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Differential correlation measurements with the identity method
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We present an extension of the identity method initially introduced for particle yield fluctuation studies
towards measurements of differential correlations. The extension is developed and illustrated in the context
of measurements of the normalized two-particle cumulant R2 but is adaptable to any correlation measurements,
including differential flow measurements. The identity method is also extended to account for an arbitrary number
of particle identification devices and signals.
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I. INTRODUCTION

Studies of integral and differential correlation functions of
elementary particles produced in high-energy nucleus-nucleus
collisions provide invaluable information on the particle pro-
duction dynamics and the collision system evolution, and
might also enable the determination of fundamental properties
of the quark matter produced in these collisions [1–3]. Such
measurements have been carried out for different collision
systems, several beam energies, and a host of particle combi-
nations [4–7]. Semiexclusive correlation functions measured
for specific particle species (e.g., pions, kaons, protons, etc.)
are of particular interest as they probe the influence of specific
particle production processes determined by quantum number
conservation laws. For instance, extensive measurements of
general balance functions should provide detailed probes of
the formation, evolution, and hadronization of the quark matter
produced in relativistic heavy-ion collisions [8–10]. The diffi-
culty arises, however, in that such measurements of correlation
functions require large datasets, and severe particle rejection
may be experimentally incurred to achieve high species purity
and low contamination. Indeed, traditional methods if selecting
the species of interest and rejecting contaminating species are
based on cuts on particle identification signals and typically
end up throwing away a significant fraction of the measured
particles, or severely limiting the kinematic range of the mea-
surement, or both. However, the identity method [11] provides
a technique to essentially recover the full statistics and extend
the kinematic range of measurements while providing reliable
disambiguation of particle species. The technique was first
proposed for measurements of the first and second moments
of particle multiplicities (integral correlation functions) with
two particle species but was successively extended to handle
an arbitrary number of species, higher moments [12,13],
and measurements of moments in the presence of transverse
momentum-dependent efficiency losses [14]. The method is
extended here to measurements of differential correlation func-
tions, more specifically measurements of the normalized two-
particle cumulants, R2. However, the method can be extended
to other types of two-particle correlators or to multiparticle

correlation functions. The method is developed for an arbitrary
number of particle species and accounts for particle losses due
to finite detector efficiency. It is also extended to account for
two or more particle identification signals.

This paper is divided as follows. Section II defines the
normalized two-particle differential cumulant R

(p,q )
2 , for par-

ticle species p and q, and summarizes a technique, introduced
elsewhere [15], to discretize and correct measurements for
particle losses. Section III builds on the identity method de-
scribed in Refs. [11–14] and its extension involving an explicit
dependence on detection efficiencies, towards measurements
of multiplicity moments as a function of relative rapidity
and differences in azimuthal angle. Section IV discusses an
extension of the identity method for measurements involving
more than one source of particle identification, e.g., studies
involving joint measurements of energy loss and time of flight.
This work is summarized in Sec. V.

II. R2 DEFINITION AND EVALUATION TECHNIQUE

Measurements of normalized two-particle cumulants
R

(p,q )
2 (�η,�φ) [where p and q represent particle species

in specific kinematic ranges while �η and �φ represent
rapidity (or pseudorapidity) and azimuthal angle differences],

triggered correlation functions 1
Ntrig

d2Npairs

d�ηd�φ
, and balance func-

tions B(�η,�φ) have been carried out in various shapes
or forms for a wide range of collision systems and beam
energies [16–21]. Physical properties and several measurement
techniques of R2 were reported in [15]. The correlator R

(p,q )
2

is commonly measured as a function of the relative rapidity
(or pseudorapidity), the difference of azimuthal angles of
produced particles, or both. However, in this paper, following
Method 2 of Ref. [15], one defines R

(p,q )
2 in four dimensions in

terms of single- and two-particle densities, denoted ρ
(p)
1 (y, φ)

and ρ
(p,q )
2 (y1, φ1, y2, φ2), respectively, according to

R
(p,q )
2 (y1, φ1, y2, φ2) = ρ

(p,q )
2 (y1, φ1, y2, φ2)

ρ
(p)
1 (y1, φ1)ρ (q )

1 (y2, φ2)
− 1, (1)
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where yi and φi (for i = 1, 2) are the rapidity (or pseudorapid-
ity) and azimuthal angle of measured particles. The correlation
function is readily reduced to a function of the relative rapidity
�y = y1 − y2 and the azimuthal angle difference �φ = φ1 −
φ2 by averaging across the measurement acceptance:

R
(p,q )
2 (�y,�φ) = 1

�(�y)

∫
�

R
(p,q )
2 (y1, φ1, y2, φ2)

× δ(�y − y1 + y2)δ(�φ − φ1 + φ2)

× dy1dφ1dy2dφ2, (2)

where �(�y) represents the width of the acceptance in ȳ =
1
2 (y1 + y2) for a given value of �y, and the relative angle �φ
is calculated modulo 2π .

The above expression holds for continuous density func-
tions. In practice, the experimental evaluation of R

(p,q )
2 is based

on histograms with finite size bins, and the evaluation of the
above integral is formulated as a discrete sum [15] of single
and pair yields measured as a function of rapidity (or pseudo-
rapidity), azimuthal angle, and transverse momentum (p⊥). In
general, the measurement may be carried out with arbitrarily
many bins in all three dimensions for both single particles
and pairs of particles, and for species p and q. It is thus con-
venient to define three-dimensional histograms H

(p)
1 (�α) and

six-dimensional histograms H
(p,q )
2 (�α, �β ) for measurements of

single and pair densities, respectively. The three-dimensional
vectors �α = (αy, αφ, αp⊥ ) and �β = (βy, βφ, βp⊥ ) represent
bin indices in rapidity (pseudorapidity), azimuthal angle, and
transverse momentum. The number of bins along each axis,
denoted by my , mφ , and mp⊥ , and range of the variables are
to be chosen considering the physics of interest, the available
statistics, and the dependence of the detection efficiency on
these variables. Considering a selected data sample consisting
of Nev events, the analysis involves processing all events and
counting numbers of single particles and pairs into single
and pair histograms according to their respective momentum
vectors, �α and �β. In the absence of (or neglecting) particle
losses, statistical estimators of the single and pair densities are
obtained according to

ρ̂
(p)
1 (�α) ≡ 〈Np(�α)〉

δyδφδp⊥
, (3)

ρ̂
(p,q )
2 (�α, �β ) ≡ 〈Np(�α)[Np( �β ) − δp,qδ�α, �β]〉

δy2δφ2δp2
⊥

, (4)

where quantities 〈O〉 are event ensemble averages of the (single
or pair) yields in momentum bins �α ( �β) of width δy, δφ, and
δp⊥ in rapidity, azimuthal angle, and transverse momentum,
respectively. The hats (e.g., ρ̂) denote the fact that the above
quantities are statistical estimators of the single and pair
densities, towards which they converge in the large statistics
limit and for infinitesimal bin widths.

In order to obtain measurements of two-particle correlation
functions in terms of the particle separation in rapidity �y
and azimuth �φ, one first sums over the p⊥ indices αp⊥ and
βp⊥ to obtain densities that are functions of rapidity and angle

exclusively:

ρ̂
(p)
1 (�α(2) ) =

mp⊥∑
αp⊥=1

ρ̂
(p)
1 (�α),

ρ̂
(p,q )
2 (�α(2), �β (2) ) =

mp⊥∑
αp⊥ ,βp⊥ =1

ρ̂
(p,q )
2 (�α, �β ), (5)

where �α(2) = (αy, αφ ) and �β (2) = (βy, βφ ). The four-
dimensional normalized cumulantR(p,q )

2 (y1, φ1, y2, φ2) is then
evaluated according to

R
(p,q )
2 (�α(2), �β (2) ) = ρ̂

(p,q )
2 (�α(2), �β (2) )

ρ̂
(p)
1 (�α(2) )ρ̂ (q )

1 ( �β (2) )
− 1. (6)

Finally, R
(p,q )
2 is obtained in terms of rapidity and azimuthal

angle differences according to

R
(p,q )
2 ( ��α) = 1

�(�αy )

∑
αy,αφ,βy ,βφ

R
(p,q )
2 (�α(2), �β (2) )

× δ(�αy − αy + βy )δ(�αφ − αφ + βφ ), (7)

where the index �αy corresponds to rapidity difference bins,
�y, in the range ymin � y < ymax and the index �αφ corre-
sponds to azimuthal difference bins, �φ, in the range 0 � φ <
2π , while �(�αy ) is a normalization constant that accounts for
the width of the experimental acceptance in ȳ = 1

2 (y1 + y2) at
a given �y. The sums are taken over all rapidity and azimuthal
bins and the delta functions ensure that the differences of
rapidity (angle) bins are properly matched to the �y (�φ)
bins represented by ��α. Note that the above integer arithmetic
yields some bin sharing (often termed aliasing). This bin
sharing can be modeled and corrected for or suppressed by
oversampling. The bin sharing has modest effects as long as
the cumulant changes slowly with �y and �φ.

Equations (3) and (4) express unbiased estimators of the
densities ρ

(p)
1 and ρ

(p,q )
2 in the absence of particle losses and

contamination from secondary particles or feed-down decays.
The strength of the background associated with secondary
particles may be evaluated with various track quality criteria,
e.g., by applying a selection criterion on the distance of closest
approach of charged tracks to the collision primary vertex,
while contributions from feed-down may require modeling of
such decays. In the context of the extension of the identity
method to measurements of differential correlation functions
presented in this work, the focus is on the effects of particle
losses. To this end, one must first describe the calculation of the
moments of the multiplicities in bins �α and �β in the presence
of fluctuations associated with particle losses.

Proceeding similarly as in Ref. [14], one describes fluc-
tuations in the particle production according to a hypotheti-
cal (true) joint probability distribution PT( �N1, �N2, . . . , �NK ),
in which �N1, �N2, . . . , �NK represent vectors of the (pro-
duced) multiplicity of particles of species p = 1, . . . , K
in momentum-space bins �α ≡ (αy, αφ, αp⊥ ), where αy =
1, . . . , my , αφ = 1, . . . , mφ , and αp⊥ = 1, . . . , mp⊥ . It is also
convenient to define vectors �np and �εp corresponding to vectors
of measured multiplicities and detection efficiencies (defined
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later in this section). One can then write

�np = (np(1, 1, 1), np (1, 1, 2), . . . , np(my,mφ,mp⊥ )),

(8)

�Np = (Np(1, 1, 1), Np (1, 1, 2), . . . , Np(my,mφ,mp⊥ )),

(9)

�εp = (εp(1, 1, 1), εp (1, 1, 2), . . . , εp(my,mφ,mp⊥ )).

(10)

Moments of the multiplicities Np(�α) are calculated according
to

〈Np(�α)〉 =
∑

�N
Np(�α)PT( �N1, �N2, . . . , �NK ), (11)

〈Np(�α)[Nq ( �β ) − δp,qδ�α, �β]〉
=

∑
�N

Np(�α)[Np( �β ) − δp,qδ�α, �β]

× PT( �N1, �N2, . . . , �NK ), (12)

where the shorthand notation
∑

�N is defined according to

∑
�N

=
∞∑

N1(1,1,1)=0

· · ·
∞∑

N1(my,mφ,mp⊥ )=0

∞∑
N2(1,1,1)=0

· · ·

∞∑
N2(my,mφ,mp⊥ )=0

· · ·
∞∑

NK (1,1,1)=0

· · ·
∞∑

NK (my,mφ,mp⊥ )=0

.

(13)

Experimentally, measurements of particle production are sub-
jected to random losses of particles. Assuming the detection
of the N particles amounts to N independent processes, i.e.,
provided that the probability of detecting the N particles
jointly is equal to the product of the probabilities of detecting
each of the particles independently, one models the particle
detection process in bin �α according to a binomial distribution
B(np(�α)|Np(�α), εp(�α)) defined according to

B(n|N, ε) = N !

n!(N − n)!
εn(1 − ε)N−n, (14)

where εp(�α) represents the detection efficiency of particle
species p in phase-space bin �α, while np(�α) and Np(�α) are the
measured and true particle multiplicities in that bin. In general,
detection efficiencies differ for species p = 1, . . . , K and may
also feature dependences on y, φ, and p⊥, represented here as
discretized functions εp(�α).

The joint probability of measuring multiplicities np(�α)
in bin �α is represented with a joint probability distribu-
tion, PM (�n1, . . . , �nK ), defined similarly as the true distri-
bution PT ( �N1, . . . , �NK ). For binomial efficiency sampling,
PM (�n1, . . . , �nK ) can be expressed in terms of the true joint

probability distribution PT ( �N1, . . . , �NK ) according to

PM (�n1, . . . , �nK ) =
∑
�Np

PT ( �N1, . . . , �NK )

×
∏
�α1

B(n1(�α1)|N1(�α1), ε1(�α1))

×
∏
�α2

B(n2(�α2)|N2(�α2), ε2(�α2)) · · ·
∏
�αK

B(nK (�αK )|NK (�αK ), εK (�αK )), (15)

where the shorthand notation
∏

�α is defined as

∏
�α

=
my∏

αy=1

mφ∏
αφ=1

mp⊥∏
αp⊥ =1

. (16)

The first- and second-order moments of np are calculated
according to

〈np(�α)〉 =
∑

�n
np(�α)PM (�n1, . . . , �nK ), (17)

〈np(�α)[nq (�α) − δp,qδ�α, �β]〉
=

∑
�n

np(�α)[np( �β ) − δp,qδ�α, �β]PM (�n1, . . . , �nK ),

(18)

where
∑

�n represents sums over all particle species and all
kinematic bins �α and �β, and expressions 〈O〉 once again refer
to event ensemble averages of the single and pair multiplicities
observed event by event in the distinct kinematic bins �α and �β.

For narrow bins (but wide enough to neglect smearing and
bin sharing) and binomial (efficiency) sampling, one readily
verifies that the measured single particle and pair multiplicities
satisfy

〈np(�α)〉 = εp(�α)〈Np(�α)〉, (19)

〈np(�α)[nq ( �β ) − δp,qδ�α, �β]〉
= εp(�α)εq ( �β )〈Np(�α)[Np( �β ) − δp,qδ�α, �β]〉, (20)

Evidently, if the joint detection of particles in bins (�α) and ( �β )
is correlated, one must replace the products εp(�α)εq ( �β ) by true
pair efficiencies εpq (�α, �β ). In general, however, one finds pair
efficiencies factorize to a good approximation, and measure-
ments of the R

(p,q )
2 correlation function in six dimensions are

thus in principle inherently robust against single-particle losses
associated with detector or track reconstruction algorithm
artifacts [22] given, for instance,

RM
2 (�α, �β ) = 〈np(�α)nq ( �β )〉

〈np(�α)〉〈nq ( �β )〉 − 1

= εp(�α)εq ( �β )〈Np(�α)Nq ( �β )〉
εp(�α)〈Np(�α)〉εq ( �β )〈Nq ( �β )〉 − 1, (21)

= 〈Np(�α)Nq ( �β )〉
〈Np(�α)〉〈Nq ( �β )〉 − 1 ≡ RT

2 (�α, �β ), (22)
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where RM
2 (�α, �β ) and RT

2 (�α, �β ) represent the measured and true
normalized cumulants, respectively. In practice, however, a
measurement in six dimensions is challenging because at high
transverse momentum the number of particles observed in a
given bin �α may be too small to enable a meaningful evaluation
of R2 with the above expression. Rather than calculating the
ratio in six dimensions, it is more practical and common to first
integrate the single and pair densities in transverse momentum
to obtain a measurement of R2 in four dimensions, as in Eq. (6),
with subsequent averaging over the acceptance to obtain a
measurement as a function of �y and �φ, as in Eq. (7).

Using Eqs. (19) and (20), one writes

〈Np(�α(2) )〉 =
mp⊥∑

αp⊥ =1

〈np(�α)〉
εp(�α)

, (23)

〈Np(�α(2) )[Np( �β (2) ) − δp,qδ�α, �β]〉

=
mp⊥∑

αp⊥ ,βp⊥ =1

〈np(αy, αφ, αp⊥ )[np(βy, βφ, βp⊥ ) − δp,qδ�α, �β]〉
εp(αy, αφ, αp⊥ )εp(βy, βφ, βp⊥ )

,

(24)

where �α(2) = (αy, αφ ), �β (2) = (βy, βφ ). Division by efficien-
cies nominally corrects for nonuniform particle losses across
the detector acceptance. Note that it is here assumed that
pair efficiencies factorize into products of single efficiencies.
This may not be appropriate if the momentum bins are very
narrow, thereby corresponding to detection configurations in
which tracks may nearly or fully overlap (e.g., in a time
projection chamber) or share many common detection units
(e.g., in segmented tracking chambers). For measurements
of pair correlations within such narrow bins, it is then more
appropriate to divide by a pair efficiency that accounts for
pair losses due to partial or full track overlaps. Either way,
the measured normalized cumulants, corrected for efficiencies,
become

R
M(p,q)
2 (�α(2), �β (2) ) = 〈Np(�α(2) )(Nq ( �β (2) ) − δp,qδ�α, �β )〉

〈Np(�α(2) )〉〈Nq ( �β (2) )〉 − 1,

(25)

where p, q = 1, . . . , K and �α(2) and �β (2) represent arbitrary
kinematic bins in the acceptance of the measurement.

Correlated losses and efficiency dependences on detection
geometry (e.g., dependence of the efficiency on the collision
vertex position), accelerator luminosity, detector occupancy,
etc., can be handled with vertex position or luminosity depen-
dent weights [15]. Such effects are neglected in the discussion
that follows but are relatively straightforward to implement. It
should be noted in closing this section that the dimensionality
reduction achieved in Eqs. (23) and (24) can be trivially
extended to yield correlation functions that are functions of �y
or �φ only, or even integral correlations yielding measures of
multiplicity fluctuations such as those discussed in Ref. [14].

III. DIFFERENTIAL R2 MEASUREMENTS
WITH THE IDENTITY METHOD

Studies of R2 (and similar observables) have been con-
ducted for a variety of collision systems and beam energies,
various momentum ranges, and for a wide range of particle
pair types ranging from inclusive charged particles to specific
charge combinations, and even specific particle species. Mea-
surements of R

(p,q )
2 for specific particle species p and q, e.g.,

pions (π±), kaons (K±), or protons (p or p̄), are of particular
interest as they provide more detailed information about the
particle production process than semiexclusive single particle
measurements or inclusive correlation measurements. They
may also be combined to obtain charge dependent correlations,
balance functions, and general balance functions that may
further our understanding of particle production dynamics in
nuclear collisions. In the context of traditional measurements,
charged particle species are identified with cuts on particle
identification (PID) signals from a time projection chamber
(TPC), a time-of-flight system (TOF), etc. Unfortunately, with
such techniques, the necessity to properly disambiguate par-
ticle species typically implies the measured kinematic ranges
must be limited to regions of good PID separation thereby
leading to potentially substantial particle losses. Using the
identity method, however, one can recover most of the statistics
lost with conventional cut methods and significantly extend the
kinematic range of an analysis. The method was introduced
in Ref. [11] for two particle species, p = 1, 2, extended in
Ref. [12,13] for K > 2 species, i.e., for p, q = 1, . . . , K , and
the determination of higher moments, and further extended
in Ref. [14] to explicitly account for p⊥-dependent detection
efficiencies. In this and the next section, one shows that
the efficiency-dependent identity method [14] can be further
extended to differential correlation functions, such as R2,
provided one discretizes single and pair densities according
to Eqs. (3) and (4). The method presented in this section relies
on a single PID variable, e.g., energy loss in a time projection
chamber. It is extended to measurements involving two or more
PID signals in the following section.

Within the identity method, rather than attempting to unam-
biguously identify the species of measured particles event by
event, one relies on a probabilistic evaluation of the moments
〈nk〉 and 〈nk (nk − 1)〉. Specifically, instead of summing integer
counts (1 for an identified particle, 0 otherwise), one accounts
for ambiguities by summing weights ωk (m) for each PID
hypothesis. The weights are determined particle by particle
for each hypothesis k = 1, . . . , K , according to the relative
frequency of particles of type k for a PID signal of amplitude
m (the “mass” signal) defined by

ωk (m) ≡ ρk (m)

ρ(m)
, (26)

with

ρ(m) ≡
K∑

k=1

ρk (m),
∫

ρk (m)dm = 〈Nk〉, (27)

where ρk (m) represents the number density of the PID
signal m for particles of type k and ρ(m) is the ensemble
averaged PID signal density. The weight ωk (m) expresses the
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probability a PID signal of amplitude m is generated by a
particle of species k.

The goal of this work is to formulate differential correlations
as functions of particle pair separation in rapidity and azimuthal
angle using the identity method. It is important to first establish
that the experimentally measured signal line shape can be
meaningfully used to determine the relative probability of
particle species on an event-by-event basis. As an example, one
considers the energy loss signal dE/dx produced by charged
particles in a TPC. The momentum space is discretized in my

rapidity bins, mφ azimuthal angle bins, and mp⊥ transverse
momentum bins. The detector response is thus expressed in
terms of the discretized momentum vectors �α and �β as defined
in the previous section.

Let P (k, �α) represent the probability of a particle of type
k = 1, . . . , K being produced in momentum bin �α. Further
define P (d|k, �α) ≡ εk (�α) as the conditional probability of the
predicate d stating that a particle of type k and momentum
�α is detected in the TPC, and P (m|d, k, �α), the conditional
probability density that this particle, being detected, produces
a PID signal of amplitude m. The joint probability of having a
particle of type k being detected in the TPC and producing a
signal of amplitude m is thus

P (m, d, k, �α) = P (m|d, k, �α)εk (�α)P (k, �α), (28)

where we substituted εk (�α) for P (d|k, �α). We use
P (m, d, k, �α) to calculate the probability that a signal of
amplitude m corresponds to a particle of type k:

P (m, d, k, �α) = P (k|m, d, �α)P (m|d, �α)P (d, �α), (29)

where P (k|m, d, �α) represents the conditional probability that
a track detected in the TPC with a PID signal of amplitude
m and momentum-space coordinate bin �α corresponds to
a particle of type k, P (m|d, �α) represents the conditional
probability density that a PID signal of amplitude m will be
produced when a particle within the momentum-space bin
�α is detected in the TPC, and P (d, �α) represents the joint
probability a particle of momentum �α be observed in the TPC.
Using Eqs. (28) and (29), one writes (Bayes’ theorem)

P (k|m, d, �α) = P (m|d, k, �α)εk (�α)P (k, �α)

P (m|d, �α)P (d, �α)
. (30)

The quantity εk (�α) represents the detection efficiency of
particles of type k at momentum �α and can be determined
by Monte Carlo simulations of the detector performance or
by embedding techniques. P (m|d, k, �α) represents the line
shape of the PID signal m associated with a detected particle
of type k [it corresponds to ωk (m) in Eq. (26)], whereas
P (k, �α) = P (k|�α)P (�α) corresponds to the joint probability,
determined statistically from the event ensemble average, that
a produced particle of momentum �α and type k are detected.
The quantity P (m|d, �α) represents the probability that a PID
signal m is observed when a particle at momentum α is
detected, while P (d, �α) represents the joint probability that
a particle be detected in the TPC at a momentum �α. P (m|d, �α)
is obtained by summing the probability densities of PID signal

m associated with all species:

P (m|d, �α)P (d, �α) =
K∑

k=1

P (m|d, k, �α)εk (�α)P (k, �α) (31)

and

P (d, �α) =
K∑

k=1

P (d|k, �α)P (k, �α) =
K∑

k=1

εk (�α)P (k, �α). (32)

The overall line shape P (m|d, �α) = ρ(m)/〈N〉 is given by

P (m|d, �α) =
∑K

k=1 P (m|d, k, �α)εk (�α)P (k, �α)∑K
k=1 εk (�α)P (k, �α)

. (33)

The conditional probability P (k|m, d, �α) can then be ex-
pressed by

P (k|m, d, �α) = P (m|d, k, �α)εk (�α)P (k, �α)∑K
k′=1 P (m|d, k′, �α)εk′ (�α)P (k′, �α)

. (34)

One finally obtains the line shape ρk (m|�α) for particles of type
k in the momentum bin �α:

ρk (m|�α) = P (m|d, k, �α)εk (�α)P (k, �α)〈N (�α)〉, (35)

where 〈N (�α)〉 = ∑
k 〈Nk (�α)〉 One thus finds that, indeed,

Eq. (34) is equivalent to Eq. (26), and ωk (m) corresponds to
the probability of species k given a PID signal of amplitude m
at a specific momentum �α, which one thus denotes

ωk (m|�α) = P (m|d, k, �α)εk (�α)P (k, �α)∑K
k′=1 P (m|d, k′, �α)εk′ (�α)P (k′, �α)

. (36)

The weights ωk (m|�α) provide the correct probability of a
particle being of species k given m only if they are evaluated
as a function of the momentum vector �α. Indeed, the relative
probability of species k = 1, . . . , K may be a function of ra-
pidity, azimuthal angle, and transverse momentum. In practice,
it may be unnecessary to use the same level of granularity for
the determination of the weights ωk (m|�α) and the study of the
particle densities. This is particularly important in the context
of experiments where efficiencies depend on the collision
centrality (or event multiplicity), the collision vertex position,
or any other additional variables.

Following the original identity method, one defines an
event-by-event quantity Wp, hereafter called an event-wise
identity variable, for species p = 1, . . . , K , as the sum of the
weights ωp(m|�α) over all M particles in an event which satisfy
the kinematic and quality criteria used in the analysis:

Wp(�α) ≡
M∑
i=1

ωp(mi |�α). (37)

The identity method involves calculating the moments of
Wp(�α), and we shall verify that they are linear combinations of
the moments of Np(�α). For measurements of R

(p,q )
2 , one only

needs to consider the two lowest moments

〈Wp(�α)〉 = 1

Nevents

Nevents∑
i=1

W (i)
p (�α), (38)
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〈Wp(�α)Wq ( �β )〉 = 1

Nevents

Nevents∑
i=1

W (i)
p (�α)W (i)

q ( �β ) (39)

in which W (i)
p (�α) and W (i)

q ( �β ) are event-wise identity variables
for species p and q in events i = 1, . . . , Nevents, measured in
kinematic bins �α and �β, respectively.

Theoretically, calculations of the expectation values of the
moments 〈Wp(�α)〉 and 〈Wp(�α)Wq ( �β )〉 with particle losses
proceed similarly as in Ref. [14], but one must properly average
over all species, all bins �α, and all particles in those bins.
The resulting mathematical expressions are rather large and
cumbersome; it is thus convenient to develop some additional
shorthand notations. Given that one must account for binomial
sampling in each bin �α, for each species p, let us introduce

B(�np, �Np, �εp ) =
my∏

αy=1

mφ∏
αφ=1

mp⊥∏
αp⊥ =1

B(np(�α)|Np(�α), εp(�α)),

(40)

where �np, �Np, �εp represent vectors of values in all bins �α =
(αy, αφ, αp⊥ ) introduced in Eq. (8).

One must also average over all possible values of PID
signals, for all species, in all bins �α. To that end, one defines
functionals

Pp(np(�α)) =
np (�α)∏
i=1

∫
P (mi |d, p, �α)dmi, (41)

where np(�α) is the number of particles of species p detected in
bin �α, mi is the amplitude of the PID signal of the ith particle
of type p in that bin, and P (mi |d, p, �α) is the probability
density of such signals. In order to average over all bins �α,
one introduces the functionals

Sp(�np ) =
my∏

αy=1

mφ∏
αφ=1

mp⊥∏
αp⊥ =1

Pp(np(�α)). (42)

The integrals within the functionals Pp(np(�α)) and Sp(�np )
are to be evaluated when multiplied on the right by Wp. The
expectation value of Wp(�α) may then be written

〈Wp(�α)〉 =
∑

�N

∑
�n

PT ( �N )
K∏

k=1

B(�nk, �Nk, �εk )Sp(�np )

×
K∑

k′=1

nk′ (�α)∑
ik′=1

ωp

(
m

(k′ )
ik′

∣∣�α)
. (43)

This expression involves products of several integrals whose
evaluation seems daunting. However, note that most of
the integrals are of the form

∫
P (m)dm = 1 and thus

do not contribute to 〈Wp(�α)〉. Only integrals of the form∫
ωp(m)P (m|d, q, �α)dm yield nonunitary values and must

thus be accounted for. Similarly as in Ref. [14], it is convenient
to introduce response coefficients

rpq (�α) =
∫

ωp(m|�α)P (m|d, q, �α)dm. (44)

Equation (43) may then be written

〈Wp(�α)〉 =
∑

�N

∑
�n

PT ( �N )
K∏

k=1

Bk (�np, �Np, �εp )

×
K∑

k′=1

rpk′ (�α)nk′ (�α). (45)

Sequential evaluation of the sums
∑

�n and
∑

�N yields

〈Wp(�α)〉 =
∑

�N
PT ( �N )

K∑
k=1

rpk (�α)Nk (�α)εk (�α)

=
K∑

k=1

rpk (�α)〈Nk (�α)〉εk (�α). (46)

As in Ref. [14], it is convenient to absorb the efficiencies into
the moments and write

〈Wp(�α)〉 =
K∑

k=1

rpk (�α)〈nk (�α)〉, (47)

where, by definition, 〈nk (�α)〉 = 〈Nk (�α)〉εk (�α). For a given
bin �α, the above equation expresses the averages 〈Wp(�α)〉
as a linear combination of the average multiplicities 〈nk (�α)〉
determined by the coefficients rpk (�α). One then introduces
vectors

�W(�α) ≡ (〈W1(�α)〉, 〈W2(�α)〉, . . . , 〈WK (�α)〉), (48)

�N(�α) ≡ (〈n1(�α)〉, 〈n2(�α)〉, . . . , 〈NK (�α)〉) (49)

and the response matrices

R(�α) =

⎛
⎜⎝

r11(�α) · · · r1K (�α)
...

. . .
...

rK1(�α) · · · rKK (�α)

⎞
⎟⎠. (50)

The K equations in (47) may then be written

�W(�α) = R(�α) �N(�α). (51)

The average multiplicities �N(�α) are thus obtained by inversion
of R(�α):

�N(�α) = [R(�α)]−1 �W(�α), (52)

and average multiplicities corrected for efficiency losses,
〈Np(�α)〉, are then calculated for each species p = 1, . . . , K
according to

〈Np(�α)〉 = 〈np(�α)〉
εp(�α)

. (53)

Note that there are my × mφ × mp⊥ independent matrix inver-
sions to carry out, one for each momentum bin �α. If momentum
smearing was an important effect, one would have to invoke
smearing response functions and all these matrix inversions
would be coupled.

Evaluation of the second-order moments proceeds sim-
ilarly. However, one must consider separately the four
cases corresponding to Eq. (39): 〈Wp(�α)2〉, 〈Wp(�α)Wp( �β )〉,
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〈Wp(�α)Wq (�α)〉, and 〈Wp(�α)Wq ( �β )〉, with p 	= q and �α 	= �β.
Toward that end, it is convenient to define

rpqk (�α) =
∫

ωp(m|�α)ωq (m|�α)P (m|d, k, �α)dm. (54)

The second and cross moments, 〈Wp(�α)Wq ( �β )〉, are calculated
according to

〈Wp(�α)Wq ( �β )〉 =
∑

�N

∑
�n

PT ( �N )
K∏

k=1

B(�nk, �Nk, �εk )Sk (�nk )

×
⎡
⎣ K∑

k′=1

nk′∑
ik′=1

ωp

(
m

(k′ )
ik′ |�α)

)⎤⎦
2

, (55)

=
K∑

k=1

rpqk (�α)〈Nk (�α)〉εk (�α)δ�α, �β

+
K∑

k,k′=1

rpk (�α)rqk′ ( �β )〈Nk (�α)[Nk′ ( �β )

− δk,k′δ�α, �β〉]εk (�α)εk′ (�α). (56)

The efficiencies can be reabsorbed within the average multi-
plicities and number of pairs. The above expression simplifies
to

〈Wp(�α)Wq ( �β )〉

=
K∑

k=1

rpqk (�α)〈nk (�α)〉δ�α, �β

+
K∑

k,k′=1

rpk (�α)〈nk (�α)[nk′ ( �β ) − δk,k′δ�α, �β]〉rqk′ ( �β ), (57)

where p, q = 1, . . . , K , while �α and �β represent arbitrary
kinematic bins. It is useful to define the matrices

N(�α, �β ) =

⎡
⎢⎢⎢⎣

N11(�α, �β ) N12(�α, �β ) · · · N1K (�α, �β )
N21(�α, �β ) N22(�α, �β ) · · · N2K (�α, �β )

...
...

. . .
...

NK1(�α, �β ) NK2(�α, �β ) · · · NKK (�α, �β )

⎤
⎥⎥⎥⎦

(58)

with elements

Npq (�α, �β ) = 〈np(�α)[nq ( �β ) − δp,qδ�α, �β]〉 (59)

and

V(�α, �β ) =

⎡
⎢⎢⎢⎣

V11(�α, �β ) V12(�α, �β ) · · · V1K (�α, �β )
V21(�α, �β ) V22(�α, �β ) · · · V2K (�α, �β )

...
...

. . .
...

VK1(�α, �β ) VK2(�α, �β ) · · · VKK (�α, �β )

⎤
⎥⎥⎥⎦
(60)

with elements

Vpq (�α, �β ) = 〈Wp(�α)Wq ( �β )〉 −
K∑

k=1

rpqk (�α)〈nk (�α)〉δ�α, �β. (61)

Equation (57) can then be written in matrix form,

V(�α, �β ) = R(�α)N(�α, �β )R( �β )T . (62)

Multiplying on the left and on the right by the inverses of
matrices R(�α) and R( �β )T , one gets

N(�α, �β ) = R(�α)−1V(�α, �β )(R( �β )T )−1. (63)

This expression corresponds to a set of (my × mφ × mp⊥ )2

independent equations, one for each pair of bins �α and �β.
The matrices N(�α, �β ) can thus be calculated independently
for each pair �α, �β. The elements of these matrices then
yield the second and cross moments of the multiplicities,
〈np(�α)[nq ( �β ) − δ�α, �βδp,q]〉. The above formulation in terms of
matrices V involves a significant and convenient simplification
of the inversion problem as it was first presented in Ref. [14].

Estimates of the true second moments, corrected for effi-
ciency losses, are finally obtained according to

〈Np(�α)[Nq ( �β ) − δ�α, �βδp,q]〉 = 〈np(�α)[nq ( �β ) − δ�α, �βδp,q]〉
εp(�α)εq ( �β )

.

(64)

Again, in this case, if two-particle efficiencies do not properly
factorize into products of single-particle efficiencies, estimates
of two-particle efficiencies can be used in the above in lieu of
the products of singles.

The matrix inversion technique outlined above provides
second moments of particle multiplicities corrected for
efficiency across the fiducial acceptance of the experiment. It
is worth noting, however, that while in the above formulation
the matrices are small (determined by the number of species),
there can be many of them to invert. For instance, for an analysis
involving a rapidity acceptance −1 � y � 1 in 20 bins, full
azimuthal acceptance in 72 bins, and 20 bins in p⊥, one would
need 28 800 matrices. This is evidently not an issue from a
computational standpoint with modern computers, but it does
have two practical implications. First, the available statistics
will be distributed across many bins and it is conceivable that
the number of entries in a given bin and the corresponding
statistical uncertainty may yield numerically unstable results.
Additionally, since the coefficients rpq are based on global fits
of the line shapes in each kinematic binα (although, to reiterate,
the granularity required for such fits can likely be coarse), it
might be necessary to manually inspect all the fits and make
sure they are not subject to idiosyncrasies of the analysis or the
detector performance. Differential analyses with the identity
method thus clearly have high computing and storage costs.

Finally, note that once the moments 〈Np(�α)[Nq ( �β ) −
δ�α, �βδp,q]〉 are obtained for some nominal range of transverse
momentum, i.e., given mp⊥ bins for αp⊥ and βp⊥ , one can
readily obtain sums 〈Np(�α(2) )[Nq (�α(2) ) − δ�α, �βδp,q]〉 including
all mp⊥ bins or only a restricted range of p⊥ using Eq. (24). It
is thus possible to compare results obtained with the identity
method described here with those obtained with traditional cut
methods (applicable only over a limited range of transverse
momentum) by selecting appropriate p⊥ sum ranges for each
species of interest.
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IV. IDENTITY METHOD WITH TWO OR MORE
IDENTITY SIGNALS

Large collider experiments commonly feature partially
redundant and complementary techniques of particle iden-
tification. For instance, the STAR and ALICE experiments
both include particle identification devices based on specific
energy loss (dE/dx) and time-of-flight (TOF) measurements.
The ALICE detector additionally features transition radia-
tion detectors geared towards the identification of electrons.
Bayesian identification techniques based on cuts have already
been developed that exploit the joint information from several
PID detectors on a track-by-track basis. While such techniques
maximize the use of information from the multiple components
of a detector, such as the ALICE detector [23–28], they
nonetheless suffer statistical losses associated with the use of
PID selection criteria. This section describes an extension of
the identity method applied to detectors featuring several PID
signal types available for each track.

As a preamble to the discussion, note that PID detector
components suffer efficiency losses, and tracking algorithms
may fail to associate a given PID detector signal to a track. In
particular, there are kinematic regions in which usable dE/dx
and TOF signals may not be obtainable. One may thus end up
reconstructing tracks that feature no usable dE/dx signal but a
reliable TOF signal, no TOF signal but a reliable dE/dx signal,
or no useful PID signal at all. Since the point of the identity
method is to utilize all of the available information, one needs
to devise a technique to statistically include all tracks featuring
PID signals, even though the information may be incomplete.
One must thus first consider the combination of probabilistic
statements about the PID of particles.

In this context, one once again uses the many probability
functions [e.g., P (p, �α), P (d|p, �α)] that were introduced in
Sec. III. However, one must also introduce a few additional
definitions and probability functions. Assume there are ND de-
tector components potentially producing PID signals that may
be associated to a track. Let Dj , for j = 1, . . . , ND , represent
the predicate “the track is detected (or matched to a signal) in
device j ,” where one arbitrarily assigns j = 1, for instance, to
a TPC, j = 2 to a TOF detector, and so on. Additionally, let
Ej , for j = 1, . . . , ND , represent the predicate “the PID info
of device j is usable.” Finally, let mj represent the PID signals
produced by devices j = 1, . . . , ND . For a given track, these
can be conveniently expressed as �m = (m1,m2, . . . , mND

).
Assuming detector topologies similar to those of STAR and
ALICE, consideration of the PID information provided by a
detector component j � 2 is only meaningful if a track is first
detected in device j = 1 (e.g., a TPC track). Indeed, in the
context of these experiments, the detection of a hit in the TOF
detector is not useful unless it can be matched to a track from
the TPC. One consequently requires that D1 be true. However,
E1 is not necessarily required so long as one of the other devices
produces a usable PID signal, i.e., if there exists one Ej .

Let us first consider the predicate logic for a detection
system involving two components. One shall see how it can
be generalized to more than two components later in this
paragraph. In the following, one indicates a true predicate
by its name: D2 means that a given particle is detected

or matched in device j = 2, while a barred predicate, D̄2,
indicates the track is not detected or matched in device
j = 2. Using commas to denote logical conjunctions, for a
two-component detection system, only the predicate com-
binations (D1, E1, D̄2), (D1, E1,D2, E2), (D1, E1,D2, Ē2),
and (D1, Ē1,D2, E2) provide conditions with useful PID
information. For instance (D1, E1, D̄2) means a track was
detected (D1) in device j = 1, produced a usable PID signal
(E1) in that device, but was not detected in device j = 2
(D̄2). Clearly, usable PID information from detector 2 (E2)
can only be present if there is a signal in detector 2 (D2).
The alternative, Ē2, encompasses the case in which there is
a signal in detector 2 (D2) but no usable PID information
as well as the cases where there is no signal in detector 2
(D̄2). Therefore the information about D2 and D̄2 is absorbed
into E2 and Ē2. If additional PID devices are available,
one needs to consider all permutations deemed appropriate.
For instance, with the addition of a third device, one might
have (D1, E1, E2, E3), (D1, Ē1, E2, E3), (D1, E1, Ē2, E3),
(D1, E1, E2, Ē3), (D1, Ē1, Ē2, E3), (D1, Ē1, E2, Ē3), and
(D1, E1, Ē2, Ē3). For the sake of simplicity in the remainder
of this work, the discussion is limited to two PID devices only,
but extensions to ND > 2 are relatively straightforward.

The momentum and species of the particles must also be ac-
counted for. As in Sec. III, let k, p, q, with k, p, q = 1, . . . , K ,
denote species indices (assuming K distinct possibilities) and
let �α and �β represent momentum bin index vectors. The
probability of detecting a track produced by a particle of
species p in momentum bin �α (i.e., the efficiency) is denoted
d1 ≡ P (D1|p, α).

The probabilities that a particle produces a meaningful
PID signal in both detectors (E1, E2), in detector 1 but
not in detector 2 (E1, Ē2), in detector 2 but not in detec-
tor 1 (Ē1, E2), or neither detector (Ē1, Ē2) are given by
ε12 ≡ e1e2d1, ε1 ≡ e1(1 − e2)d1, ε2 ≡ e2(1 − e1)d1, and ε0 ≡
(1 − e1)(1 − e2)d1 + 1 − d1, respectively. Here, e1 denotes
the probability of having a usable PID signal in detector 1,
and e2 denotes the product of the probabilities of detecting,
matching, and having a useful signal in detector 2. Given an
event with N (p, α) particles of type p within the momen-
tum bin �α, the number of tracks detected with conditions
(E1, E2), (E1, Ē2), (Ē1, E2), are hereafter denoted n12(p, �α),
n1(p, �α), n2(p, �α), and the number of undetected tracks
(i.e., tracks not detected or those detected without a usable
PID signal) is n0. These numbers shall evidently fluctuate
event by event. The probability of a given combination of
the numbers is given by a multinomial probability distribu-
tion M (n12(p, �α), n1(p, �α), n2(p, �α)|N, ε12(p, �α), ε1(p, �α),
ε2(p, �α), ε0(p, �α)) defined according to

M (n12, n1, n2|N, ε12, ε1, ε2, ε0)

= N !

n12!n1!n2!n0!
ε

n12
12 ε

n1
1 ε

n2
2 ε

n0
0 , (65)

where the labelsp and �α were omitted for the sake of simplicity,
and n0 = N − n12 − n1 − n2.

One must next consider the probability density distribu-
tions of signals m1 and m2. Assuming the generation of
PID signals m1 and m2 are statistically independent, let
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P (m1|E1,D1, p, α) and P (m2|E2,D1, p, α) respectively represent the probability densities of signals m1 and m2, with
normalization

∫
P (mi |Ei,D1, p, α)dmi = 1, for i = 1, 2. Probability distribution functions expressing the probability that a

measured particle is of type p given PID signals of amplitude mi , i = 1, 2 are obtained with Bayes’ theorem:

P (p|m1,m2, E1, E2,D1, α) = P (m1|E1,D1, p, α)P (m2|E2,D1, p, α)P (E1, E2,D1, p, α)∑
q P (m1,m2, E1, E2,D1, q, α)

, (66)

P (p|m1, E1, Ē2,D1, α) = P (m1|E1,D1, p, α)P (E1, Ē2,D1, p, α)∑
q P (m1, E1, Ē2,D1, q, α)

, (67)

P (p|m2, Ē1, E2,D1, α) = P (m2|E2,D1, p, α)P (Ē1, E2,D1, p, α)∑
q P (m1, Ē1, E2,D1, q, α)

, (68)

It is convenient to use the shorthand notation �m = (m1,m2) to define weights according to

ω(12)
p ( �m|�α) = P (p|m1,m2, E1, E2,D1, �α), (69)

ω(1)
p ( �m|�α) = P (p|m1, E1, Ē2,D1, �α)δ(m2), (70)

ω(2)
p ( �m|�α) = P (p|m2, Ē1, E2,D1, �α)δ(m1), (71)

where both signals m1 and m2 are included in all three cases for notational convenience in the following. The delta function
factors δ(m1) and δ(m2) are included to signify explicitly that the signals m1 and m2 are not relevant for weights ω(2)

p ( �m|α) and
ω(1)

p ( �m|α), respectively. The weights ω(12)
p ( �m|�α), ω(1)

p ( �m|�α), and ω(2)
p ( �m|�α), can thus be represented as ω(T )

p ( �m|�α) with types
T = (12), (1), and (2), respectively.

The event-wise identity variable Wp is defined according to

Wp(�α) =
n12∑
i=1

ω(12)
p ( �mi |�α) +

n1∑
i=1

ω(1)
p ( �mi |�α) +

n2∑
i=1

ω(2)
p ( �mi |�α), (72)

=
∑
T

nT∑
iT =1

ω(T )
p ( �miT |�α), (73)

where in the first line the three sums account for tracks satisfying (E1, E2), (E1, Ē2), and (Ē1, E2), respectively, while in the
second line they were replaced with the sum

∑
(T ), which represents a sum (of sums) for cases (12), (1), and (2).

One next proceeds to calculate the expectation value of the moments Wp(�α) and Wp(�α)Wq ( �β ). To this end, one defines
coefficients r

(T )
pj (�α) and r

(T )
pqj (�α) with (T ) = (12), (1), (2), which are analogs of coefficients defined by Eqs. (44) and (54),

according to

r
(T )
pj (�α) =

∫
ω(T )

p ( �m|�α)P ( �m|T , j, �α)dm1dm2, (74)

r
(T )
pqj (�α) =

∫
ω(T )

p ( �m|�α)ω(T )
q ( �m|�α)P ( �m|T , j, �α)dm1dm2, (75)

where, for convenience, we also used the shorthand T within the probabilities P ( �m|T , j, �α) to represent the permutations
(E1, E2,D1), (E1, Ē2,D1), (Ē1, E2,D1). In order to carry out sums on the measured particles, one needs to insert multinomial
distributions in each kinematic bin. One must also average over all possible multiplicity configurations in moment space spanned
by �α. We thus define the notation

M
(�n(12)

p , �n(1)
p , �n(2)

p , �Np, �ε (12)
p , �ε (1)

p , �ε (2)
p

) =
my∏

αy=1

mφ∏
αφ=1

mp⊥∏
αp⊥ =1

M
(
n(12)

p (�α), n(1)
p (�α), n(2)

p (�α)|Np(�α), �ε (12)
p , �ε (1)

p , �ε (2)
p

)
, (76)

where �n(12)
p , �n(1)

p , �n(2)
p represent vectors of values of the number of particles detected with (E1, E2), (E1, Ē2), and (Ē1, E2),

respectively, in all bins �α = (αy, αφ, αp⊥ ). M expresses the probability of measurement outcomes for a given species p over the
full space �α. One must also average over all possible values of PID signals, for all species, and for all bins �α. To that end, one
define functionals

P(T )
p

(
n(T )

p (�α)
) =

n
(T )
p (�α)∏
k=1

∫
P ( �mk|T , p, �α)d �m (77)
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and

Sp

(�n(12)
p , �n(1)

p , �n(2)
p

) =
my∏

αy=1

mφ∏
αφ=1

mp⊥∏
αp⊥ =1

P(12)
p

(
n(12)

p (�α)
)
P(1)

p

(
n(1)

p (�α)
)

P(2)
p

(
n(2)

p (�α)
)
. (78)

The integrals within the functionals Pp(np(�α)) and Sp(�n(12)
p , �n(1)

p , �n(2)
p ) are to be evaluated when multiplied on the right by Wp(�α).

The expectation value of Wp(�α) may then be written

〈Wp(�α)〉 =
∑

�N

∑
�n

PT ( �N )
K∏

j ′=1

Mj ′
(�n(12)

j ′ , �n(1)
j ′ , �n(2)

j ′ , �Nj ′ , �εj ′
)
Sj ′

(�n(12)
j ′ , �n(1)

j ′ , �n(2)
j ′

) K∑
j=1

⎛
⎜⎝∑

T

n
(T )
j (�α)∑
ij =1

ω(T )
p (m1,ij , m2,j |�α)

⎞
⎟⎠, (79)

=
K∑

j=1

[ ∑
T

ε
(T )
j (�α)r (T )

pj (�α)

]
〈Nj (�α)〉, (80)

where, in the last line, only the relevant integrals are kept and included in the form of the coefficients r
(T )
pj (�α) defined in

Eq. (74). Note that it is not possible, in this case, to reabsorb the efficiencies into the multiplicities as in the previous section
because these are now associated with different response coefficients r

(T )
pj (�α). One next defines the matrices R(�α) with elements

Rpj = ∑
T ε

(T )
j (�α)r (T )

pj (�α). The first moments �N(�α) are thus given by the linear equations

�N(�α) = [R(�α)]−1W(�α). (81)

The evaluation of the second moments and cross-moments of Wp(�α) proceeds in a similar fashion:

〈Wp(�α)Wq ( �β )〉 =
K∑

k=1

[∑
T

r
(T )
pqk (�α)ε(T )

k (�α)

]
〈Nk (�α)〉δ�α, �β +

K∑
k,k′=1

[∑
T ,T ′

r
(T )
pk (�α)r (T ′ )

qk′ ( �β )ε(T )
k (�α)ε(T ′ )

k′ ( �β )

]

×〈Nk (�α)[Nk′ ( �β ) − δk,k′δ�α, �β]〉. (82)

As in the previous section, one next defines the matrices V(�α, �β ) with elements Vpq (�α, �β ) calculated according to

Vpq (�α, �β ) = 〈Wp(�α)Wq ( �β )〉 −
K∑

k=1

[∑
T

r
(T )
pqk (�α)ε(T )

k (�α)

]
〈Nk (�α)〉δ�α, �β. (83)

Equations (82) are then rewritten

Vpq (�α, �β ) =
K∑

k,k′=1

[∑
T

r
(T )
pk (�α)ε(T )

k (�α)

]
〈Nk (�α)[Nk′ ( �β ) − δk,k′δ�α, �β]〉

[∑
T ′

r
(T ′ )
qk′ ( �β )ε(T ′ )

k′ ( �β )

]
(84)

Redefining the elements of the matrices N and R according to

Npq (�α, �β ) = 〈Np(�α)[Nq ( �β ) − δp,qδ�α, �β]〉 (85)

and

Rpk (�α) =
∑
T

r
(T )
pk (�α)ε(T )

k (�α), (86)

one gets matrix equations

V(�α, �β ) = R(�α, �β )N(�α, �β )[R(�α, �β )]T , (87)

which are solved by multiplying on the left and right by
inverses of the matrices R(�α) and R( �β )T , thereby yielding
expressions of the form of Eqs. (63) that provide the mo-
ments 〈Np(�α)[Nq ( �β ) − δp,qδ�α, �β ]〉. One thus concludes that,
in the context of analyses involving several PID signals, the
determination of multiplicity moments proceeds essentially
as in the case of a single type of PID signal. However, it is
not possible, in general, to reabsorb the efficiencies in the
moments because they enter in linear combinations within the

coefficients rpk . Inversion of the matrix equations thus requires
both the knowledge of the functions r

(T )
pk as well as that of the

efficiencies ε
(T )
k (�α).

The above formalism was derived assuming a particular PID
scheme. However, it can be adapted to other PID requirements
with little to no change to the equations. Additionally, one
could also adapt the equations so that different PID schemes
are used in different p⊥ ranges, e.g., TPC PID at low p⊥, TOF
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PID at high p⊥, and Cherenkov or transition radiation detectors
in between.

V. SUMMARY

A binning technique to discretize six-dimensional two-
particle correlation functions R

pq
2 was first introduced to

evaluate two particle correlations as functions of rapidity,
azimuthal angle, and transverse momentum, and project them
onto two-dimensional correlators that are functions of the parti-
cles rapidity and azimuthal angle differences. Such discretized
functions were next shown to be amenable to measurements
with the identity method first in the context of experiments

with a single PID device and finally for experiments featuring
two PID devices. The method is also applicable to msultiple-
particle correlations and for measurement devices featuring
more than two PID techniques.
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