on the LEX and multipole expansion, and the
statistical tools based on the bootstrap technique. In summary,
the main advantages of the adopted technique are

(i) The straightforward inclusion of systematic errors in
the minimization procedure, as shown in Eq. (9). This
feature allows us to reduce the overall number of fit
parameters with respect to the extended-χ2 procedure,
with a normalization factor for each data set left as free
parameters [4].

(ii) The fact that any error distribution of the experimen-
tal data can be easily implemented. Moreover, the
probability distributions of the fitted parameters are
not assumed a priori to be Gaussian, but are directly
evaluated from the probability distributions assigned
to the experimental data.

(iii) The possibility to automatically take into account the
effects of the differential cross section systematics in
the error bars of the LEX coefficients of the DDPs.

The application of this strategy to the eight-parameter fit
gave probability distributions with very broad and asymmetric
tails in all cases, except for αE1. For instance, the 68% confi-
dence interval of αE1,ν was found to be αE1,ν = (2.81+8.14

−6.44) ×
10−4 fm5.

This is a further confirmation that the quality of the present
experimental database is too poor to allow any meaningful
estimate of the higher-order coefficients in the LEX of the
scalar DDPs, considering the very low sensitivity to them of
the differential cross section below pion-production threshold.
For this reason we reduced the number of free parameters
to three: the polarizability difference αE1 − βM1 and the
dispersive polarizabilities αE1,ν and βM1,ν [29]. The remaining
five parameters were fixed using the Baldin’s sum rule value,
smeared according to its resolution, for the polarizability sum
αE1 + βM1, and DRs for the four parameters in the residual
functions fα(ω) and fβ(ω). In particular, the coefficients of
the residual functions were fixed to describe the full energy-
dependence of the scalar DDPs predicted from DRs (see
Fig. 1).

IV. RESULTS AND DISCUSSIONS

In this section we discuss the results from the new fitting
strategy with three fit parameters. The results for the LEX
coefficients of the scalar DDPs in both the cases of the FULL
and TAPS data set are shown in Table II. The corresponding
probability distributions are still Gaussian distributed, as dis-
played in Fig. 2.

In the three-parameter fit, also the gradient method showed
convergence (without the inclusion of systematic errors), but
the covariance matrix was forced to be positive definite. This
feature casts doubts on the validity of the procedure even if the
fitted parameter estimates turned out to be close to those given
in Table II.

Some comments are in order:

(i) It is likely that the FULL data set includes inconsistent
data, but the small number of experimental points
in each data subset does not allow us to perform
consistency checks without introducing biases.

(ii) The central values of the static dipole polarizabilities
αE1 and βM1 from the fit with FULL and the TAPS data
sets are different, but still compatible within the errors
and in fairly good agreement with the PDG values.

This difference could also be due to the correlation
between the different angular distributions of the two

TABLE II. Values of the LEX coefficients of the scalar DDPs
from the fit to the FULL (second column) and TAPS (third column)
data set in the three-parameter case.

FULL TAPS

αE1 (10−4fm3) 13.3 ± 0.8 11.6 ± 1.1
αE1,ν (10−4fm5) −8.8 ± 2.5 −3.2 ± 3.1
βM1 (10−4fm3) 0.4 ∓ 0.9 2.2 ∓ 1.1
βM1,ν (10−4fm5) 10.8 ± 2.8 5.1 ± 3.7
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left) and βM1 (top-right) and dispersive polarizabilities αE1,ν (bottom-
left) and βM1,ν (bottom-right).
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FIG. 3. Joint probability distributions and correlation coefficients
ρ forαE1,βM1, αE1,ν , andβM1,ν for the three-parameter fit of the FULL
data base. The value ( �= −1) of the correlation coefficient between αE1

and βM1, constrained by the Baldin’s sum rule, is due to the uncertainty
in the sum rule value introduced in the bootstrap procedure. The scales
on the axes are different for each plot.

data sets and the varying sensitivity to αE1 and βM1 in
different angular regions.

In Fig. 3 we show the two-dimensional joint proba-
bility distributions for αE1,βM1,αE1,ν , and βM1,ν . Apart
from the strong correlation between αE1 and βM1,
which is due to the constraint of the Baldin’s sum rule,
we observe significantly strong correlations also for all
the other distributions. This is especially true in the case
of the dispersive polarizabilities αE1,ν and βM1,ν , that
have very strong negative correlation coefficients with
αE1 and βM1, respectively.

As already noticed before, this behavior is mainly a
consequence of low sensitivity of the existing data to
the magnetic polarizabilities.

Even if this effect could also partially be due to
inconsistent data subsets, as also recently discussed in
Ref. [20], only a relevant progress in both the quality
and the quantity of the existing data set will allow to
significantly improve this situation.

If, as an example, we consider the data set de-
fined in Refs. [4,43], we obtain for the fitted polar-
izabilities the following values: αE1 = (10.8 ± 0.9) ×
10−4 fm3, αE1,ν = (−2.6 ± 2.7) × 10−4 fm5, βM1 =
(2.9 ± 1.0) × 10−4 fm3, and βM1,ν = (6.2 ± 3.0) ×
10−4 fm5. These values are compatible, within two
standard deviations, with the ones given in Table II.

Predictions for the dispersive polarizabilities have been
obtained within unsubtracted [1] and subtracted [30] DRs,
and baryon chiral perturbation theory [16]. Our extraction
of the dispersive polarizabilities is, within the large error
bars, consistent with these theoretical predictions and can not
discriminate between them.

We pointed out that our fitting method provides a realistic
probability distribution of the fitted parameters; another ad-
vantage is that it allows us to straightforwardly compute the
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FIG. 4. Results from the fit of the scalar DDPs (solid line) for the
FULL (left panels) and TAPS (right panels) data sets: αE1(ω) on the
top and βM1(ω) on the bottom. The 68% (yellow) and 95% (green) CL
areas include all the correlations between the parameters. The dashed
lines are the predictions from DRs [13].
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error bands for the DDPs including all the correlations between
the parameters. In Fig. 4, we show our fit results for the scalar
DDPs, extracted from the FULL and TAPS data set, as function
of the cm energy ω and with the corresponding 68% and 95%
confidence level (CL) uncertainty bands. They are compared
with the subtracted DR predictions, obtained with the values
of the static dipole polarizabilities from the fit to the FULL and
TAPS data sets in Table II. The DR results for both the scalar
DDPs are within the 68% confidence area of the fit results for
ω � 60 MeV. At higher energy, the DR predictions for βM1(ω)
remain within the 95% CL region, while for αE1(ω) we observe
deviations from the fit results in the case of the FULL data set
and a very good agreement, within the 68% confidence area,
in the case of the TAPS data set. This different behavior can
be again a hint of inconsistencies between the two data sets.
The larger relative error in the case of βM1(ω) also reflects the
lower sensitivity of the unpolarized RCS data to the magnetic
polarizability than to the electric polarizability.

V. CONCLUSIONS

In summary, we have presented a new method based on the
parametric bootstrap technique that allows us to extract, for the

first time, information on the proton scalar DDPs from RCS
data at low energies. This method was never exploited so far to
analyze Compton scattering data and has several advantages
with respect to the standard χ2-minimization technique. For
example, it allows one to include in a straightforward way
the systematic errors in the minimization procedure, without
introducing a large number of additional fit parameters, and
provides error distributions of the experimental data, which
are not assumed Gaussian a priori, but are directly evaluated
from the probability distributions assigned to the data.

The extraction of the energy dependence of the DDPs turned
out to be quite challenging, because of the very low sensitivity
of the unpolarized RCS data to the higher-order dispersive
coefficients. This gives both large error bands of our estimates,
in particular for βM1(ω), and strong correlations between the
fit parameters.

In the present analysis, the theoretical framework is based
on dispersion relations, but it can be conveniently adapted to
use other inputs, such as effective field theory calculations
[4,16] that have been recently employed to extract the static po-
larizabilities. Finally, future measurements at MAMI [48] hold
the promise to improve the accuracy and the statistics of the
data and will help to determine with better accuracy the effects
of the leading-order static and dynamical polarizabilities.
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