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We study the hadronic effects on the ccq̄q̄ tetraquark state by focusing on the Tcc(1+) meson during the hadronic
stage of relativistic heavy ion collisions. We evaluate the absorption cross section of the Tcc meson by pions in the
quasifree approximation, and investigate the time evolution of the Tcc abundance in the hadronic medium based
on the effective volume and temperature of the hadronic phase at both the BNL Relativistic Heavy Ion Collider
(RHIC) and the CERN Large Hadron Collider (LHC) modeled by hydrodynamic calculations with the lattice
equation of state. We probe two possible scenarios for the structure of the Tcc, where it is assumed to be either
a compact multiquark state or a larger sized molecular configuration composed of DD∗. Our numerical results
suggest that the hadronic effects on the Tcc production are insignificant, and its final abundance depends on the
initial yield of the Tcc produced from the quark-gluon plasma phase, which will depend on the assumed structure
of the state.
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I. INTRODUCTION

Exotic hadrons have been proposed to be important probes
for understanding the fundamentals of the strong interaction in
hadron physics [1,2]. The excitement in the subject restarted
with the observation of DsJ (2317) [3] and X(3872) [4],
whose masses did not fit well within the conventional potential
model approaches, and continues to the present day with the
recent observation of Pc(4380)+ and Pc(4450)+ [5]. Detailed
theoretical studies on the structure and properties of these states
have been reported using various models [6–9]. Moreover, it
has been argued that relativistic heavy ion collisions provide
an excellent venue to produce some of these and previously
proposed exotic states because they contain heavy quarks,
which are profusely produced in these experiments [10–12].
Among many exotic hadrons, we focus here on the proposed
doubly charmed tetraquark Tcc(ccūd̄ = DD∗) with the quan-
tum number I (JP ) = 0(1+) [13–15].

There are several reasons why the Tcc is of particular
interest. First of all, it is a flavor exotic tetraquark, which has
never been observed before. Second, with the recent discovery
of the doubly charmed baryon at CERN [16], the possibility of
observing a similar doubly charmed hadron with the light quark
replaced by a strongly correlated light anti-diquark seems quite
plausible. Finally, analyzing the structure of this particle in
the constituent quark model, one finds that this particle is
the only candidate where there is a strong attraction in the
compact configuration compared to two separated mesons.
This is so because while previously observed exotic candidates
such as the X(3872) are composed of qq̄QQ̄, where q,Q are
light and heavy quarks respectively, the proposed Tcc state
is composed of QQq̄q̄ quarks. The latter quark structure
favors a compact tetraquark configuration as the additional

light anti-diquark structure q̄q̄ in the isospin zero channel
provides an attraction larger than that for the two Qq̄ in a
separated meson configuration [17–19]. Hence, the Tcc is a
unique multiquark candidate state that could be compact.

The measured yields of ground state particles and their ra-
tios from relativistic heavy ion collisions can be well described
by statistical models [20–22]. On the other hand, there are
indications that yields for resonances with structures different
from ground states deviate from the statistical model prediction
[23,24]. In particular, it was argued that the yields of compact
multiquark configurations would be an order of magnitude
more suppressed compared to a molecular configuration or
a usual hadron with the same quantum number and mass, if
allowed, which should follow the statistical model prediction
[10–12]. However, these results were obtained without con-
sidering the hadronic effects, which could change the initial
production rate at the chemical freeze-out due to the interaction
with other particles during the hadronic expansion before the
kinetic freeze-out. The importance of this effect has been
confirmed for states with large intrinsic width such as the K∗,
which has been observed both at the BNL Relativistic Heavy
Ion Collider (RHIC) and the CERN Large Hadron Collider
(LHC) with yield ratios to the K that are systematically
reduced compared to the statistical model predictions [25].
If the hadronic effects are large, the hope of using production
yields to discriminate the structure of an exotic particle through
its production could be problematic. In fact, for similar reasons,
the hadronic effects of exotic candidates have been estimated
for the DsJ (2317) [26] and X(3872) [27,28].

In this work, we estimate the hadronic effects on the Tcc

yields in heavy ion collisions to assess if the initial yields at
the hadronization point are maintained, so that its structure can
be discriminated. We also solve a hydrodynamic model based
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on the lattice equation of state with and without viscosity, and
parametrize the resulting time dependence of the temperature
and volume during the hadronic phase at both RHIC and LHC
that will be used in this and in similar future works.

This work is organized as follows. In Sec. II, we introduce a
simplified hydrodynamic model to calculate and parameterize
the time dependence of the temperature and volume of the
hadronic phase at RHIC and LHC. In Sec. III, we discuss
the hadronization in relativistic heavy ion collisions and the
Tcc yields calculated in two possible scenarios, where the
Tcc is either a compact configuration with suppressed yield
estimated within the coalescence model or a weakly bound
molecular configuration that should follow the statistical model
prediction. In Sec. IV, the cross sections of the Tcc absorption
by pions are calculated in the quasifree approximation. In
Sec. V, the time evolution of the Tcc abundance is studied
by solving the rate equation in the two possible scenarios.
In Sec. VI, we give possible production final states that can
be used to observe these states from heavy ion collisions.
In Sec. VII, we discuss yields of doubly charmed baryons,
comparing with the yields of the Tcc and D. Finally, we
summarize our results in Sec. VIII.

II. HYDRODYNAMIC EQUATION
FOR THE HADRONIC PHASE

Hydrodynamic equations are given by ∂μT μν = 0, where
the energy-momentum tensor T μν = (e + p)uμuν − pgμν +
πμν with e, p, uμ, and πμν being, respectively, the energy
density, pressure, four-velocity of flow, and the traceless
symmetric shear tensor. For simplicity, we assume the boost
invariance and consider central collisions, that is, symmetric
expansion in the transverse plane. Then there are only two
independent hydrodynamic equations [29],

1

τ
∂τ (τT ττ ) + 1

r
∂r (rT rτ ) = − 1

τ
(p + τ 2πηη ), (1)

1

τ
∂τ (τT τr ) + 1

r
∂r (rT rr ) = 1

r
(p + r2πφφ ), (2)

in the (τ, r, φ, η) coordinate system defined by

τ =
√

t2 − z2, η = 1

2
ln

t + z

t − z
,

r =
√

x2 + y2, φ = tan−1(y/x). (3)

Nonvanishing energy-momentum tensors and shear tensors are
respectively expressed as [29]

T ττ = (e + Pr )u2
τ − Pr,

T τr = (e + Pr )uτur, (4)

T rr = (e + Pr )u2
r + Pr,

where Pr ≡ p − τ 2πηη − r2πφφ is the effective radial pres-
sure, and

πτr = vrπ
rr ,

πττ = vrπ
τr = v2

r π
rr , (5)

πrr = −γ 2
r (r2πφφ + τ 2πηη ),

with vr being the radial velocity and the shear tensors πφφ and
πηη being the only independent ones. The components πφφ

and πηη are boost invariant in the radial direction and satisfy
the following simplified Israel-Stewart equations:

(∂τ + vr∂r )πηη = − 1

γrτπ

[
πηη − 2ηs

τ 2

(
θ

3
− γr

τ

)]
, (6)

(∂τ + vr∂r )πφφ = − 1

γrτπ

[
πφφ − 2ηs

r2

(
θ

3
− γrvr

r

)]
, (7)

where

θ = ∂u = 1

τ
∂τ (τγr ) + 1

r
∂r (rvrγr ),

with ηs and τπ being the shear viscosity and the relaxation time
for the particle distributions, respectively. Furthermore, the
condition uμ(T νμ

;ν ) = 0, where T νμ
;ν is the covariant derivative

and the flow velocity (uτ , ur , uφ, uη ) = (γ / cosh η, γ vr , 0, 0)
reduces to (γr, γrvr , 0, 0) with γr = 1/

√
1 − v2

r in midrapid-
ity, leads to

1

τ
∂τ (τsγr ) + 1

r
∂r (rsγrvr ) = − 1

T

[
uτ

τ
τ 2πηη + ur

r
r2πφφ − (∂τuτ + ∂rur )(r2πφφ + τ 2πηη )

]
, (8)

where s = (e + p)/T is the local entropy density in the hot dense matter. Equation (8) shows that the total entropy is not conserved
in the presence of nonzero shear tensors.

Integrating Eqs. (1) and (6)–(8) over the transverse plane, we have [30]

∂τ (Aτ 〈T ττ 〉) = −(
p + πη

η

)
A, (9)

T

τ
∂τ (Aτs〈γr〉) = −A

〈
γrvr

r

〉
π

φ
φ − A〈γr〉

τ
πη

η +
[
∂τ (A〈γr〉) − γRṘ

R
A

](
π

φ
φ + πη

η

)
, (10)

∂τ

(
A〈γr〉πη

η

) −
[
∂τ (A〈γr〉) + 2

A〈γr〉
τ

]
πη

η = − A

τπ

[
πη

η − 2ηs

( 〈θ〉
3

− 〈γr〉
τ

)]
, (11)

∂τ

(
A〈γr〉πφ

φ

) −
[
∂τ (A〈γr〉) + 2A

〈
γrvr

r

〉]
π

φ
φ = − A

τπ

[
π

φ
φ − 2ηs

( 〈θ〉
3

−
〈
γrvr

r

〉)]
, (12)
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FIG. 1. (a) Temperature and (b) volume during the hadronic expansion for Pb+Pb collisions at
√

sNN = 2.76 TeV at LHC and Au+Au
collisions at

√
sNN = 200 GeV at RHIC.

where A = πR2 (R is the radius of nuclear matter), 〈T ττ 〉 =∫
dAT ττ /A = (e + p)〈γ 2

r 〉 − p, 〈uτ 〉 = 〈γr〉, πη
η ≡ τ 2πηη,

and π
φ
φ ≡ r2πφφ . We note that the total derivatives with respect

to r disappear due to the boundary condition. Assuming that
the radial flow velocity is a linear function of the radial distance
from the center, that is, γrvr = γRṘ(r/R), where Ṙ = ∂R/∂τ

and γR = 1/
√

1 − Ṙ2,

〈
γ 2

r

〉 = 1 + γ 2
RṘ2

2
,

〈
γ 2

r v2
r

〉 = γ 2
RṘ2

2
,

〈γr〉 = 2

3γ 2
RṘ2

(
γ 3

R − 1
)
,

〈
γrvr

r

〉
= γRṘ

R
. (13)

Here, we make the assumption that nuclear matter has a
definite boundary and e, s, and p are uniform inside. In real
hydrodynamic simulations, the energy-momentum tensor is
numerically calculated for all time-space cells leading to a
different temperature for each cell so that the hypersurface
for a constant temperature has a complex structure in the xyτ
space. But at the same time, one finds that most of the points
composing the hypersurface are located on a semiconstant τ
plane [31]. That is why the blast wave model had been suc-
cessful and widely used before sophisticated hydrodynamics
became popular. This is the basis for our approximation.

We then numerically solve simultaneous Eqs. (9) to (12)
by using the lattice equation of state [30,32]. The ratio of
the shear viscosity to entropy density is taken to be 1/(4π )
for quark-gluon plasma (QGP) [33], and ten times this value
for hadron gas [34]. For the relaxation time τπ , we assume
η/τπ = sT /3 for both QGP and hadron gas [35]. The initial
thermalization time for hydrodynamic simulations is assumed
to be 0.5 fm/c, and the initial radius is given by the transverse
area where the local temperature is above 150 MeV. Although
the hydrodynamic approach is marginal in the hadron gas
phase, it has successfully reproduced abundant experimental
data from relativistic heavy ion collisions [36,37].

According to the hydrodynamic calculations, the tempera-
ture and volume during the hadronic phase for LHC (Pb+Pb
collisions at

√
sNN = 2.76 TeV) and RHIC (Au+Au collisions

at
√

sNN = 200 GeV) change with time as shown in Fig. 1. We
now parametrize the results for the τ dependence of the volume
and temperature using the following form [26,38]:

V (τ ) = π
[
R + v(τ − τC ) + a

2
(τ − τC )2

]2
cτ,

T (τ ) = TC − (TH − TF )

(
τ − τH

τF − τH

)α

for τ > τH , (14)

with Tc (τc ), TH (τH ), and TF (τF ) being the critical, hadroniza-
tion, and kinetic freeze-out temperatures (times), respectively.
In Eq. (14), we take TH = 156 (162) MeV, TF = 115 (119)
MeV for LHC (RHIC), and TC = TH by following the first
scenario of Ref. [10]. R, v, a, and α have been treated as fitting
parameters. All the parameters used in the model are given in
Table I.

TABLE I. Parameters used in the phenomenological model of Eq. (14).

TC = TH TF τC = τH τF R v a α

(MeV) (MeV) (fm/c) (fm/c) (fm) (c) (c2/fm)

LHC ideal 156 115 8.1 18.3 12.1 0.70 0.022 0.95
viscous 156 115 8.3 19.5 11.9 0.67 0.020 0.93

RHIC ideal 162 119 6.1 15.1 9.9 0.59 0.030 0.85
viscous 162 119 6.1 15.7 9.8 0.58 0.024 0.79
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III. HADRONIZATION IN RELATIVISTIC
HEAVY ION COLLISIONS

We assume that conventional hadrons such as π , D, and
D∗ are in chemical and thermal equilibrium when they are
produced at the chemical freeze-out. The abundance of a
particle in equilibrium is statistically given by [39]

N
eq
i (τ ) = giγiV (τ )

∫
d3 p

(2π )3
f ( p)

= 1

2π2
giγim

2
i V (τ ) T (τ ) K2

(
mi

T (τ )

)
, (15)

where gi = (2Si + 1)(2Ii + 1) is the spin and isospin degen-
eracy and γi is the fugacity. In the second line, the Boltzmann
distribution f ( p) = exp [−

√
p2 + m2

i /T (τ )] has been used
and K2 is the modified Bessel function of the second kind.
For simplicity we ignore the correction term to f ( p) for shear
viscosity. Since the production and annihilation cross sections
of charm quarks are small [40–42], the number of charm quarks
is conserved during the time evolution of the hadronic matter.
From the total number of charm quarks, Nc = 11 (4.1) [10],
the charm fugacity is determined as γc = 51 (22) for LHC
(RHIC). Here the charm fugacity is slightly different from
that in Ref. [10] because we use only D, D∗, Ds , and D∗

s

to saturate the charm quarks as in Eq. (28). By following
Refs. [26,28], the number of pions at RHIC is set to be 926 at
the kinetic freeze-out. For that purpose, we introduce a pion
chemical potential with effective fugacity of 1.4 and use the
same factor at LHC. This effect is to include the feed-down
contributions from excited states such as the omega, delta, and
K∗. Although these pions will only have a limited contribution
to the absorption during the hadronic phase, we will include
them in the calculation to allow for the maximum effect.

If the Tcc is of a molecular configuration composed of a
weakly bound DD∗, the production yield is expected to follow
the statistical model prediction as the production yield of light
nuclei do so. In such a case, the number of the doubly charmed
Tcc is given by Eq. (15) with γ 2

c , V (τH ), and T (τH ) for the
fugacity, volume, and temperature, respectively. On the other
hand, if the Tcc is a compact multiquark state with the size of
a usual hadron, then the production yield would be suppressed
compared to the statistical model prediction. The production
yields have been estimated by the coalescence model, whose
parameters have been fitted to reproduce the ground state
hadron yields [10]. The two cases are summarized in Table II.
Throughout this paper, we use the average masses mπ =
137.3 MeV, mD = 1867.2 MeV, and mD∗ = 2008.6 MeV [43].

TABLE II. The Tcc yields at hadronization.

molecular compact multiquark

LHC 2.0 × 10−3 1.1 × 10−4

RHIC 5.1 × 10−4 5.0 × 10−5

IV. Tcc ABSORPTION CROSS SECTIONS

The Tcc can be produced or destroyed by interacting with
other comoving particles during the hadronic expansion stage.
Since pions are the most abundant particles with small mass,
the interaction with them is the main contribution to the Tcc

abundance. In this section, we calculate the absorption cross
sections of the Tcc by pions in the quasifree approximation.

The quasifree approximation has been used previously
to estimate the dissociation of charmonia by partons [44].
The approximation was shown to be valid when the binding
energies of charmonia are small at high temperature, and c
and c̄ quarks inside charmonia can be treated like quasifree
particles [45] (see Appendix A for the details). In fact, for the
charmonium case, it can be seen that an exact next-to-leading
order QCD calculation allowing for the compact size gives
a similar result for the thermal width [46] as that obtained
using the quasifree approximation when the process involves
the same number of initial and final states. Here, we estimate
the dissociation cross section of the Tcc by pions by estimating
the D and D∗ components of the Tcc in two possible scenarios
under the quasifree approximation.

In the quasifree approximation, the cross section of Tcc +
π → D + D∗ + π can be evaluated by adding the elastic scat-
tering D + π → D + π and D∗ + π → D∗ + π (see Fig. 2).
For the effective interaction vertices, we use the following
interaction Lagrangian [40]:

LπDD∗ = igπDD∗D∗μτ · (D̄∂μπ − ∂μD̄π ) + H.c., (16)

where τ are the Pauli matrices, π is the pion isospin triplet, and
D = (D0,D+) and D∗ = (D∗0,D∗+) are the pseudoscalar
and vector charm meson doublets, respectively. The meson
couplinggπDD∗ is determined from theD∗ → Dπ decay width

�D∗→Dπ = g2
πDD∗p3

cm

2πm2
D∗

, (17)

where pcm is the momentum in the center of mass frame.
By comparing with the experimental data, the full width
�D∗→Dπ = 83.4 keV [43], we obtain gπDD∗ � 7.8.

(a)
π π

D∗D

D∗

D

D∗

(b)
π π

D∗D

D∗

D

D∗

(c)
π π

D
D∗

D

D∗

D

(d)
π π

D
D∗

D

D∗

D

FIG. 2. Diagrams contributing to the Tcc abundance. In the quasifree approximation, (a) and (b) correspond to the elastic scattering D + π →
D + π , and (c) and (d) to D∗ + π → D∗ + π .
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TABLE III. 2 → 2 processes contributing to the spin and isospin
averaged cross section of Eq. (22). With the effective Lagrangian of
Eq. (16), the matrix elements involve the factor 2N (π± )/2 in Eqs. (19)
and (21).

Process Diagram Process Diagram

D+π 0 → D+π 0 (a)+(b) D∗+π 0 → D∗+π 0 (c)+(d)
D+π 0 → D0π+ (a)+(b) D∗+π 0 → D∗0π+ (c)+(d)
D+π− → D+π− (a) D∗+π− → D∗+π− (c)
D+π− → D0π 0 (a)+(b) D∗+π− → D∗0π 0 (c)+(d)
D+π+ → D+π+ (b) D∗+π+ → D∗+π+ (d)
D0π+ → D0π+ (a) D∗0π+ → D∗0π+ (c)
D0π+ → D+π 0 (a)+(b) D∗0π+ → D∗+π 0 (c)+(d)
D0π 0 → D0π 0 (a)+(b) D∗0π 0 → D∗0π 0 (c)+(d)
D0π 0 → D+π− (a)+(b) D∗0π 0 → D∗+π− (c)+(d)
D0π− → D0π− (b) D∗0π− → D∗0π− (d)

The scattering amplitude of the process D(p1) + π (p2) →
D(p3) + π (p4) is then given as

MDπ→Dπ = M(a) + M(b), (18)

where

M(a) = 2N (π± )/2g2
πDD∗

s − m2
D∗

[
−gμν + (p1 + p2)μ(p1 + p2)ν

m2
D∗

]

× (p1 − p2)μ(p3 − p4)ν,

M(b) = 2N (π± )/2g2
πDD∗

u − m2
D∗

[
−gμν + (p1 − p4)μ(p1 − p4)ν

m2
D∗

]

× (p1 + p4)μ(p2 + p3)ν . (19)

Here, N (π±) is the number of charged pions involved in initial
and final states of the process (see Table III).

For D∗(p1) + π (p2) → D∗(p3) + π (p4), we have

MD∗π→D∗π = M(c) + M(d ), (20)

with

M(c) = −2N (π± )/2g2
πDD∗ε

μ
1 ε∗ν

3

s − m2
D

(p1 + 2p2)μ(p3 + 2p4)ν,

M(d ) = −2N (π± )/2g2
πDD∗ε

μ
1 ε∗ν

3

u − m2
D

(−p1 + 2p4)μ(2p2 − p3)ν .

(21)

In the center of mass frame, the spin and isospin averaged
cross section is

σ = 1

64π2g1g2s

| pf |
| pi |

∫
d�

∑
S,I

|M|2F 4, (22)

where g1 and g2 are the degeneracies of initial particles, pi

( pf ) is the spatial momentum of initial (final) particles, and
the summation is over the spins and isospins of both initial and
final particles. The relevant processes are listed in Table III.
At each interaction vertex, we have used the following form
factors:

F = �2

�2 + (
ω2 − m2

ex

) and
�2

�2 + q2
(23)

for the s and u channels, respectively. Here, the cutoff � =
1.0 GeV is used, mex is the mass of the exchanged particle, ω
is the total energy of incoming particles in the s channel, and
q is the momentum transfer in the u channel in the center
of mass frame. As the molecular configuration is expected
to be of a larger object than the compact case, we have
also varied the cutoff from 1 to 0.5 GeV for the molecular
configuration and from 1 to 1.5 GeV for the compact case in
the estimates for the LHC experiment. Using the form factors,
the cross sections do not increase with the total center-of-mass
energy.

To take into account the thermal effects, we define
〈σab→cdvab〉, the product of the cross section of two-body
scattering (ab → cd) and the relative velocity between initial

particles, vab =
√

(pa · pb )2 − m2
am

2
b/(EaEb ), averaged over

the thermal momentum distributions of initial particles [47,48]:

〈σab→cdvab〉(τ ) =
∫

d3 pad
3 pb fa ( pa )fb( pb ) σab→cdvab∫

d3 pad
3 pb fa ( pa )fb( pb )

=
[

4

(
ma

T (τ )

)2(
mb

T (τ )

)2

K2

(
ma

T (τ )

)
K2

(
mb

T (τ )

)]−1 ∫
z0

dz σ (
√

s = zT (τ ))

×
[
z2 −

(
ma + mb

T (τ )

)2
][

z2 −
(

ma − mb

T (τ )

)2
]
K1(z), (24)

where z0 = max[(ma + mb )/T (τ ), (mc + md )/T (τ )]. It
should be noted, however, that we are approximating
σTccπ→DD∗π by σDπ→Dπ and σD∗π→D∗π . Hence, when
taking the thermal distribution, the distribution fa ( pa )
should be that of the Tcc. Furthermore, the threshold should
also involve that of mD + mD∗ → mTcc

. This amounts

to taking ma = mc = mTcc
instead of mD or mD∗ . The

same approximation will be taken when calculating the
inverse process. The derivation of this formula is given in
Appendix B.

Figure 3 shows the cross sections and the thermally aver-
aged ones of the elastic scattering D(D∗) + π → D(D∗) + π .
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FIG. 3. (a) The cross sections as functions of the total center of mass energy and (b) the thermally averaged cross sections contributing to
the absorption of the Tcc by pions. The shaded regions represent the cutoff dependence � = 0.5−1.5 GeV, the larger cutoff being the upper
boundary.

The cross section of the s channel in the process D + π →
D + π has a peak near the threshold energy

√
s0 = mD + mπ

since mD + mπ ≈ mD∗ . Similarly, the cross section of the u
channel in D∗+π →D∗+π diverges near

√
s0 =mD∗ +mπ .

V. TIME EVOLUTION OF THE Tcc ABUNDANCE

We consider the time evolution of the Tcc abundance
governed by (see Appendix B)

dNTcc
(τ )

dτ
= 〈

σTccπ→DD∗πvTccπ

〉
(τ ) nπ (τ )

×
[

− NTcc
(τ ) + N

eq
Tcc

(τ )
ND (τ ) ND∗ (τ )

N
eq
D (τ ) N

eq
D∗ (τ )

]
,

(25)

where nπ (τ ) = Nπ (τ )/V (τ ) and the superscript eq denotes
the corresponding number in equilibrium. In the quasifree ap-
proximation, the absorption of the Tcc can be taken into account
by using the two-body scattering D(D∗) + π → D(D∗) + π ,〈

σTccπ→DD∗πvTccπ

〉
(τ )

= c1
〈
σDπ→DπvTccπ

〉
(τ ) + c1

〈
σD∗π→D∗πvTccπ

〉
(τ ), (26)

where the factor c1 will depend on the configuration of the Tcc

for which we will consider the following two cases:

(1) Compact configuration: A compact configuration is
expected when the Tcc is composed dominantly of a
color triplet q̄q̄ state and a color antitriplet cc state
[13,14]. Then the decomposition into two cq̄ states will
result in the color decomposition given as [17]

Tcc = 1√
3

(D1D
∗
1 ) −

√
2

3
(D8D

∗
8 ), (27)

where D1,D8 respectively denote the singlet and octet
components of the cq̄ color state. Hence, due to the
coupling to color singlet states, we will take c1 = 1

3 .
(2) Molecular configuration: If the diquark correlation

is not strong enough, the Tcc could be a molecular

configuration of D,D∗ coming from the long range
pion exchange [15,18,49]. For this case we take c1 = 1.

The production term of Eq. (25) has three bodies in the
initial state, and we have approximated it using the equilibrium
condition as derived in Appendix B.

To obtain the abundance of the Tcc, we have solved the
rate equation (25) with the initial yields NTcc

(τH ) given in
Table II. By using the equilibrium distributions for ND (τ ) and
ND∗ (τ ), the numerical results are shown in Fig. 4. Here we have
used the time dependencies obtained by ideal hydrodynamic
calculations. Those obtained using viscous hydrodynamics
give almost the same results. In the first term of Eq. (25), the
absorption rate of the Tcc is approximately 0.06 c/fm because
〈σDπ→Dπv〉(τ ) ∼ 6 mb in Fig. 3(b) and nπ (τ ) ∼ 0.1 fm−3.
This alone would lead to about 45% reduction of the abundance
as the typical lifetime of the hadronic phase is 10 fm/c. On
the other hand, the production rate is approximately O(10−4)
smaller than the absorption rate, which can be seen easily from
the factor N

eq
Tcc

(τ ) /[Neq
D (τ )Neq

D∗ (τ )]. Hence, its contribution

0.0

0.5

1.0

1.5

2.0

6 8  10  12  14  16  18

N
T

cc
 (

10
-3

)

τ (fm/c)

LHC, mol
LHC, comp
RHIC, mol
RHIC, comp

FIG. 4. The expected time evolution of the Tcc abundance in
Pb+Pb collisions at

√
sNN = 2.76 TeV at LHC and Au+Au collisions

at
√

sNN = 200 GeV at RHIC. The shaded regions represent the
results obtained by varying the cutoff from 1 to 0.5 GeV (1.5 GeV)
for a molecular (compact multiquark) configuration.
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eq
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FIG. 5. ND,D∗ (τ ) dependence on the Tcc yields for (a) molecular and (b) compact configurations. The shaded regions represent the results
obtained by varying the cutoff from 1 to 0.5 GeV (1.5 GeV) for molecular (compact multiquark) configurations.

becomes important only at high density when the numbers of
D,D∗ mesons are large. Effectively, the production depends
on the relative abundance between NTcc

(τ ) and N
eq
Tcc

(τ ). For
a molecular configuration, while NTcc

(τH ) = N
eq
Tcc

(τH ), the
equilibrium number decreases and hence the number of the Tcc

decreases (less than 42%) with time. For a compact multiquark
state with relatively small initial yields, the number of the Tcc

increases but it remains an order of magnitude smaller than
a molecular configuration as the cross section for production
is as small as that for the absorption. The dependence on the
cutoff parameter is shown by the shaded regions in Fig. 4. By
lowering (raising) � for a molecular (compact multiquark)
configuration, the expected numbers of Tcc grow for both
configurations, but the cutoff dependent hadronic effects on
a multiquark state are smaller due to the factor c1.

The final yield of the Tcc depends strongly on the initial
number at hadronization. Because of the large initial yield,
the expected abundance of the Tcc at LHC is larger than
that at RHIC. These results mean that the numbers of charm
quarks and the Tcc produced from the quark-gluon plasma
phase are important to determine the final abundance of the
Tcc. We can conclude that for both the RHIC and LHC
experiments, the large difference between the coalescence and
statistical expectations, obtained assuming that the Tcc is a
compact multiquark or molecular configuration, remains until
the kinetic freeze-out.

We have also considered the case that D and D∗ are not in
chemical equilibrium. This is important as the total number of
charm quarks is expected to be conserved during the hadronic
phase. The processes where the numbers of D,D∗ change are
related to Eq. (25), where the absorption of the Tcc is related to
the production of D,D∗ and its inverse relation. However, in-
stead of solving the coupled rate equations involving charmed
hadrons, we will consider two extreme cases:

(1) After the chemical freeze-out, the numbers of D and
D∗ will be assumed to be constant.

(2) We will assume that the inelastic cross sections in-
volving light hadrons are large so that the ratios of
charmed hadrons follow the equilibrium ones until the
kinetic freeze-out point. While extreme, such a scenario

seems to be consistent with the experimental findings
for the K∗/K ratios from heavy ion collisions [50].
This scenario is easily implemented by allowing the
fugacity γc(τ ) to depend on time during the hadronic
phase using the following condition:∑

Di=D,D∗,Ds ,D∗
s

NDi
(τ )

= γc(τ )
[
N0

D (τ ) + N0
D∗ (τ ) + N0

Ds
(τ ) + N0

D∗
s
(τ )

]
,

= total number of charm quarks, (28)

where N0
Di

(τ )’s are the equilibrium numbers given in
Eq. (15) without the fugacity. Once γc(τ ) is obtained,
one can assume that the individual numbers also satisfy
the similar relations at each time,

ND (τ ) = γc(τ ) N0
D (τ ),

ND∗ (τ ) = γc(τ ) N0
D∗ (τ ). (29)

This will guarantee that the charm-anticharm annihi-
lation processes are small such that the total numbers
of charmed and anticharmed mesons remain constant
throughout the hadronic phase.

The correct numbers would be somewhere between the two
extreme cases.

Figure 5 shows the results for the two cases. When D and D∗
are not in equilibrium, the Tcc is more likely to be produced for
both molecular and compact configurations. In fact, the number
of the Tcc is largest in the limit of Eq. (28). However, we still
find that even in this extreme limit, the abundance for a compact
multiquark state at the end of the hadronic phase remains a
factor of 5 smaller than that for a molecular configuration.

It is still possible that the total wave function of Tcc has
both a compact and a molecular configuration. In such a
case, the formation of Tcc would proceed through both the
compact and molecular components with weighting factors
determined from its wave function. Then, the production would
be somewhere between our results determined by the molecular
and compact cases. As an order of estimate, neglecting the pro-
duction from the compact configuration, the final production
yield would then be reduced from the molecular estimate to the
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fraction of its component in the wave function. Given the range
of yields in LHC as shown in Fig. 5, a clear distinction would
only be possible if the fraction of the molecular configuration is
of the order of 50%. If the fraction is larger (smaller), it would
be hard to distinguish it from the case where the configuration
is purely molecular (compact).

VI. FINAL STATES

Here we will list the possible final states that could be
measured to reconstruct the Tcc from heavy ion collisions.
The model calculations at present vary on the exact value of
the binding energy. Therefore, we will probe all possibilities
[51]. It should be noted that one could also look at the charge
conjugate final states and search for Tc̄c̄ mesons:

(1) mTcc
� mD + mD∗ : In this case,

Tcc → (a) D0 + D∗+ or (b) D+ + D∗0 or

(c) D+ + D+ + π−. (30)

As D∗+ → D0 + π+ and D0 → K− + π+, (a) can be
reconstructed with vertex detectors. D∗0 in (b) may not
be easy to detect directly.

(2) mD + mD∗ � mTcc
� mD + mD + mπ : This would be

the most likely case for a compact multiquark state.
Then, the virtual D∗+ component can decay into D0 +
π+ so that a detectable final state would be

Tcc → D0 + D0 + π+. (31)

The final state involving Tcc → D0 + D+ + π0 would
be harder to identify. We note that the final state of
Eq. (31) is not distinguishable from that of Eq. (30) (a).

(3) mTcc
� mD + mD + mπ : In this case, the virtual D∗

component should also decay into D + π so that a
detectable final state would be

Tcc → D0 + K− + π+ + π+ or D+ + K−

+π+ + π+ + π−. (32)

Among all the above cases, Eqs. (30) (c) (D+ + D+ + π−)
and (31) (D0 + D0 + π+) seem to be the most probable cases
to reconstruct the Tcc.

VII. �cc DECAY

Observing �++
cc in heavy ion collisions through the final

states �+
c + K− + π+ + π+, as was used by the LHCb Col-

laboration, would be a useful starting point before searching
for Tcc in these collisions. For this purpose, we estimate the
production rate for �cc in heavy ion collisions. The �cc state
is expected to have a hyperfine partner S = 3/2 with a mass of
about 64 MeV above its S = 1/2 ground state [52]. This state
can not decay into a pion and its ground state due to the small
mass difference. However, it can decay electromagnetically
and contribute as a feed-down to the total �cc production. We
will estimate the production of both states using the statistical
model. �cc has a mass of 3621 MeV, as observed by the LHCb
Collaboration, with S = I = 1/2. The �∗

cc is expected to have
a mass of around 3685 MeV with S = 3/2 and I = 1/2. In
Table IV, we show the expected yields of �cc = (�++

cc + �+
cc )

TABLE IV. Yields of doubly charmed baryons and the D meson
in midrapidity. The feed-down from �∗

cc to the �cc production is
not included. The numbers for Tcc are at the kinetic freeze-out point
obtained with � = 1 GeV while those for the others are at the
hadronization point.

D �cc �∗
cc Tcc(mol) Tcc(comp)

LHC 3.7 1.2 × 10−2 1.7 × 10−2 1.2 × 10−3 1.8 × 10−4

RHIC 1.3 3.0 × 10−3 4.1 × 10−3 3.0 × 10−4 5.9 × 10−5

together with those of D = (D0 + D+) and Tcc, which will
serve as a reference point for accessing the feasibility to
measure these particles in a heavy ion collision.

VIII. SUMMARY

We have investigated the hadronic effects on the ccq̄q̄
tetraquark state by focusing on the Tcc multiplicity during
the hadronic phase at RHIC and LHC. In particular, we have
considered the absorption by pions and the inverse process
within the quasifree approximation, where theTcc is considered
as a D,D∗ state with appropriate coupling strength depending
on whether it has a compact multiquark or molecular structure.
We have extracted the time dependence of the volume and
temperature for the hadronic phase for both the RHIC and
LHC from the hydrodynamic calculations based on the lattice
equation of state with or without viscosity. By solving the
rate equation for the Tcc and estimating the changes for the
D and D∗ number, we have calculated how much the structure
dependent initial number changes during the hadronic phase.
Furthermore, we have also considered all the possible final
states that could be measured to reconstruct the Tcc from
heavy ion collisions. Among all the cases, we find D+ +
D+ + π− and D0 + D0 + π+ to be the most probable cases
to reconstruct the Tcc.

For a molecular configuration, where the initial number of
the Tcc is expected to follow the statistical model prediction,
the absorption effect is larger than production and reduces the
abundance by about 42%. When a compact tetraquark structure
is assumed, the initial number estimated from a coalescence
model is an order of magnitude smaller than that from the statis-
tical model estimate, and hence production is larger. However,
we find that due to the small cross section of about 6 mb, the
rate of change is not large enough so that the initial order of
magnitude difference in the assumed abundance is maintained
at the end of the hadronic phase. This suggests that measuring
the Tcc from heavy ion collisions could also tell us about
the nature of its structure, which could either be a compact
multiquark state or a loosely bound molecular configuration.
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APPENDIX A: 2 → 3 SCATTERING

Consider a process where two particles of momenta q + k1 scatter into three particles of momenta p1 + p2 + k2. The cross
section is written as

σdiss = 1

2Eq2Ek1vqk1gqgk1

∫
d3 p2

(2π )32Ep2

d3 p1

(2π )32Ep1

d3k2

(2π )32Ek2

(2π )4δ4(p1 + p2 + k2 − q − k1)|M|2

=
∫

d3 p2

(2π )32Ep2

∫
d4kδ4(k + p2 − q )

1

2Eq2Ek1vqk1

(2Ek2Ek1vkk1 )
1

2Ek2Ek1vkk1gqgk1

×
∫

d3 p1

(2π )32Ep1

d3k2

(2π )32Ek2

(2π )4δ4(p1 + k2 − k − k1)|M|2. (A1)

The matrix element is defined from

M = 〈q, k1|p2, p1, k2〉, (A2)

where each state is normalized as

〈q|p〉 = (2π )32Eqδ
3(q − p). (A3)

The quasifree (QF) part is given as

MQF = 〈k, k1|p1, k2〉. (A4)

Quasifree approximation means that all the particles involved are on-shell. Therefore, we can approximate in the q rest frame
(q = 0)

|M|2 = gq

gk

∣∣∣∣ 〈q|p2, k〉
〈k|k〉

∣∣∣∣
2

|MQF |2 = gq

gk

(2π )32Eqδ
3( p2 + k)|MQF |2. (A5)

If we allow small off-shell effects, as explicitly shown in Ref. [45], one can approximate the right-hand side of Eq. (A5) as
follows:

|M|2 = gq

gk

(2π )32Eq |ψ (p)|2 |MQF |2, (A6)

where ψ (p) is the relative wave function of the bound state with p ≈ | p2| ≈ |k|.
Substituting Eq. (A5) into Eq. (A1), we obtain

σdiss =
∫

d4kδ4(k + p2 − q )
Eq

Ep2

1

2Eq2Ek1vqk1

(
2Ek2Ek1vkk1

)

× 1

2Ek2Ek1vkk1gkgk1

∫
d3 p1

(2π )32Ep1

d3k2

(2π )32Ek2

(2π )4δ4(p1 + k2 − k − k1)|MQF |2. (A7)

We assume that q and p2 are at rest and the resonance is barely bound so that mq/2 = mk = mp2 . Then, we have

σdiss = 1

2Ek2Ek1vkk1gkgk1

∫
d3 p1

(2π )32Ep1

d3k2

(2π )32Ek2

(2π )4δ4(p1 + k2 − k − k1)|MQF |2 = σQF . (A8)

Therefore, any addition of thermal factors related to external particles could be obtained by multiplying the corresponding thermal
factors f ( p).

So far, we have assumed that the QF scattering occurs with only one constituent. If the interaction occurs with other particles
independently, one can just sum the matrix elements. However, quantum mechanical effects with a specific form of the interaction
are important when interference terms are to be taken care consistently. The interaction between particles 1,2 and a third particle
3 with a respective flavor matrix λi , can be written in general as

λ1λ3 + λ2λ3 = 1
2

[
(λ1 + λ2 + λ3)2 − (λ1 + λ2)2 − λ2

3

] = 0 if (λ1 + λ2) = 0. (A9)

That is, the cross section would be zero if there is no additional momentum difference in the vertex. A nonzero contribution arises
when there is a derivative acting on the momentum difference between particle 1 and 2. In this case, the interaction will pick up
a term proportional to the dipole of the system [45],

λ1λ3∂ψ (p). (A10)

After the momentum integral, the matrix element would be of order O(1) as the typical momentum the derivative picks up would be
inversely proportional to the size of the wave function. Therefore, the QF approximation would be good as an order-of-magnitude
estimate of the cross section even when the total isospin of the bound state is zero.
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APPENDIX B: RATE EQUATION

In the 2 → 2 case (A + B → C + D), the interaction rate is given by

dN

V dτ
(A + B → C + D)

= gAgB

∫
d3 pA

(2π )3

d3 pB

(2π )3
fA( pA)fB ( pB )vABσA+B→C+D

=
∫

d3 pA

(2π )32EA

d3 pB

(2π )32EB

d3 pC

(2π )32EC

d3 pD

(2π )32ED

fA( pA)fB ( pB )(2π )4δ(4)(pA + pB − pC − pD )|MA+B→C+D|2. (B1)

Generalizing the second line of the above equation to the M → N case,

dN

V dτ
(A1 + A2 + · · · + AM → B1 + B2 + · · · + BN ) =

∫ M∏
i=1

d3 pAi

(2π )32EAi

fAi
( pAi

)
N∏

j=1

d3 pBj

(2π )32EBj

(2π )4δ(4)(pA1 + · · ·

+pAM
− pB1 − · · · − pBN

)
∣∣MA1+···+AM→B1+···+BN

∣∣2
. (B2)

Applying Eq. (B2) to our study, Tcc + π → D + D∗ + π and D + D∗ + π → Tcc + π ,

dN

V dτ
(Tcc + π → D + D∗ + π ) =

∫
d3 pD

(2π )32ED

d3 pD∗

(2π )32ED∗

d3 pπf

(2π )32Eπf

d3 pTcc

(2π )32ETcc

d3 pπi

(2π )32Eπi

× f
(

pTcc

)
f ( pπi )(2π )4δ(4)(pD + pD∗ + pπf − pTcc

− pπi )
∣∣MTcc+π→D+D∗+π

∣∣2
, (B3)

and

dN

V dτ
(D + D∗ + π → Tcc + π ) =

∫
d3 pD

(2π )32ED

d3 pD∗

(2π )32ED∗

d3 pπf

(2π )32Eπf

d3 pTcc

(2π )32ETcc

d3 pπi

(2π )32Eπi

f ( pD )f ( pD∗ )f ( pπf )

× (2π )4δ(4)
(
pD + pD∗ + pπi − pTcc

− pπf

)∣∣MD+D∗+π→Tcc+π

∣∣2
, (B4)

where πi and πf are incoming and outgoing pions.
Since the transition amplitude for D + D∗ + π → Tcc + π is same as that for Tcc + π → D + D∗ + π , the change of the

number of the Tcc is given by

dNTcc

V dτ
=

∫
d3 pD

(2π )32ED

d3 pD∗

(2π )32ED∗

d3 pπf

(2π )32Eπf

d3 pTcc

(2π )32ETcc

d3 pπi

(2π )32Eπi

× (2π )4δ(4)
(
pD + pD∗ + pπf − pTcc

− pπi

)∣∣MTcc+π→D+D∗+π

∣∣2[
f ( pD )f ( pD∗ )f ( pπf ) − f

(
pTcc

)
f ( pπi )

]
. (B5)

The scattering cross section for Tcc + π → D + D∗ + π is given by

σTcc+π→D+D∗+π = 1

2ETcc
2Eπi vTccπi gTcc

gπ

∫
d3 pD

(2π )32ED

d3 pD∗

(2π )32ED∗

d3 pπf

(2π )32Eπf

× (2π )4δ(4)(pD + pD∗ + pπf − pTcc
− pπi )|MTcc+π→D+D∗+π |2. (B6)

(1) Absorption: We introduce the thermal averaged cross section defined in Eq. (24) in the text. Then, the absorption can be
written as

dNTcc

V dτ
= −〈

σTccπ→DD∗πvTccπ

〉
nTcc

nπ , (B7)

where

n = N

V
= g

∫
d3 p

(2π )3
f ( p). (B8)

(2) Production: Instead of working out the three body cross section, using detailed balance, we will take it to be of the
following form:

dNTcc

V dτ
= 〈

σTccπ→DD∗πvTccπ

〉
n

eq
Tcc

nDnD∗

n
eq
D n

eq
D∗

nπ . (B9)
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Collecting the absorption and production terms,

dNTcc

V dτ
= 〈

σTccπ→DD∗πvTccπ

〉
nπ

(
n

eq
Tcc

nDnD∗

n
eq
D n

eq
D∗

− nTcc

)
. (B10)

This is the rate equation we will be using in Eq. (25).
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