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van der Waals hadron resonance gas and QCD phase diagram
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Taking into account the recently developed van der Waals (VDW)-like equation of state (EoS) for grand
canonical ensemble of fermions, the temperature-dependent profiles of normalized entropy density (s/T 3) and
the ratio of shear viscosity and entropy density (η/s) for hadron resonance gas have been evaluated. The VDW
parameters, corresponding to interactions between (anti)baryons, have been obtained by contrasting lattice EoS
for QCD matter at finite chemical potentials (μB ) and for T � 160 MeV. The temperature- and chemical-potential-
dependent study of s/T 3 and η/s for hadron gas, by signaling onsets of first-order phase transition and crossover
in the hadronic phase of QCD matter, helps in understanding the QCD phase diagram in the (T , μB ) plane. An
estimation of probable location of critical point matches predictions from other recent studies.
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I. INTRODUCTION

Quark-gluon plasma (QGP) [1,2], the deconfined partonic
phase of strongly interacting matter, is created in laboratories
in ultrarelativistic heavy-ion collisions at Relativistic Heavy
Ion Collider (RHIC) [3–6] and Large Hadron Collider (LHC)
[7]. The QGP, evolving through a confined hadronic phase,
eventually results into free-streaming final-state particles.
Lattice simulations [8] of quantum chromodynamics (QCD)
at vanishing baryon chemical potential (μB), corresponding
to top-RHIC and LHC energies, provide reliable equation
of state (EoS) for both the phases of strongly interacting
matter, partonic and hadronic. The hadronic phase of the QCD
matter [1,2] at zero μB can be described successfully also
by the hadron resonance gas (HRG) model [9–11]. The QCD
matter at nonzero μB , like the ones created [12] in heavy-ion
collisions at comparatively lower center-of-mass energies
(
√

sNN ) in the beam energy scan (BES) program at RHIC,
however, is less understood.

According to the present understanding of the QCD phase
diagram in the (T ,μB ) plane, at vanishing μB and at T , higher
than that at a critical point, the changes between partonic and
hadronic phases occur through a crossover [13,14]. On the
other side of the critical point, along the phase boundary,
first-order phase transition [15–17] takes place. RHIC has
collected AuAu collision data at

√
sNN = 7.7, 11.5, 19.6, 27,

39, 62.4, 130, and 200 GeV, which cover a wide range of
baryon chemical potential from μB ≈ 420 to 20 MeV. Being
encouraged with the nonmonotonic trends in BES-data [12],
in particular in the event-by-event net-proton fluctuations, the
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BES-II [18] program has been planned to collect high statistics
precision-data in the energy range

√
sNN = 7.7 to 20 GeV.

The fixed-target mode Au + Au collisions at BES-II will cover√
sNN = 3 GeV (μB ≈ 720 MeV) to 7.7 GeV. Another fixed-

target experiment, the compressed baryonic matter (CBM) [19]
at Facility for Antiproton and Ion Research (FAIR) will cover
Au + Au collision energy range of

√
sNN = 2.5 to 4.7 GeV,

corresponding to μB ≈ 800−500 MeV. Also, experiments
at Nuclotron-based Ion Collider fAcility (NICA) [20] and
J-PARC-HI at the Japanese proton synchrotron accelerator
facility [21] will have heavy-ion collisions, creating high
baryon density (μB ≈ 850 MeV) QCD matter. While all these
experiments aim to study the QCD phase boundary and to
search for the possible QCD critical point in the nonzero,
high μB range, theory supplement is not adequate yet, as
reliable EoS for strongly interacting matter at high μB is still
not possible directly from LQCD formulation. The EoS for
strongly interacting matter at nonzero, small μB , however, is
obtained in lattice regularities from truncated Taylor expansion
of thermodynamic potential and recently such an EoS has been
obtained [22] for μB/T = 1.0, 2.0, and 2.5, the range that
has been covered by the experiments in the BES program of
RHIC. At this stage, in absence of ab initio calculations for the
baryon-rich QCD matter, one can obtain EoS for the hadronic
phase of QCD matter at small, nonzero μB in a suitable HRG
model by contrasting the lattice results and, can extend the
study further in the (T ,μB ) plane.

In this article, we present our study in terms of temperature-
dependent normalized entropy density, s/T 3 and the ratio
of shear viscosity and entropy density, η/s for hadron gas
in a HRG model, incorporated with van der Waals (VDW)
form of equation of state that was appropriately developed
[23–25] for grand canonical ensemble of fermions. By fixing
the parameters of VDW EoS for fermions with the properties
of the nuclear matter ground state, the location of critical point
at the end of first-order nuclear liquid-gas phase transition
has been predicted [24]. Inclusion of the VDW EoS in HRG,
with the same interaction constants, gives qualitatively better
results [26], resembling close to the LQCD results, in the
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crossover region at zero μB . Estimation of QCD critical point
in VDWHRG model has been attempted [27], by comparing
the LQCD EoS at zero μB . To study the hadronic phase of
QCD matter over a wide range of μB , we prefer to obtain the
interaction constants by comparing lattice EoS [22] for QCD
matter at finite μB .

It is important to note that the nuclear liquid-gas phase tran-
sition does not involve change in degrees of freedom and so the
signals for phase transitions and for the critical end point could
be clearly brought out [24] by the van der Waals EoS. On the
contrary, the QCD phase transition or crossover entails change
in degrees of freedom between hadronic and partonic and so,
full description of the QCD phase diagram including both the
phases cannot be studied with only the hadron gas. Never-
theless, by studying temperature-dependent s/T 3 and η/s of
hadron gas at varied μB , with a van der Waals form of EoS,
contrasted with lattice EoS for QCD matter, the regions of the
onset of phase transition or crossover can be identified and thus,
the region of probable QCD critical point can be estimated.

II. OBSERVABLES

In-depth knowledge of thermodynamic variables and trans-
port coefficients of hadronic phase is necessary for a better
understanding of the QCD phase diagram. In particular, the
entropy density that gives information about the stability of
an equilibrated system and the shear viscosity, measuring the
ability of a fluid medium to relax towards equilibrium after
a shear perturbation, are the mostly studied observables in
characterising the strongly interacting matter, produced in
relativistic nuclear collisions. Study of s/T 3 and η/s as a
function of temperature can reveal signal for phase transition
and crossover. While s/T 3 is discontinuous at a point of
first-order phase transition, a smooth but rapid rise of s/T 3

over a small change in T signals the crossover. Similarly, a first-
order phase transition presents a discontinuity in η/s and the
crossover exhibits a smooth arrival of η/s at a minimum [28–
33]. Relevant literature provide straight forward procedures
for estimation of entropy density of hadron gas, characterizing
a thermalized hadronic phase of QCD matter. Conversely, in
spite of increased activities in the study of η/s on the basis of
the prediction [28] that the minimum of η/s should lie at the
critical temperature or near phase transition or rapid crossover
temperature between the two phases of the QCD matter and
that the conjectured universal minimum (�1/4π ), the KSS
bound [34], of η/s is valid for the QCD matter also, estimation
of η of a hadron gas is still under development stage. This is
evident from the widely varied values of η/s of hadron gas
obtained from different model calculations.

The temperature dependence of η/s for hadron gas, as
studied [35–39] in HRG models with short-range repulsive
interactions introduced by considering finite sizes of con-
stituent hadrons, exhibit monotonic behavior. In general, the
temperature-dependent η/s, estimated in the HRG model-
based calculations in molecular kinetic theory [35–38], in-
volves a rather simple, analytical formula of the shear viscosity
of a gaseous system, proportional to the number density,
the mean free path, and the average momentum of the gas
molecules. At low temperature, this analytical formula yields

large value of η/s, compared to that obtained from elaborate
theoretical calculations including Kubo formalism [40] and
Chapman-Enskog (CE) approach [41], which are in good
agreement [42] with each other. The transport coefficient of
hadron gas is studied using the relaxation time approximation
(RTA) [44,45], also. The temperature dependence of η/s for
hadronic matter at zero μB , estimated in microscopic transport
calculations [46,47] with UrQMD and (conceptually similar)
SMASH, employing Kubo formalism, result in considerably
different values of η/s at low temperature. The variance in the
values of η/s from various transport models can be attributed
[47] to varied microscopic details that can be translated
very differently into macroscopic effects. In Ref. [43], the
temperature dependence of η/s of a multicomponent hadronic
resonance gas have been estimated by calculating η in the CE
approach and entropy density in relativistic virial expansion
method using the K-matrix parametrization of hadronic cross
sections. The calculation yields half the value of η/s, reported
in Ref. [46]. In Ref. [45], the minimum of η/s, following
RTA method, reaches the crossover temperature at 245 MeV.
In a hydrodynamics-based transport model study [48], the
estimated η/s near T = 160 MeV comes one-forth the value
obtained in Ref. [46]. An extrapolation to the temperature-
dependent η/s for QCD hadronic phase, calculated [31] using
chiral perturbation theory and the linearized Boltzmann equa-
tion, reaches the KSS bound at T ≈ 200 MeV. It is important to
note that none of the estimations of η/s for hadron gas at T ≈
160 MeV reaches the KSS value, corroborating the conclusion
[46] that the expected range of low values of η/s (≈0.08 to
0.24) [49] at RHIC might be attributed to the partonic phase
of the QCD matter and not to the hadronic phase.

In constraining the regions of phase transition and crossover
in QCD phase diagram with a hadronic gas model, it is,
therefore, important that a study of temperature dependence of
η/s is complemented with a study of temperature dependence
of s/T 3.

III. HADRON RESONANCE GAS (HRG)

A. Ideal and excluded volume models

The basic version of the HRG model, formulated with the
experimentally measured discrete mass spectrum of hadrons
and resonance states provided in mass tables by particle
data groups (PDGs), successfully reproduces several thermo-
dynamic observations from LQCD calculations of strongly
interacting hadronic matter [50–53] at vanishing μB . While
the inclusion of all known resonances effectively takes care
of the attractive interactions between the hadrons, one needs
to take into consideration the repulsive interaction between
the constituent hadrons. This is usually done in the so-called
excluded volume (EV) [54–59] model of HRG (EVHRG) by
introducing the effects of Van der Waals-type hadron repulsion
at short distances, implemented through finite hard-core radius
of constituent hadrons of the system.

The grand canonical partition function of ideal (noninter-
acting) hadron resonance gas are written as [10]

ln Zid =
∑
i=1

ln Zid
i , (1)
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where ln Zid
i is the partition function of the ith particle and is

given by

ln Zid
i = ±Vgi

2π2

∫ ∞

0
p2dp ln{1 ± exp[−(Ei − μi )/T ]},

(2)

where V is the volume of the system, gi is the degener-
acy, and T is the temperature. Ei =

√
p2 + m2

i is the single-
particle energy, mi is the mass, μi = BiμB + Siμs + QiμQ

is the chemical potential, Bi, Si,Qi are the baryon number,
strangeness, and charge of the particle, respectively, and μ′s
are corresponding chemical potentials. The (+) and (−) sign
corresponds to fermions and bosons, respectively.

The thermodynamic variables: pressure P id (T ,μ), parti-
cle density nid (T ,μ), energy density εid (T ,μ), and entropy
density sid (T ,μ) for the ideal hadron resonance gas can be
written as

P id (T ,μ) = ±
∑

i

giT

2π2

×
∫ ∞

0
p2dp ln{1 ± exp[−(Ei − μi )/T ]}, (3)

nid (T ,μ) =
∑

i

gi

2π2

∫ ∞

0

p2dp

exp[(Ei − μi )/T ] ± 1
, (4)

εid (T ,μ) =
∑

i

gi

2π2

∫ ∞

0

p2dp

exp[(Ei − μi )/T ] ± 1
Ei, (5)

sid (T ,μ) = ±
∑

i

gi

2π2

×
∫ ∞

0
p2dp

(
ln{1 ± exp[−(Ei − μi )/T ]}

± (Ei − μi )

T (exp[(Ei − μi )/T ] ± 1)

)
. (6)

In a thermodynamically consistent EV HRG model, as
proposed by Ref. [56], the pressure is given by

P id
EV(T ,μ1, μ2, ...) =

∑
P id

i (T , μ̄1, μ̄2, ...). (7)

The chemical potential of the ith particle is given by

μ̄i = μi − Vev,iP
id
EV(T ,μ1, μ2, ...) (8)

where Vev,i = 16
3 πr3

i excluded volume of the ith hadron with
hard core radius ri ,

nid
EV (T ,μ1, μ2, ...) =

∑
i n

id
i (T , μ̄1, μ̄2, ...)

1 + ∑
k Vev,kn

id
k (T , μ̄k )

, (9)

εid
EV (T ,μ1, μ2, ...) =

∑
i ε

id
i (T , μ̄1, μ̄2, ...)

1 + ∑
k Vev,kn

id
k (T , μ̄k )

, (10)

sid
EV (T ,μ1, μ2, ...) =

∑
i s

id
i (T , μ̄1, μ̄2, ...)

1 + ∑
k Vev,kn

id
k (T , μ̄k )

. (11)

B. van der Waals hadron resonance gas (VDWHRG)

The van der Waals equation of state, in terms of the usual
van der Waals constants a and b, pressure p(T ,μ) and number
density n(T ,μ), in the grand canonical ensemble of hadrons
can be written as [26]

p(T ,μ) = pid (T , μ̄) − an2(T ,μ), (12)

n(T ,μ) = nid (T , μ̄)

1 + bnid (T , μ̄)
, (13)

where μ̄ is the modified chemical potential and is given by

μ̄ = μ − bp(T ,μ) − abn2(T ,μ) + 2an(T ,μ). (14)

The other thermodynamic quantities, the entropy density,
s(T ,μ), and the energy density, ε(T ,μ), are given by

s(T ,μ) = sid (T , μ̄)

1 + bnid (T , μ̄)
, (15)

ε(T ,μ) = εid (T , μ̄)

1 + bnid (T , μ̄)
− an2(T ,μ). (16)

In the VDWHRG model [25,26], the VDW interactions
have been considered between (anti)baryons, only, while
the interactions were neglected between pairs of baryon-
antibaryon, meson-meson, and meson-(anti)baryon. In this
study, while following the VDW form of interactions between
(anti)baryons, the attractive and the repulsive interactions
among meson-pairs get effective through the resonances and
excluded volume effect [57,58], introduced with hard-core
radius of mesons rM , respectively.

The pressure in the VDWHRG model, thus, can be written
as [24–26]

p(T ,μ) = pM (T ,μ) + pB (T ,μ) + pB̄ (T ,μ), (17)

where

pM (T ,μ) =
∑
i∈M

pid
i

(
T , μ̄M

i

)
, (18)

pB (T ,μ) =
∑
i∈B

pid
i

(
T , μ̄B

i

)
, (19)

pB̄ (T ,μ) =
∑
i∈B̄

pid
i

(
T , μ̄B̄

i

)
. (20)

μ̄M
i , μ̄B

i , and μ̄B̄
i are the modified chemical potential for mesons

(due to EV correction), baryons, and antibaryons (due to VDW
interactions), respectively. pM (T ,μ), pB (T ,μ), and pB̄ (T ,μ)
are pressure of mesons, baryons, and antibaryons, respectively.

μ̄B,B̄ = μ − bpB,B̄ − abn2
B,B̄

+ 2anB,B̄ , (21)

where nB is the number density of baryons and nB̄ is that of
the antibaryons. The nB and nB̄ in the VDWHRG model are
given by

nB,B̄ =
∑

i∈B,(B̄ ) n
id
i

(
T , μ̄

B,B̄
i

)
1 + b

∑
i∈B,(B̄ ) n

id
i

(
T , μ̄

B,B̄
i

) . (22)

Using the VDWHRG model, though we intend to study,
in general, the QCD phase boundary over wide μB range,
corresponding to the experiments at RHIC, LHC, and FAIR,
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FIG. 1. The pressure and energy density from lattice simulation
[22] are compared with ideal HRG + VDW, as a function of T , with
the VDW constants for interactions between (anti)baryons only were
obtained by simultaneous fitting of the lattice results for μB/T = 1.0
and 2.0. The repulsive interaction between mesons has been effective
by considering meson hard-core radius, rM = 0.2 fm.

the focus is on as yet less understood finite μB range in
the QCD phase diagram in the (T ,μB )-plane. We, there-
fore, obtain the values of the interaction constants between
the (anti)baryons, by contrasting, simultaneously, the lattice
calculated [22] pressure and energy-density for nonzero μB .
We restrict the fitting to the lattice results for μB/T = 1.0
and 2.0 up to the temperature, T ≈ 160 MeV, the range of
reasonable accuracy [22] of the lattice simulation. Further, as
has been shown in Ref. [22], the ideal HRG model calculations
can describe the physics of the strongly interacting matter
up to small values of μB/T , but fail at large μB/T and/or
T � 160 MeV. We take rM = 0.2 fm from previous studies
[60,61] of successful description of LQCD data at μB = 0.
Simultaneous comparison of the central values of the lattice
simulations and our model calculations for pressure and energy
density for different μB , has been carried out in terms of
goodness of fits, following the criterion of minimum value of
χ2/d.o.f. The simultaneous fit results χ2 / d.o.f = 1.15/26. For
all our calculations in this work, we consider the mass table
provided in Ref. [62]. The comparison of model calculations
and the lattice simulations is presented in Fig. 1.

C. η/s—The transport coefficient

As already discussed, most of the existing approaches
of estimation of η/s for hadron gas are based on various
approximations and unique formulation for calculating the
shear viscosity for a multicomponent hadron gas at varied
chemical potential and temperature of interest for the hadronic
phase of QCD matter is yet to emerge. However, there have
been some studies [35,46,47] on η/s of hadron gas as a function
of temperature and baryon chemical potential, covering a wide
range in the QCD (T ,μB ) plane. In this phenomenological
study, we calculate η for the VDWHRG gas following an
analytical formula as adopted in Ref. [35] for calculating η
and η/s for a mixture of particle species of different masses

with same hard-core radius and the same mean free path of
different species. In Ref. [35], the η/s of hadron gas with
excluded volume effect has been calculated for T � 64.3 MeV
and μB � 800 MeV. We consider identical formulation for esti-
mation of η in the similar (T ,μB) ranges for the van der Waals
hadron gas also. The formula for shear viscosity of a VDW
hadron gas of discrete states, relating shear viscosity coefficient
to the average momentum transfer, thus can be written as

ηid
VDW = 5

64
√

8

∑
i∈(M,B,B̄ )

〈|Pi |〉ni (T ,μ)

n(T ,μ)r2
i

, (23)

where r is the hard-core radius of the constituents, ni is the
number density of ith hadron, n(T ,μ) is the number density
of all the hadrons, resonances of the considered van der Walls
gas, and 〈|Pi |〉 is the average momentum given by

〈|Pi |〉 =

∫ ∞
0

p3dp

exp
[(√(

p2+m2
i

)
−μ̄i

)
/T

]
±1∫ ∞

0
p2dp

exp
[(√(

p2+m2
i

)
−μ̄i

)
/T

]
±1

, (24)

where μ̄i is the corresponding modified chemical potential of
the ith hadron.The (+) and (−) sign corresponds to fermions
and bosons, respectively.

Equation (23) for η for the mixture of the gas, in the limit
T 	 m and mi = m, reduces to that for a nonrelativistic gas
of hard-core sphere, having dependence only on temperature,
radius of the hard core sphere and mass of the particles. In
this work the shear viscosity for the considered VDWHRG
has been calculated with

η = ηM + ηB + ηB̄ . (25)

The subscripts M , B, and B̄ in Eq. (25) stand for meson,
baryon, and antibaryon, respectively. It may be noted, in the
considered model for this work, ri is 0.2 fm for ηM and ≈0.62
fm (corresponding to interaction constant b = 4.08 fm3) for
ηB and ηB̄ .

IV. RESULTS

Different parts of the wide range of μB of our study differ
widely in terms of configuration of constituent hadrons and so
in terms of thermodynamic variables and transport properties
of the medium. We, therefore, present our results for two
different interesting regions of low and high μB .

We reiterate that all calculations in the VDWHRG model
are worthy of attention only for the hadronic phase of the
QCD. The VDWHRG calculations beyond a likely point of
discontinuity or break in the monotonicity, if any, in the
temperature-dependent study of s/T 3 and η/s for hadron
gas, therefore, may be useful in presentations, only, to make
the position of such a point more perceptible. Beyond any
such point for a given μB , numerical values from HRG-based
calculations, without considering an EoS for partonic phase,
do not carry actual physical properties of deconfined partonic
matter. This analysis, thus, aims at constraining the locations
of appearance of discontinuity or change in monotonicity of
the observables in hadronic phase, indicating tendency toward
phase transition or crossover.
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FIG. 2. The temperature-dependent s/T 3 for hadron resonance
gas with VDW form of interactions between (anti)baryons at different
μB in the range, μB = 0 to 480 MeV, covering the RHIC-BES
program. The temperature dependence of the observable has been
calculated at an temperature interval of 1 MeV. The dotted lines
connect the calculated points for a given μB .

A. Low μB and high T region

Figures 2, 3, 4, and 5 present the temperature-dependent
entropy density, shear viscosity, number density, and the ratio
of shear viscosity and the entropy density, respectively, for van
der Waals hadron gas for μB = 0 to 480 MeV, corresponding
to experiments at LHC and the first phase of RHIC-BES
program.

Figure 2 shows that s/T 3 for zero and low μB mono-
tonically increases with temperature. However, as the μB

increases, the shape of temperature dependence of s/T 3 starts
losing monotonicity. The smooth change in shape increases
with increasing μB . A similar feature of smooth change in
shape with increasing μB appears in temperature-dependent
η also, as can be seen in Fig. 3. In the low μB region of
the hadron gas, kinetic energy of the constituents, dominantly
the mesons, increase with temperature, resulting in larger
momentum transfer and so increase in shear viscosity. Increase
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FIG. 3. The temperature-dependent η for system and conditions
described in the caption of the Fig. 2.
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FIG. 4. The temperature-dependent number density for system
and conditions described in the caption of the Fig. 2.

in μB results in to a denser medium with an increased relative
abundance of baryons over mesons. At higher μB , therefore,
the effect of the VDW interactions between (anti)baryons
contribute more, reducing the momentum transfer and so the
shear viscosity. The change in temperature-dependent profile
of entropy density and shear viscosity with increasing μB can
be attributed to the effect of van der Waals interactions on
number density as depicted in Fig. 4. It is clear from Fig. 5, the
η/s of the hadron gas at a given μB decreases with temperature
and reaches smoothly at a common minimum, the likely lower
bound of η/s for hadron gas in the low μB range, as expected in
the crossover region of the QCD phase boundary. Hadron Gas
with higher μB reaches a minimum η/s at lower temperature.
There is no signature of critical point in the considered T and
μB ranges, which is consistent with the results from the lattice
calculations at finite μB [22], which exclude the possibility
of having the critical point T � 135 MeV. The conjectured
universal lower bound [28,34] of the value of η/s is included
in Fig. 5, for reference.

At this point, we compare values of η/s of the hadron gas
at μB = 0, in the vicinity of the crossover temperature, as es-
timated in several studies, following different methodologies.
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FIG. 5. The temperature-dependent η/s for system and condi-
tions described in the caption of the Fig. 2.
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The closest match to the estimated η/s (≈0.69) at cross-over
temperature ≈160 MeV of the present work in VDWHRG
model is ≈0.62 of Ref. [39], where the entropy density
of the hadron gas, including the Hagedorn states, has been
calculated in the EVHRG model and the shear viscosity has
been evaluated using Kubo relation. Another study in EVHRG
model has been presented in Ref. [35], where shear viscosity
has been calculated for hadron gas with the same analytical
formula that we follow in the present study. The study with
different hard core radius (r) of constituent hadrons yields
η/s ≈ 0.49 and 0.29 for r = 0.3 fm and 0.5 fm, respectively,
at T = 160 MeV. The η/s reaches ≈0.24 for r ≈ 5.3 fm at
T = 180 MeV. The study [46] involving Kubo formalism and
microscopic transport calculation within the UrQMD model
yields a minimum η/s ≈ 0.9. The η/s calculation in Chapman
Enskog and K-matrix formalism [43], for a hadronic gas of a
mixture of π -K-N -η and 57 resonances with masses up to
2 GeV reaches ≈0.4 at T = 160 MeV. In Ref. [45], the η/s
has been evaluated within the relaxation time approximation of
Boltzmann equation. The relaxation time has been calculated
by evaluating the rates of meson scatterings in a linear σ
model. It has been shown [45] that for sigma meson of mass
mσ = 900 MeV, the minimum of η/s becomes ≈0.12 (close
to the KSS value, ≈0.08) near the vicinity of the crossover
temperature, which, however, appears at T ≈ 245 MeV, in the
study.

B. High μB and low T region

Next, we focus on the results of our study with the VD-
WHRG model in the high μB range for μB = 660 to 750
MeV, where variation in nonmonotonic structure shows up,
indicating onset of first-order phase transition and crossover
in our calculations of shear viscosity, entropy density, and the
ratio of the two in lower temperature range. For a convenient
presentations, the T -dependent profile of the observables have
been calculated at an interval of 0.3 MeV and the calculated
points are connected with dotted lines to show the discontinu-
ity, in the profile.

Figure 6 presents temperature dependence of s/T 3 for the
μB range of interest, at intervals. It is clear from the figure that
s/T 3 rises fast over a small change in T . While the rise in s/T 3

is comparatively smooth at lower values of the considered μB

range, the discontinuity in the temperature-dependent profile
appears with increasing μB , indicating shift from the crossover
to first-order phase transition or viceversa is happening within
the presented μB range. The structure in T -dependent entropy
density (s/T 3), the thermodynamic variable, is rather expected
for a gas following the van der Waals form of EoS, while the
exact location of such structure in the (T ,μB) plane depends
on the values of the interaction constants.

In Fig. 7, the temperature dependence of η for the same μB

range of interest and at similar regular intervals are depicted.
In Fig. 3, we have seen that the temperature-dependent η
at very low μB starts deviating from the monotonicity with
increasing μB . As seen in Fig. 7, the temperature-dependent
η at much higher μB and at lower temperature exhibit more
prominent deviation. In this high μB and low temperature
region, the shear viscosity decreases with temperature as the
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FIG. 6. The temperature-dependent entropy density (s) for hadron
resonance gas at μB = 660 to 750 MeV, the μB -range where variation
in nonmonotonic structure shows up, indicating likely locations of
first-order phase transition and crossover along the hadronic phase
boundary. The temperature dependence of the observable has been
calculated at an temperature interval of 0.3 MeV. The dotted lines
connect the calculated points for a given μB .

transfer of momentum decreases with stronger interactions
among densely populated baryons. Discontinuity in η takes
place in this region of high μB and low temperature. The
nonmonotonic feature of the temperature-dependent s/T 3 and
η in the high baryon density region can be attributed to the
temperature dependence of number density in this region, that
is depicted in Fig. 8.

In Fig. 9, we plot the temperature-dependent ratio, η/s,
for the van der Waals hadron resonance gas at different μB

for which the temperature dependence of η and s/T 3 have
been studied separately. The conjectured universal lower bound
[34] of η/s has been shown in the figure. The structure in the
temperature-dependent η/s reiterates the region of first-order
phase transitions and crossover for the given set of values of
the interaction constants. It may be noted that the estimated
value of η/s for the hadron gas does not reach the KSS
bound, which is consistent with most of the previous studies on
η/s for hadron gas in different models, as already discussed.
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FIG. 7. The temperature-dependent η for system and conditions
described in the caption of the Fig. 6.
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FIG. 8. The temperature-dependent number density for system
and conditions described in the caption of the Fig. 6.

Also, at or near the probable location of the critical point,
the so-called minimum of η/s is not reached for any of the
μB studied here. This feature corroborates the conclusion of
Ref. [46] that the minimum of η/s for the QCD matter reaches
at the deconfined phase rather than at the confined, hadronic
phase.

Occurrence of similar feature of temperature-dependent
η/s for VDWHRG with previously studied combinations
of interaction constants is depicted in Fig. 10. The lower
panel of Fig. 10 shows that for the values of the constants,
a = 329 MeV fm3 and b = 3.42 fm3 for ground-state nuclear
matter [24,25], the point in between regions of the first-order
phase transition and the crossover, in terms of discontinuity
in η/s, appears near T = 19.5 MeV and at μB = 910 MeV
(we calculate η/s at intervals of 10 MeV in μB and 0.3 MeV
in T ), while in Refs. [24] and [25], the critical point at the
end of nuclear liquid-gas phase transition has been shown to
be at T = 19.7 MeV and μB = 908 MeV. In the upper panel
of Fig. 10, a = 1250 ± 150 MeVfm3 and r = 0.7 ± 0.05 fm
(corresponding to b = 5.75 fm3), as used in estimating [27]
QCD critical point, the T -dependent η/s indicates the point
between the first-order phase transition and the crossover
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FIG. 9. The temperature-dependent η/s for system and condi-
tions described in the caption of the Fig. 6.
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FIG. 10. Temperature-dependent η/s for VDW hadron gas with
interaction parameters a = 329 MeV fm3 and b = 3.42 fm3 (lower
panel) as used in Ref. [25] and a = 1250 MeV fm3 and b = 5.75 fm3

(upper panel) as used in Ref. [27].

resides at T = 62.1 MeV and μB = 720 MeV against the
estimated critical point at T = 62.1 MeV and μB = 708 MeV
(where ∂p/∂n equals to zero) in Ref. [27]. The striking
similarities in results on the appearance of the point between
regions of the first-order phase transition and the crossover, in
terms of discontinuity in η/s, coinciding with the estimated
location of critical point in the previous studies for respec-
tive combinations of interaction constants, corroborate our
consideration of the onset of phase transition and crossover
in hadronic phase being indicative to probable location of
critical point. In terms of discontinuity in s/T 3 and η/s in
the hadronic phase in a given μB , the probable location of the
QCD critical point is estimated to lie around T ≈ 65 MeV and
μB ≈ 715 MeV.

V. DISCUSSIONS AND SUMMARY

We study the temperature dependence of s/T 3 and η/s for
hadron gas with van der Waals form of EoS, satisfying lattice
EoS for the strongly interacting QCD matter. The study helps
constraining the region of onset of the first-order phase tran-
sition and crossover in the hadronic phase of the QCD matter,
eventually indicating the probable location of the critical point.

At vanishing or low μB , the number density of meson-
dominated hadron gas increases with increasing tempera-
ture and the van der Waals form of interactions between
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(anti)baryons do not influence much the behavior of s/T 3

or η/s. However, in the large μB-region, where the system
becomes more and more baryon-rich with increasing μB , the
effects of interactions between (anti)baryons on s/T 3 or η/s
start appearing. Stronger interactions in the region of low T
and high μB results into nontrivial structure in temperature-
dependent s/T 3 or η/s.

In this phenomenological work, η for hadron gas has been
calculated from an approximate formulation in molecular
kinetic theory. On the basis of our calculations, only, it will
not be proper to conclude on quantitative estimations of η/s
for the hadron gas. But that does not cause impediment to
identification of regions of interest in phase diagram through
qualitative comparisons of nontrivial structures, particularly
when the revelation is corroborated with complementary study
in terms of s/T 3. Also, the approximate formula does not
cause any hindrance in finding the location of end point
of discontinuity, appearing for a given μB in temperature-
dependent study of η/s, that matches with the location of
critical point estimated in other studies in terms of different
observables.

The van der Waals form of EoS, by way of its construc-
tion, reveals the first-order phase transition. Discontinuities
or nonmonotonic structure in temperature-dependent s/T 3,
η, and η/s for varied μB reveal the predicted signature of
first-order phase transitions or crossovers over certain ranges
of μB , which is determined by the values of the van der Waals
interaction constants. Reliability of predicted regions of phase
transition or crossover and so the probable location of critical
point depends largely on choice of the interaction constants. We
obtain the constants by simultaneous fit of lattice calculations
of thermodynamic variables at different finite μB of QCD
matter. We find the possible location of the QCD critical point
lies around T ≈ 65 MeV and μB ≈ 715 MeV.

Interestingly, the probable location of the critical point,
estimated with the interaction constants obtained by comparing
lattice EoS for low but finite μB , in this study, is not very
different from that found (atT =62.1 MeV andμB =708 MeV,
where ∂p/∂n equals to zero) in Ref. [27] by fitting the LQCD
EoS for μB = 0. This shows a weak μB dependence of the
VDW constants, obtained by matching lattice EoS within the
range of μB from 0 to ≈300 MeV, in estimation of probable
QCD critical point from analysis of VDWHRG. In view of this
observation, in the absence of an EoS for QCD matter from
first-principle calculation for higher μB , our approximation on
validity of VDW constants obtained for low μB in the high μB

region appears reasonable.
We recollect at this stage that the lattice calculation [22]

at finite μB excludes the possibility of having the critical
point in the ranges T (�135 MeV) and μB (�300 MeV).
Also, analysis of RHIC heavy-ion data in finite-size scaling
[63] method rules out a possible location of critical point
below μB = 400 MeV. The location of the QCD critical point
estimated by this work and the work presented in Ref. [27],
in the VDWHRG model, is comparable with that obtained by
holographic Einstein-Maxwell-Dilaton (EMD) model [64,65].
The EMD model calculations, performed in classical limit of
the gauge/string duality, are successfully applicable along the
QCD phase boundary, the strongly coupled infrared regime
of the QCD. The QGP EoS in the EMD model, which
agrees well with the lattice results [22] at finite temperature
and baryon density, finds a critical point at T = 89 MeV
and μB = 724 MeV. In summary, this study, along with the
complementing results from other recent studies, thus indicates
that the QCD critical point may probably be found in the
baryon-rich matter, corresponding to μB � 700 MeV, likely
to be formed in future experiments of heavy-ion collisions at
RHIC BES-II, CBM, NICA, or J-PARC-HI.
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