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Coherent deeply virtual Compton scattering off the 4He nucleus is studied in impulse approximation. A
convolution formula for the nuclear generalized parton distribution (GPD) is derived in terms of the 4He one-body
nondiagonal spectral function and of the GPD of the struck nucleon. A model of the nuclear nondiagonal spectral
function, based on the momentum distribution corresponding to the Argonne 18 nucleon-nucleon interaction, is
used in the actual calculation. Typical impulse approximation results are reproduced, in proper limits, for the nu-
clear form factor and for nuclear parton distributions. The nuclear generalized parton distribution and the Compton
form factor are evaluated using, as a nucleonic ingredient, a well-known generalized parton distribution model. An
overall very good agreement is found with the data recently published by the EG6 experiment at the Jefferson Lab-
oratory (JLab). More refined nuclear calculations are addressed and will be necessary for the expected improved
accuracy of the next generation of experiments at JLab with the 12-GeV electron beam and high luminosity.
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I. INTRODUCTION

Nuclear generalized parton distributions (GPDs), measured
in hard-exclusive electroproduction processes in nuclei, can
provide a wealth of novel information (for a recent report,
see, i.e., Ref. [1]), such as a signature of the presence of non-
nucleonic degrees of freedom [2] or a nuclear tomography, i.e.,
the distribution of partons with a given longitudinal momentum
on the nuclear transverse plane. Nuclear GPDs can be therefore
very important for a fully quantitative explanation of the so-
called European Muon Collaboration (EMC) effect [3], i.e., the
nuclear modifications of the parton structure of bound nucleons
(see Ref. [4] for a recent report).

Several processes can be described in terms of GPDs.
Among them, the one of interest here is coherent deeply
virtual Compton scattering (DVCS), i.e., deep exclusive pho-
ton electroproduction off a nuclear target A, the hard fully
exclusive reaction A(e,e′γ )A, which could give access to the
quark tomography of the nucleus as a whole. The experimental
study of this process requires the very difficult coincidence
detection of fast photons and electrons together with slow intact
recoiling nuclei. For this reason, in the first measurement of
nuclear DVCS from the HERMES Collaboration [5], a clear
separation was not achieved between the coherent process and
the so-called incoherent one, i.e., the process A(e,e′γN )X,
which allows the tomography of the bound nucleon. The
latter, compared with that of the free nucleon, could provide a
pictorial view of the realization of the EMC effect.

Much theoretical work has been performed to study nuclear
GPDs (see Ref. [1] for a review of results). We remind that,
measuring GPDs through DVCS, it has been suggested to
study the distribution of nuclear forces in nuclei [6–8] and
the modifications of the bound nucleon structure [9–17]. The
general formalism of DVCS on nuclear targets of any spin has
been developed initially in Ref. [18].

In these studies, a special role is played by few nucleon
systems, such as 2H, 3He, and 4He. As a matter of fact,
although challenging, for these targets a realistic evaluation
of conventional nuclear effects is possible. This would allow
to distinguish these effects from exotic ones, which could be
responsible of the observed EMC behavior. Without realistic
benchmark calculations, the interpretation of the collected data
will be hardly conclusive. In this sense, the use of heavier
targets due to the difficulty of the corresponding realistic
many-body calculations, is less promising. The 2H nucleus is
very interesting for the extraction of the neutron information
and for its rich spin structure [2,19,20]. In between 2H and
4He,3He could allow for studying the A dependence of nuclear
effects, and it could give easy access to neutron polarization
properties due to its specific spin structure. Besides, being not
isoscalar, flavor dependence of nuclear effects could be studied,
in particular, if parallel measurements on 3H targets were
possible. A complete impulse approximation (IA) analysis,
using the Argonne 18 (Av18) nucleon-nucleon potential [21], is
available, and nuclear effects on GPDs are found to be sensitive
to details of the used nucleon-nucleon interaction [22–26].
Measurements for 2H and 3He have been addressed, planned
in some cases, but they have not been performed yet.

From the theoretical side, 4He is a very important system:
Although really challenging, realistic calculations are possible;
besides, 4He is deeply bound, and therefore it represents
the prototype of a typical finite nucleus; in addition to that,
it is spinless so that experimentally targets are easy to be
implemented and data are easy to be analyzed. Measurements
were addressed, and theoretical predictions were proposed in
Refs. [27–29]. The first data for coherent DVCS off 4He have
been recently published [30] and for the incoherent channel
have been already collected at JLab by the EG6 experiment of
the CLAS Collaboration with the 6-GeV electron beam. For
the first time a successful separation of coherent and incoherent
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FIG. 1. The generic coherent DVCS process off a target A.

contributions has been achieved. A new impressive program is
on the way at JLab12, carried on by the ALERT Collaboration
[31,32]. In Ref. [30], the importance of new calculations has
been addressed for a completely successful description of the
collected data, not possible with the models proposed a long
time ago, corresponding in some cases to different kinematical
regions. New refined calculations are certainly important,
above all, for the next generation of accurate measurements.

Here, a conventional IA analysis of the 4He GPD and the
nuclear Compton form factor (ff) is presented. The actual
calculation is performed with basic nuclear and nucleonic
ingredients, and the results are compared with the recently
published data [30].

The paper is structured as follows. In the second section,
the formalism is introduced. In the third one, nuclear and
nucleonic ingredients of the actual calculation are presented.
Then, numerical results are shown and discussed in the fourth
section. Eventually, conclusions and perspectives are given.

II. FORMALISM

The most general coherent DVCS process A(e,e′γ )A is
shown in Fig. 1. If the momentum transferred by the electrons
Q2 is much higher than −t = −�2 = −(P − P ′)2, the mo-
mentum transferred to the hadronic system with initial (final)
four-momentum P (P ′), the hard vertex of the “handbag”
diagram depicted in Fig. 2 can be studied perturbatively,
whereas the soft part, given by the blob in the figure, is
parametrized in terms of GPDs, thanks to the factorization
property demonstrated in Ref. [33].

The formalism for DVCS off a scalar target, exploiting only
one chiral even GPD at a leading twist, has been developed
in Ref. [29]. In the following, a workable expression for
H

4He
q , the GPD of the quark of flavor q in the 4He nucleus,

will be derived within the IA description of the handbag
approximation, depicted in Fig. 3.

Δ

Δ
γ

∗
,

e

e’

k

γ q q−

k+

P’=P + ΔP

Factorization

FIG. 2. The handbag approximation to the process shown in
Fig. 1.
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FIG. 3. The impulse approximation description of the handbag
process shown in Fig. 2.

From the expression of the leading twist light-cone corre-
lator, one can define HA

q for a generic scalar target [34],

HA
q (x,ξ,�2) = (2P + �)+

∫
dr−

4π
eixP̄ +r−

×〈P ′|ψ̄q

(
− r−

2

)
γ +ψq

(
r−

2

)
|P 〉

∣∣∣∣
r+=0,�r⊥=0

.

(1)

In the above equation, the dependence of HA
q on three

scalars is explicitly shown. Besides �2, GPDs depend on the
skewness ξ = P +−P ′+

P ++P ′+ = − �+
2P̄ + , i.e., the difference in the plus

momentum faction between the initial and the final states,
completely fixed by the external lepton kinematics, and on x,
the average plus momentum fraction of the struck parton with
respect to the total momentum, not experimentally accessible.

The additional dependence of GPDs on the hard momentum
scale Q2 is not explicitly shown for an easy presentation.
Here and in the rest of the paper, the light-cone coordinates
corresponding to a generic four-vector v = (v0,�v) are defined
as v± = v0±v3√

2
.

We recall that, in the case of zero-momentum transfer,
i.e., in the forward limit (P ′ = P , i.e., �2 = 0, ξ = 0), H

4He
q

reduces to 4He parton distributions (PDFs) accessed through
deep inelastic-scattering (DIS) experiments,

H
4He
q (x,0,0) = q

4He(x), (2)

whereas its first moment yields the electromagnetic form factor
of 4He,

∑
q

eq

∫ 1

−1
dx H

4He
q (x,ξ,�2) = F

4He
C (�2), (3)

where eq represents the charge of the quark of flavor q.
Besides, in the quark sector, one can define the plus

momentum of the struck parton before and after the interaction,

k+ = (x + ξ )P̄ +, (4)

k
′+ = (k + �)+ = (x − ξ )P̄ +, (5)

respectively. It is therefore clearly seen that x represents the
average plus momentum fraction of the struck parton with
respect to the total nucleus momentum.
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Now, the IA to the handbag approximation, shown in Fig. 3,
will be described. The interacting parton, with momentum k,
belonging to a given nucleon with momentum p in the nucleus,
interacts with the probe, and it is afterwords reabsorbed with
four-momentum k + � by the same nucleon without further
rescattering with the recoiling three-body system. One should
note that, in this scheme, only nucleonic degrees of freedom
occur explicitly in the nuclear description. In IA it is useful to
rewrite the parton momenta also with respect to those of the
inner nucleon N as follows:

ξ ′ = − �+

2p+
N

; (6)

x ′ = ξ ′

ξ
x. (7)

The IA framework in the instant form of dynamics described
in Ref. [22] for 3He is here extended to 4He. The main steps are
summarized here below. Initially, light-cone quantized states
and operators are used. The tensor product of two complete sets
of states can be inserted into the left- and the right-hand sides
of the quark operator in Eq. (1); the first set corresponds to the
nucleon N , supposed free, interacting with the virtual photon,
whereas the second set describes the recoiling system, which
consists of three fully interacting particles. Using the fact that
the quark operator in Eq. (1) is a one-body operator, one can
consider its action on the nucleonic degrees of freedom only.
Separating the global motion from the intrinsic one, possible
since at the end nonrelativistic wave functions are used, a
convolution formula can be obtained

H
4He
q (x,ξ,�2)

= (2P + �)+
[∫

dr−

4π
eixP̄ +r−

] ∫
dE ρ(E)

×
∑

pN ,σ,α

〈P + �| − pN,E{α}; pN + �,σ 〉

× 〈pN,σ ; pN,E,{α}|P 〉

×
[
〈pN+�,σ |ψ̄q

(
− r−

2

)
γ +ψq

(
r−

2

)
|pN,σ 〉

]
, (8)

where the terms in the square brackets can be rearranged in
terms of the generic light-cone correlator for the nucleon N
considered for states with the same polarization σ , that reads
[34]

FN
++ =

√
1 − ξ 2

[
HN

q − ξ 2

1 − ξ 2
EN

q

]
. (9)

In the above equation, in the kinematical region of the coherent
channel of interest here, the dominant term is given by the
GPD Hq . Thus, in the following, we will consider only this
contribution. Using Eq. (9) in Eq. (8) and properly considering
the partonic variables (6) and (7), one arrives at a convolution
formula,

H
4He
q (x,ξ,�2) =

∑
N

∫ 1

|x|

dz

z
h

4He
N (z,�2,ξ )HN

q

(
x

z
,
ξ

z
,�2

)
,

(10)

between the GPD HN
q of the quark of flavor q in the bound

nucleon N and the off-diagonal light-cone momentum distri-
bution of N in 4He, which reads

h
4He
N (z,�2,ξ ) =

∫
dE

∫
d �p P

4He
N ( �p, �p + ��,E)δ

(
z − p̄+

P̄ +

)

= MA

M

∫
dE

∫
d �p M̃

p
P

4He
N ( �p, �p + ��,E)

× δ

(
z̃
M̃

p
− p0

p
− cos θ

)

= MA

M

∫
dE

∫ 2π

0
dφ

×
∫ ∞

pmin

dp p M̃P
4He
N ( �p, �p + ��,E). (11)

In the last step of the above equation, we defined M(MA)
as the nucleon (nuclear) mass, ξA = MA

M
ξ, z̃ = MA

M
z + ξA, and

M̃ = M
MA

(MA + �+√
2

). The explicit form for the lower limit of
integration in p = | �p| is given by

pmin(z,ξA,E) = 1

2

∣∣∣∣∣
M∗2

A−1 − M2
A

(
1 − M̃

MA
z̃
)2

MA

(
1 − M̃

MA
z̃
)

∣∣∣∣∣, (12)

result obtained imposing the natural support for the function
cos θ in the argument of the δ function in Eq. (11) with M∗2

A−1
as the squared mass of the final (A − 1)-body excited state.

The off-diagonal light-cone momentum distribution of the
nucleon N in 4He is defined through its nondiagonal spectral
function,

P
4He
N ( �p, �p + ��,E)

= ρ(E)
∑
{α}σN

〈P + �| − pE α,p + �σN 〉

× 〈p σN, − pE α|P 〉 (13)

= n0( �p, �p + ��)δ(E) + P1( �p, �p + ��,E), (14)

with ρ(E) being the energy density for the final states. The
overlaps appearing in this formula include wave functions of
the recoiling three-body system, which can be a bound system,
a two-body, or a three-body scattering state with any possible
relative energy between the constituents. We reiterate that any
interaction of the debris originating by the struck nucleon with
the remnant (A − 1) nuclear system is instead disregarded as
usual in the IA scheme.

The forward limit of the expression Eq. (14) leads to the
one-body diagonal spectral function of 4He, P

4He
N ( �p,E) so that

Eq. (11) reduces to

h
4He
N (z,0,0) = f

4He
N (z)

=
∫

dE

∫
d �p P

4He
N ( �p,E)δ

(
z −

√
2p+

M

)
. (15)

Using this result, Eq. (10) reproduces in the forward limit
the correct IA result for the nuclear PDF (see, e.g., Ref. [35]),
in agreement with Eq. (2).
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Besides, the x integral of Eq. (10) yields formally the IA, a
one-body approximation to the nuclear form factor so that the
constraint Eq. (3) is also formally fulfilled.

A few caveats have to be addressed:
(i) In the present instant form calculation the number of

particle sum rules and the momentum sum rules cannot be
fulfilled at the same time. In particular, the momentum sum rule
is here violated by a few percent. To overcome this drawback
a Poincarè covariant light-front (LF) approach could be used.
Relevant steps towards this goal have been performed for a
three-body nuclear target [36].

(ii) The present scheme is not covariant, and, as a con-
sequence, the GPDs, although scalar, turn out to be frame
dependent. For GPDs’ calculation as well as for form factors at
high-momentum transfer the use of LF dynamics would be the
proper framework. Nevertheless, in the experiment discussed
in the present paper, the momentum transfer is rather low, and
we found that in the observables we are going to show the
results in the laboratory frame or in the Breit frame differ
at most by a few parts in 1000. Therefore, at the moment,
this problem is not a numerically relevant one. The results
presented later on have been obtained in the laboratory frame.

Concluding this section, one should note that, in the present
IA approach, the momentum scale Q2 of the nuclear GPD is
entirely given by that of the nucleon GPD and, for the sake
of a readable presentation, it is not explicitly written in the
following.

III. SETUP OF THE CALCULATION

It is clear from the previous section that, in order to actually
evaluate the 4He GPD and then the cross section for coherent
DVCS off 4He, we need an input for the nuclear nondiagonal
spectral function and for the nucleonic GPD.

Concerning the nuclear part, only old attempts exist for
obtaining a spectral function of 4He [37,38]. A realistic
description of the two- and, above all, three-body scattering
states in the recoiling system is a really complicated few-
body problem. Moreover, one would need here a nondiagonal
spectral function, a quantity rather more complicated than the
diagonal one.

We have planned a full realistic calculation of the 4He
spectral function; however, in this paper, use of the following
model has been performed:

P
4He
N ( �p, �p + ��,E)

= n0( �p, �p + ��)δ(E∗) + P1( �p, �p + ��,E∗)

= n0(| �p|,| �p + ��|, cos θ �p, �p+ ��)δ(E∗)

+P1(| �p|,| �p + ��|, cos θ �p, �p+ ��,E∗)


 a0(| �p|)a0(| �p + ��|)δ(E∗) + n1(| �p|,| �p + ��|)δ(E∗ − Ē),

(16)

with the removal energy E = |EA| − |EA−1| + E∗ defined in
terms of the ground-state binding energies of 4He and of the
recoiling three-nucleon system EA and EA−1, respectively, and
in terms of the excitation energy of the recoiling system E∗.

Besides, one has n1(| �p|) = n(| �p|) − n0(| �p|) and

n0(| �p|) = |a(| �p|)|2, (17)

with a(| �p|) as the overlap of the wave functions of the four-
and three-body bound systems,

a(| �p|) = 〈3(1,2,3)χ4η4|j0(| �p|R1–4)4(1,2,3,4)〉. (18)

In our calculation n0(k), the momentum distribution with
the recoiling system in the ground state and the total mo-
mentum distribution n(k) have been evaluated using varia-
tional wave functions for the four-body [41] and three-body
[42] systems obtained through the hyperspherical harmonics
method [43] within the Av18 NN interaction [21], including
UIX three-body forces [44].

The spirit of the approximation Eq. (16) is the following.
In the first line of the equation, the rotational invariance of
the problem has been exploited, showing a dependence on the
absolute values of the initial and final momenta of the struck
nucleon and on the angle between these two momenta. In the
second line, the so-called closure approximation to the spectral
function is used in the excited sector described by the spectral
function P1, i.e., an average value of the removal energy is
chosen so that the nondiagonal spectral function reduces to a
nondiagonal momentum distribution. The average value Ē of
the excitation energy E∗ of the recoiling system is evaluated
through the model diagonal spectral function, based on the
same Av18 + UIX interaction, proposed in Refs. [45,46],
representing a realistic update of the one presented in Ref. [47].
In the last step, also the angular dependence is disregarded so
that the nondiagonal momentum distributions can be modeled
on the basis of the known diagonal ones.

For the nucleonic part, the well-known GPD model elabo-
rated by Goloskokov and Kroll (GK) [48,49] has been used.
We recall here, for the reader’s convenience, its main features.
The explicit form of the GPDs is obtained fitting high-energy
deeply virtual meson production data. This guarantees the ac-
cess to the low-x region. The structure of the (x,ξ ) dependence
is built through the double-distributions representation [50]
so that the polynomiality property is automatically satisfied,
whereas the t dependence is parametrized using a Regge-
inspired profile function. The model is valid in principle at
Q2 values larger than those of interest here, in particular, at
Q2 � 4 GeV2.

IV. NUMERICAL RESULTS

With the ingredients presented in the previous section on
hand, a numerical evaluation of the nuclear GPD Eq. (10)
is possible, and a comparison with the related experimental
observables, recently accessed by the EG6 experiment at JLab,
can be performed. Before that, let us consider two useful
numerical tests of the formalism.

First of all, one should recover the IA result for the electro-
magnetic ff (for example, the one-body result in Ref. [39]), by
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FIG. 4. The 4He form factor obtained as the integral of the 4He
GPDs calculated in the present approach Eq. (10) (full), compared
with data at low t (dots) [40], the ones relevant for the discussion
presented here. The red triangles represent the one-body part of the
Av18 + UIX (where UIX represents the Urbana-IX) calculation of
the form factor shown in Ref. [39] (see the text).

x integration of the obtained GPD using Eq. (2),

1

2

∑
q

eq

∫ 1

−1
dx H

4He
q (x,ξ,�2)

= 1

2

∑
N,q

eq

∫ 1

−1
dx

∫ 1

|x|

dz

z
h

4He
N (z,ξ,�2)HN

q

(
x

z
,
ξ

z
,�2

)

= 1

2

∑
N,q

eq

∫ 1

−1
d

(
x

z

)
HN

q

(
x

z
,
ξ

z
,�2

) ∫ 1

0
dz h

4He
N (z,ξ,�2)

= 1

2

∑
N,q

FN
q (�2)F

4He
N (�2) = F

4He
C (�2). (19)

In the above equation, FN
q is the contribution of the quark q

to the nucleon ff and F
4He
N is the so called “point-like form

factor”, which would give the contribution of the nucleon N
to the nuclear ff if the nucleons were point-like.

Let us note that the factor of 2 in the denominator of
the above equation, i.e., the charge of the nucleus under
scrutiny in units of e, guarantees the standard normalization
F

4He
C (0) = 1. This quantity is shown in Fig. 4. Despite the

approximated � dependence of the spectral function described
in the previous section, reasonable agreement with the data
[40] is obtained for the low values of (−t) accessed by the
EG6 experiment at JLab. The agreement has certainly to be
improved evaluating a realistic spectral function of 4He for a
precise description of the accurate data of the next generation
of measurements. The size of the target is reproduced with
good accuracy. Quantitatively, we get

√〈r2
rms〉 
 1.80 fm to be

compared with the experimental value of 1.671(14) fm [40]. In
Fig. 4, for completeness, also the results for the nuclear form
factor obtained within a one-body Av18 + UIX calculation,
compared with data in Ref. [39], have been shown. Within
a realistic Av18 + UIX spectral function, one would have
obtained this kind of result for the nuclear ff. We stress anyway
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FIG. 5. The ratio Eq. (20) for the flavor q = u (the result for q = d

is indistinguishable).

that the direct calculation of the 4He ff requires only the wave
function of the bound state, whereas the calculation through
the GPDs, performed here as a check, requires all the wave
functions of the spectral decomposition of 4He.

As a second test, we checked that the obtained GPD has
the expected forward limit. This is seen in Fig. 5, where the
ratio,

R
4He
q (xA) = H

4He
q (xA,0,0)/HN

q (xA,0,0) (20)

is shown as a function of xA = MA/Mx 
 4x to have an
easy comparison with the results shown in the literature of
DIS phenomena. In the above equation, the numerator is
given by the forward limit of Eq. (10), and the denominator is
given by the forward limit of the model used for the nucleon
GPD. No relevant difference is found between the results
for q = u and q = d as it is natural for an isoscalar nucleus.
The typical EMC-like behavior found for this ratio in IA is
reproduced. One should note anyway that the true EMC ratio
is defined dividing the nucleus F2 structure functions by the
same quantity for the deuteron whereas the quantity shown
here is obtained in terms of parton distributions of a given

 0
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FIG. 6. The light-cone momentum distribution for the nucleon N

in 4He, Eq. (15).

015203-5



SARA FUCINI, SERGIO SCOPETTA, AND MICHELE VIVIANI PHYSICAL REVIEW C 98, 015203 (2018)

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1  1.5  2  2.5

A
LU

4 H
e (9

0
°)

Q2 [GeV2]

-0.1

 0.1

 0.3

 0.5

 0.1  0.15  0.2  0.25  0.3

A
LU

4 H
e (9

0
°)

xB

-0.1

 0.1

 0.3

 0.5

 0.06  0.08  0.1  0.12  0.14  0.16

A
LU

4 H
e (9

0
°)

-t [GeV2]

FIG. 7. 4He azimuthal beam-spin asymmetry ALU (φ) for φ = 90◦: Results of this approach (red stars) compared with data (black squares)
[30]. From left to right, the quantity is shown in the experimental Q2, xB , and t bins, respectively.

flavor. This behavior is therefore related to the EMC effect,
but it represents a different quantity.

The results of checks (1) and (2) are therefore rather
encouraging.

Size and relevance of nuclear effects can be inferred from
the behavior of the light-cone momentum distribution Eqs. (11)
and (15). If nuclear effects were negligible, these functions
would be δ functions. The light-cone momentum distribution,
in the forward limit, is shown in Fig. 6. One can see in passing
that the present approach predicts a vanishing DVCS cross
section already for ξ as small as 0.15, representing the width
of the shown distribution. Indeed, ξ is the fraction of plus
momentum transfer and cannot exceed the width of f (z) if
we want the target to be intact after the interaction. If, in future
measurements, coherent DVCSs were observed at larger values
of ξ , the role of non-nucleonic degrees of freedom would be
exposed as suggested in the seminal paper [2].

Now, the comparison of our results with the data of the EG6
experiment is eventually performed.

In the EG6 experiment the crucial measured observable is
the single-spin asymmetry ALU , which can be extracted from
the reaction yields for the two electron helicities (N±),

ALU = 1

PB

N+ − N−

N+ + N− , (21)

where PB is the degree of longitudinal polarization of the
incident electron beam. The DVCS amplitude depends on
the GPDs. In EG6 kinematics, the cross section of real
photon electroproduction is dominated by the Bethe-Heitler
(BH) contribution, whereas the DVCS contribution is very
small. However, the DVCS contribution is enhanced in the
observables sensitive to the interference term, e.g., ALU . The
three terms entering the cross-sectional calculation, the squares
of the BH and DVCS amplitudes, and their interference term,
depend on the azimuthal angle φ between the (e,e′) and the
(γ ∗,4He

′
) planes as shown for the nucleon in Ref. [51] and for

the spin-zero targets in Refs. [18,29]. Based on this paper, ALU

for a spin-zero hadron can be expressed at the leading twist as

ALU (φ)

= α0(φ)Im (HA)

α1(φ)+α2(φ)Re (HA)+α3(φ)[Re (HA)2+Im (HA)2]
.

(22)

Explicit forms for the kinematic factors αi are derived from
expressions in Ref. [29] and are functions of Fourier harmonics
in the azimuthal angle φ, the nuclear form factor FA(t), and
kinematical factors. Using the different sin(φ) and cos(φ)
contributions, in the experimental analysis, both the imaginary
and the real parts of the so-called Compton form factorHA have
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been extracted by fitting the ALU (φ) distribution. In turn, the
imaginary and real parts of HA are defined as follows [52]:

Im (HA) = HA(ξ,ξ,t) − HA(−ξ,ξ,t), (23)

Re (HA) = P
∫ 1

0
dx[HA(x,ξ,t) − HA(−x,ξ,t)] C+(x,ξ ),

(24)

in terms of the nuclear GPD HA, where P is the Cauchy
principal-value integral and a coefficient function C+ = 1

x−ξ
+

1
x+ξ

has been introduced.

Using our result for the GPD of 4He Eq. (10), we could
evaluate Eqs. (22)–(24). Results are reported in Figs. 7–9,
respectively, compared with the EG6 data.

In Fig. 7, ALU is shown at φ = 90◦ as a function of
the kinematical variables Q2, xB = Q2/(2Mν), and t . Due
to limited statistics, in the experimental analysis these latter
variables have been studied separately with a two-dimensional
data binning. The same procedure has been used in our
theoretical estimate. For example, each point at a given xB has
been obtained using for t and Q2 the corresponding average
experimental values. Overall, very good agreement is found.

The same happens for Im (HA) shown in Fig. 8, whereas
for Re (HA) the agreement is somehow less satisfactory as is
seen in Fig. 9. In particular, one point in the t dependence is
not reproduced. One should not forget anyway that the present
data do not constrain enough Re (HA), a quantity appearing
multiplied by small coefficients in Eq. (22).

The Cauchy principal-value integral in Eq. (24) has been
evaluated numerically using both the standard Cern library
routines and the procedure described in Ref. [53] obtaining
a negligible difference with the two methods. From the theo-
retical side we note also that the result for Re (HA) is strongly
dependent on the model used to evaluate the nucleon GPD in
the convolution formula. We also note that the GK model is
supposed to work properly at Q2 > 4 GeV2. Here we have
forced its validity at much lower-Q2 values with remarkable
success.

In the light of this comparison, we can conclude that
the description of the present data does not require exotic
arguments, such as dynamical off shellness. As a matter of fact,

our calculation shows that careful use of basic conventional
ingredients is able to reproduce the data.

V. CONCLUSIONS AND PERSPECTIVES

A thorough analysis of the available data on coherent deeply
virtual Compton scattering off 4He has been presented. The
framework is the impulse approximation description of the
process at leading twist, given by the handbag contribution.
In this way, a convolution formula is obtained, in terms of
a nondiagonal one-body spectral function of the nucleus and
the GPD of the bound nucleon. The nucleonic contribution
is parametrized through the Goloskokov-Kroll model. The
nuclear part is given by a model of the one-body nondiag-
onal spectral function, which reproduces in the proper limit
the exact Av18 + UIX diagonal momentum distribution. A
reasonable description of the electromagnetic form factor at
the low values of the momentum transfer, relevant for the
specific experimental kinematics, is reproduced. In the forward
limit, the nuclear parton distributions show the expected EMC-
like behavior. Overall very good agreement is found for the
observables recently measured at Jefferson Laboratory. As a
matter of fact, our calculation shows that a careful analysis
of the reaction mechanism in terms of basic conventional
ingredients is able to describe the data. We can conclude
that the present experimental accuracy does not require the
use of exotic arguments, such as dynamical off shellness.
Nevertheless, a serious benchmark calculation in the kinemat-
ics of the next generation of precise measurements at high
luminosity will require an improved treatment of both the
nucleonic and the nuclear parts of the calculation. The latter
task includes the realistic evaluation of a one-body nondiagonal
spectral function of 4He. Work is in progress towards this
challenging direction. In the meantime, the straightforward
approach proposed here can be used as a workable framework
for the planning of future measurements.
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