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Evolution of charge fluctuations and correlations in the hydrodynamic stage of heavy ion collisions
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Charge fluctuations for a baryon-neutral quark-gluon plasma have been calculated in lattice gauge theory. These
fluctuations provide a well-posed rigorous representation of the quark chemistry of the vacuum for temperatures
above Tc � 155 MeV. Due to the finite lifetime and spatial extent of the fireball created in relativistic heavy ion
collisions, charge-charge correlations can only equilibrate for small volumes due to the finite time required to
transport charge. This constraint leads to charge correlations at finite relative position that evolve with time. The
source and evolution of such correlations is determined by the evolution of the charge fluctuation and the diffusion
constant for light quarks. Here, calculations are presented for the evolution of such correlations superimposed
onto hydrodynamic simulations. Results are similar to preliminary measurements from STAR, but significant
discrepancies remain.
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I. INTRODUCTION

Perhaps the most defining characteristic of the quark-qluon
plasma (QGP) is its wealth of charges, especially those carried
by light quarks: up and down charge and strangeness. For
temperatures greater than Tc ≈ 155 MeV, the gluons and up-
down-strange quarks provide 52 degrees of freedom, 36 of
which are carried by the u, d, and s quarks, which come in
three colors, two spins, and with antiparticles. Given that such
matter is net neutral, one cannot describe the chemistry by
the average charge. Further, given that the quarks are strongly
interacting, the net number of quarks (quarks plus antiquarks)
is not well defined. For example, the contribution of quarks and
antiquarks to gluonic modes depends on the method in which
it is probed. However, the fluctuation of the charge is both well
posed and reflects and describes the chemical composition of
the plasma. Because it is defined in terms of conserved charges,
it can be calculated unambiguously in lattice gauge theory.
For the three light charges, uds, the charge fluctuation (also
referred to as the charge susceptibility) in a neutral plasma is
a three-by-three matrix,

χab ≡ 1

V
〈QaQb〉, (1)

where Qa represents the up, down, or strange charges, and
V is the volume. If the matter were to have a net charge,
〈Qa〉 �= 0, the definition would be altered by replacing Qa

with its fluctuation, Qa → Qa − 〈Qa〉. As stated above, the
fluctuation measure provides insight into the chemical makeup
of the plasma. If particles of species h, carrying charges qha ,
were good quasiparticles and uncorrelated with one another,
the only correlations would be those between charges on the

same particle. The susceptibility would then be

χab =
∑

h

nhqhaqhb, (2)

where nh is the density of species h. For a gas of noninteracting
u,d,s quarks, the susceptibility would be

χ =
⎛
⎝nu 0 0

0 nd 0
0 0 ns

⎞
⎠, (3)

where nu, nd , and ns are the densities of up, down, and strange
quarks respectively. For a gas of hadrons a given species carries
multiple charges, and χ develops off-diagonal elements. For
example, pions or protons would provide nonzero ud elements.
If one had a gas of pions, where each pion species had density
nπ , mixed with protons and antiprotons, both with densities
np, the susceptibility would be

χab =
⎛
⎝ 8np 4np − 2nπ 0

4np − 2nπ 2np 0
0 0 0

⎞
⎠. (4)

Here, the protons and antiprotons each contribute 4np to χuu,
np to χdd , and 2np to χud . The π+ and π− states each contribute
nπ to χuu and χdd , and each contributes −nπ to χud . By
construction, χab = χba , for all systems. For isospin symmetry,
χuu = χdd and χus = χds , which combined with reflection
symmetry results in four independent elements, χuu = χdd ,
χud = χdu, χus = χds = χsu = χsd , and χss .

The susceptibility from lattice calculations approaches that
of a noninteracting gas of massless quarks at high temperature,
and that of a hadron gas at temperatures below Tc. This is
illustrated in Fig. 1, where the ratio χ/s is displayed as a
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FIG. 1. The off-diagonal components of χab vanish at high tem-
perature as quarks evolve independently, but at low temperatures the
combination of multiple quarks within a single hadron drives strong
off-diagonal elements. For a fixed amount of entropy, an expanding
volume element strongly increases the amount of charge as it reaches
the hadronization region, again due to the fact that multiple charges
occupy an individual hadron, even though the entropy per hadron in
the hadron phase is similar to the entropy per quark in the plasma
phase. For regions to the right of the dashed lines, lattice calculations
were used, while to the left of the dashed lines are displayed the
results for a hadron gas. The intermediate region used an interpolation
between the two calculations, 155 < T < 175 MeV.

function of the temperature T . The ratio is higher at low tem-
perature because for a fixed amount of entropy both gases have
similar numbers of particles, but the hadrons have multiple
charges per particle. The transformation of behaving like a
hadron gas to behaving like a quark-gluon plasma in the range
150 < T < 225 MeV represents the fundamental change in
degrees of freedom near and just above Tc. Given that the
matter is strongly interacting, the fact that the susceptibilities
closely resemble that of a noninteracting gas for T > 225 MeV
is remarkable, and suggests that interquark correlations are
small in this temperature range, even if the collision rate is
high.

In the most central collisions of heavy ions at the LHC or
at RHIC, matter achieves temperatures greater than 300 MeV
for times near 1.0 fm/c after the initial collision [1–4]. The
matter cools rapidly, staying in the QGP realm for the first
≈5 fm/c, in the transition region for a few fm/c, then spends
the last 10–25 fm/c in the hadron phase before completely
decoupling [5,6]. Unfortunately, measurements are confined
to the outgoing particles, so inferring properties for a specific
time or temperature is challenging. Even if measurements
could be performed at a specific time, charge fluctuations
would be limited in their ability to equilibrate due to the
finite time for charges to spread. These limitations can be

somewhat overcome by analyzing charge correlations, rather
than charge fluctuations. Indexed by the spatial coordinate,
charge correlations represent a more differential measure of
the charge fluctuation,

Cab(r1,r2) ≡ 〈ρa(r1)ρb(r2)〉. (5)

In subsequent sections, the measure of position, r , will often
be replaced by the spatial rapidity η.

In an equilibrated system, the correlation integrates to the
charge fluctuation,

χab(r1) =
∫

dr2Cab(r1,r1 + r2). (6)

In a heavy-ion collision, the net charges are fixed and do not
fluctuate. Thus, if the “volume” encompasses the entire colli-
sion the charge fluctuation is zero, and Cab integrates to zero.
However, charge can diffuse away from small subvolumes,
and if the equilibrated correlations are confined to very short
distances, the short-range correlation might readily equilibrate,
leaving a residual longer-range correlation. When combined,
the short-range correlation and the long-range correlation
should integrate to zero due to charge conservation. We express
the short-range correlation as a delta function,

Cab(r1,r2) = χabδ(r2 − r1) + C ′
ab(r1,r2). (7)

Here, C ′ describes the correlation that would diffuse over large
distances if given the chance, but even given large times would
integrate to −χ . If the short-range correlations do not have time
to equilibrate, χ could be replaced with some time-dependent
function that would evolve toward χ if given sufficient time.
For example, if the production of strangeness kept up with
equilibrium in the plasma stage, one would expect χss =
ns + ns̄ to follow the equilibrated value. However, if chemical
rates were slow, one might evolve χss according to chemical
rates rather than assuming the equilibrated value. The residual
correlation is referred to as the “balancing” correlation, and
ultimately leads to the measurement of the charge balance
functions described here [7,8]. At the end of the reaction, the
short-range correlation, described by χ , involves only those
charges on the same hadron, and the strength of C ′(�r,t) is
constrained by charge conservation. Thus, it is only the spatial
spread of C ′(�r,t) that provides information. Because charge
conservation is local, the spread C ′(�r) indicates the times
at where the source function fed the correlation, and the rate
at which charge can diffuse or spread. The evolution of C ′ is
determined by charge conservation [9],

DtC
′
ab(r1,r2,t) = −∇1 · 〈 ja(r1,t)ρb(r2,t)〉

−∇2 · 〈ρa(r1,t) jb(r2,t)〉
−Sab(r1,t)δ(r2 − r1),

Sab(r,t) = Dtχab(r,t) + (∇ · v)χab(r,t), (8)

where Dt is the comoving derivative. If χab is known as a
function of the temperature, one can use the hydrodynamic
evolution to extract the source function Sab(r,t). Then if one as-
sumes the currents are determined diffusively, ja = −D∇ρa ,
the evolution of the correlation function is determined.
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For a quark gas, a positive source function corresponds to
the creation of quarks, and a negative source function is caused
by the annihilation of quarks. For an isentropic expansion of
a massless parton gas, the number of quarks stays fixed, and
Sab = 0. For a hadron gas, there are off-diagonal elements.
For example, pions contribute negatively to χud because they
are constructed from ud̄ or dū quarks. Thus, the off-diagonal
elements of Sab tend to be negative. With the sign convention
used in Eq. (8) the function C ′

ab is fed proportional to −Sab

whereas the change in χab is proportional to +Sab.
Previous studies have also considered the growth of charge-

balance correlations throughout time. Using a microscopic
simulation based on hadronic degrees of freedom [10], it was
seen that the width of such correlations in relative rapidity was
found to be qualitatively inconsistent with data. In a purely
hadronic scenario, there is little charge production after the
initial production, and without a delayed late-time surge of
the source function, models were found to be qualitatively
inconsistent with data. In [8,11,12] the source function was
parametrized as coming from two components, an early surge
from the creation of charge in the equilibration of the QGP, and
a second surge related to hadronization. Varying the strength
of the surges and the diffusive spreads, and overlaying onto
a blast-wave parametrization of the collective flow, experi-
mental measurements were reasonably well matched when the
strength of the initial surge of charge production was consistent
with early chemical equilibration of the up, down, and strange
quarks. A similar parametric model, but with a more continu-
ous description of the source function, has also been attempted
[13]. Formalisms that can be applied to three-dimensional
hydrodynamic simulations have also been presented [14,15],
but this study represents the first attempt at implementing such
a formalism with a realistic hydrodynamic evolution.

An alternative method for evolving correlations in the con-
text of a hydrodynamic evolution has been presented in [14]. In
these approaches, correlations are seeded by hydrodynamical
fluctuations, i.e., by adding stochastic source terms to the
usual hydrodynamic equations of motion [16]. These equations
of motion are thereby converted into stochastic differential
equations which must be solved by explicitly specifying
correlation functions for the fluctuating source terms whose
form is dictated by the fluctuation-dissipation theorem [17].
When these correlation functions are chosen proportional
to δ functions in coordinate separation, the hydrodynamical
fluctuations are termed “white noise.” Although simple to
implement in dynamically evolving systems such as heavy-
ion collisions, systems with white noise can be shown to
exhibit violations of relativistic causality, with disturbances
propagating faster than the speed of light [18,19]. One way of
avoiding this problem is by replacing white noise with “colored
noise,” i.e., by replacing coordinate-space δ functions with
other functional forms which are characterized by finite widths
in space and/or time [19]. A second challenge for stochastic
treatments concerns projecting the correlations onto hadrons.
The stochastic correlations include the correlation of a particle
with itself, and because these correlations are also reproduced
in the hadronization of an uncorrelated background, one must
be careful to remove that part of the correlation from the
stochastic treatment.

In this study, we take a different approach to tackling
these same problems of relativistically causal diffusion and the
subtraction of hadronic self-correlations. Instead of modifying
the hydrodynamic equations of motion themselves, we retain
them as nonstochastic (“smooth”) partial differential equations
which can be solved by standard hydrodynamics codes [20],
and treat the stochastic component of the correlation by directly
producing pairs of oppositely charged particles on top of the
smooth, hydrodynamical evolution of the system, according
to Eq. (8). These pairs provide a Monte Carlo representation
of the correlation function. Rather than having these pairs
drift apart according to the diffusion equation, they instead
move according to a random walk, moving at the speed of
light, and punctuated by collisions which then randomize the
direction of the velocity in the local matter frame. By choosing
the collision rate appropriately, this evolution is consistent
with the diffusion equation after many collisions, but differs
when the number of collisions is small, or for times shortly after
the pair is created. For these times, the diffusive separation
is effectively cut off at large separation by the constraint of
charges not moving faster than the speed of light. With the
approach taken here, which is also discussed in [15], the
discreteness of the charges can be treated in such a way that
the correlation of hadrons with themselves, or those charges on
a specific hadron with themselves, are not double-counted. In
the noise-based algorithms described above, those correlations
are also included in the correlation function, which makes it
difficult to build a hadronization sampling routine that does
not redundantly produce such correlations. By requiring that
individual particles travel no faster than the speed of light, we
can enforce the requirement of relativistic causality without
needing to modify the usual way in which the hydrodynamic
equations are solved. Instead, the diffusive dynamics are
obtained by directly solving Eq. (8), and evolving pairs of
charges as prescribed by C ′

ab.
Stated more precisely, our principal goal in this study is

to implement the following procedure for studying charge
balance functions in heavy-ion collisions. Beginning with
the hydrodynamic solution for central Au + Au collisions
at energies corresponding to

√
snn = 200 GeV, the highest

energy for which data from RHIC (Relativistic Heavy-Ion
Collider at Brookhaven National Laboratory) is available,
source functions are extracted from the space-time history
of the hydrodynamic evolution. The source functions feed
the correlations functions C ′

ab, which are then evolved as
functions of relative spatial rapidity according to the diffusion
constant D. Both the charge susceptibility χab [21,22] and the
diffusion constant D [23] are taken from lattice calculations.
The correlations are evolved until the hydrodynamic fluid
elements reach a breakup temperature Tf , which is near or
below Tc. At this point, the correlations are projected onto
hadrons, using the assumption that small up, down, and strange
charges are distributed among the various hadron species
thermodynamically. A method for describing the additional
number of hadrons of a given species, δNh, due to a small
charge δQa was found in [8],

δNh = 〈nh〉qhaχ
−1
ab δQb, (9)
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where 〈nh〉 is the equilibrium density of such hadrons at the
hypersurface, and qha is the charge of type a on a hadron
of species h. Assuming thermal emission from the Cooper-
Frye surface, the additional hadrons δNh are then generated.
After incorporating their thermal motion, plus decays, the
correlations in coordinate space, C ′

ab(r1,r2), which are indexed
by their u, d, and s charges, are mapped onto correlations
in momentum space of hadrons, C ′

hh′( p1, p2), indexed by the
hadronic species.

The hadronic correlations in momentum space are repre-
sented by “generalized charge balance functions,” Bhh′ , and
are binned as functions of the relative rapidity in this study.
Balance functions are defined by any two hadron species, h
and h′,

Bhh′(�y) = 1

2〈Nh〉
∫

dydy ′〈Nh(y)[Nh̄′(y ′)

−Nh′ (y ′)]〉δ(�y − |y − y ′|)
+ 1

2〈Nh̄〉
∫

dydy ′〈Nh̄(y)[Nh′(y ′)

−Nh̄′ (y ′)]〉δ(�y − |y − y ′|). (10)

Here, 〈Nh〉 is the average number of species of type h, and
〈Nh(y)Nh′(y ′)〉 is the differential probability of observing
species of type h and h′ with rapidities y and y ′ in the same
event. The first term represents the conditional probability
for observing hadrons of type h̄′ vs h′ given the observation
of a hadron h, with relative rapidity �y. The numerators
are constructed experimentally by summing over all pairs of
particles where one is of type h and the other is of type h′ and
creating a histogram binned by relative rapidity. The histogram
is incremented by unity for the combinations hh̄′ and h̄h′ and
by −1 for hh′ or h̄h̄′. The sums ignore the terms where the pair
refers to a particle with itself. These correlations have been
measured by STAR for pp, pK , KK , and ππ [24]. They have
also been measured by STAR, NA49, and by ALICE for the
case where h and h′ refer to hadron indexed by charge only
[25–32]. Here, we present calculations for all combinations
of charged pions, charged kaons, and protons. Results are
projected through an acceptance filter provided by STAR and
compared to their results.

The final step is to identify those free parameters within
our model which may be tuned to obtain an optimal fit to
the experimental data. Hydrodynamic calculations are applied
after some small thermalization time, τ0 = 0.6 fm/c in this
instance. At that time, the initial correlation function C ′

ab(�r)
needs to be defined. Its strength is fixed by the susceptibility
χab, but its initial spread is unknown. The spread along the
longitudinal coordinate, Bjorken η, is assumed to be Gaussian
and characterized by a width σ0. The parameters σ0, Tf , and
the diffusion constant are all varied to determine the sensitivity
of the various balance functions, Bhh′ . For this study balance
functions are studied as a function of relative rapidity and six
hadronic combinations, hh′, are analyzed; those involve pions,
kaons, and protons. Four of the balance functions are compared
to experimental results from STAR. Even though comparisons
are premature due to the current lack of a microscopic treatment
of the hadronic stage, it does appear that discrepancies between

the model and data might persist, even though the model fits
the data to the 10–20% accuracy across all balance functions.

The next section provides a detailed description of the
calculation. This includes the evolution of correlation functions
in coordinate space, and the projection of the three-by-three
correlation in coordinate space C ′

ab, onto the general charge
balance functions Bhh′ in momentum space. Sections III
and IV describe the space-time evolution of C ′

ab during
the hydrodynamic stage and its projection onto correlations
indexed by hadronic species C ′

hh′ . Section V presents results
from varying the parameters mentioned above, along with
a cursory comparison with results from STAR. The final
section presents several sources of the discrepancies with
experimental data and suggests several remedies, such as better
modeling of the hadronic stage. The Appendix describes the
algorithm for finding the hypervolume elements used to
generate hadrons at the Cooper-Frye surface, defined by Tf ,
using the hydrodynamic history.

II. METHODS

Calculations are based on output from the iEBE-VISHNU
relativistic hydrodynamic model [20], which was performed
in 2+1 dimensions, using the assumption of Bjorken boost in-
variance to eliminate the need to model along the z axis, which
is parallel to the beam. The hydrodynamic output is binned in
the transverse dimensions with elements �x = �y = 0.1 fm
and in time with �τ = 0.02 fm/c. Boost invariance assumes
that matter has no longitudinal acceleration, vz = z/t , and
that properties are independent of the longitudinal coordinate
η = sinh−1(z/τ ). Information need only be stored for η = z =
0, and the collective velocity at η = 0 is purely transverse.
The velocity gradient at η = 0 is dvz/dz = 1/τ . Here, τ
is the time measured by an observer at rest relative to the
longitudinal velocity, so at τ = t at η = 0 and τ = t/ cosh η
otherwise. The following information is stored for each point
in the three-dimensional, τ,x,y, mesh: the temperature T , the
stress-energy tensor Tαβ , and the collective velocity vx and vy .

The equation of state was taken from lattice calculations
[33]. Lookup tables were constructed so that all intrinsic
quantities, such as the entropy density s, could be found from
either the temperature or energy density. For temperatures
below 155 MeV, the equation of state was assumed to be that
of a hadron gas, calculated by using all resonances from the
Particle Data Group with masses below 2.2 GeV [34]. For
temperatures above 175 MeV, the lattice results were used
and for 155 < T < 175 the equation of state was a weighted
average between the two, with the weight varying between
zero and unity linearly as a function of temperature in the
range. The charge susceptibility matrix χab and the diffusion
constant were taken from lattice calculations [23] and stored
as functions of temperature.

The correlations were calculated Monte Carlo by generating
pairs of charges. To represent the ab component of a correlation
the first particle in the pair was randomly, and given a charge
±a. The charge of the second particle was ±b with the relative
sign chosen to correspond to the sign of the source function.
For example, if Suu is positive (creating quarks), the charges
representing C ′

uu would be chosen as a uū pair or a ūu pair.
If one is at a point in space-time where up quarks are being
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annihilated, the sampling pair would be either a uu or ūū pair.
Once the hadronization phase is entered, one finds negative
contributions to Sud due to the creation of pions. This results
in sampling charges of either ud or ūd̄ for representing C ′

ab.
With this choice the charges were uncorrelated with other pairs.
The decision as to whether to create a pair at a specific point
in the space-time mesh was taken from the source function,
Eq. (8). The number of pairs of type ab to create in an element
was chosen randomly with probability,

dNab = τ�x�y�τ |Sab(x,y,τ )|. (11)

This is the number within one unit of spatial rapidity, i.e., the
longitudinal effective size is τ�η. In order to avoid acausal
propagation, the diffusion equation was treated as a random
walk. Charges moved at the speed of light, with initial direc-
tions being random when viewed in the matter frame. At each
time step, all existing charges were allowed to either rescatter
or to continue on their trajectory, with the scattering probability
being �τ/(6Du0), where D is the diffusion constant, �τ is the
time step, and u0 is the zeroth component of the four-velocity
describing the fluid velocity. The scattering would reorient the

direction so that it would again be random in the local rest
frame. This probability was chosen so that the scattering rate
would reproduce the desired diffusion constant for the matter
according to its local temperature. Once several scatterings
occur, this motion should closely mimic diffusive behavior,
while for the first few scatterings, the motion avoids acausal
transport by having the individual charges move at the speed of
light. When choosing the lattice diffusion constant, the typical
number of scatterings was a half dozen per charge.

The source in Eq. (11) was calculated using Eq. (8). If
the fluid elements were to flow and expand with the fluid,
so that they encompassed a fixed amount of charge, or fixed
amount of entropy for ideal hydrodynamics, the change in
the number of pairs within the volume � would be dNab =
d(χab�), the change of the charge susceptibility over the
volume of the fluid element. Because the fluid elements had
fixed transverse sizes, �x and �y, a longitudinal size of τ�η
(with �η = 1 unit of spatial rapidity), and were evaluated in
a time interval �τ , the number of pairs created in the element
with coordinates x ′,y ′,η′,τ ′ such that x < x ′ < x + �x, y <
y ′ < y + �y, 0 < η′ < 1, τ < τ ′ < τ + �τ is

dNab =
∫

r ′∈�4r

d4r ′{∂tχab(r ′) + ∇[χab(r ′)v(r ′)]} =
∫

d4r ′∂μ(χabu
μ) =

∮
d�μuμχab

= �x�y

4
{(τ + �τ )u0(x + �x,y + �y,τ + �τ )χab(x + �x,y + �y,τ + �τ )

+ (τ + �τ )u0(x + �x,y,τ + �τ )χab(x + �x,y,τ + �τ )

+ (τ + �τ )u0(x,y + �y,τ + �τ )χab(x,y + �y,τ + �τ ) + (τ + �τ )u0(x,y,τ + �τ )χab(x,y,τ + �τ )

− τu0(x + �x,y + �y,τ )χab(x + �x,y + �y,τ ) − τu0(x + �x,y,τ )χab(x + �x,y,τ )

− τu0(x,y + �y,τ )χab(x,y + �y,τ ) − τu0(x,y,τ )χab(x,y,τ )}
+ �y�τ

4
{(τ + �τ )ux(x + �x,y + �y,τ + �τ )χab(x + �x,y + �y,τ + �τ )

+ (τ + �τ )ux(x + �x,y,τ + �τ )χab(x + �x,y,τ + �τ )

− (τ + �τ )ux(x,y + �y,τ + �τ )χab(x,y + �y,τ + �τ ) − (τ + �τ )ux(x,y,τ + �τ )χab(x,y,τ + �τ )

− τux(x + �x,y + �y,τ )χab(x + �x,y + �y,τ ) − τux(x + �x,y,τ )χab(x + �x,y,τ )

+ τux(x,y + �y,τ )χab(x,y + �y,τ ) + τux(x,y,τ )χab(x,y,τ )}
+ �x�τ

4
{(τ + �τ )uy(x + �x,y + �y,τ + �τ )χab(x + �x,y + �y,τ + �τ )

− (τ + �τ )uy(x + �x,y,τ + �τ )χab(x + �x,y,τ + �τ )

+ (τ + �τ )uy(x,y + �y,τ + �τ )χab(x,y + �y,τ + �τ )

− (τ + �τ )uy(x,y,τ + �τ )χab(x,y,τ + �τ )

+ τuy(x + �x,y + �y,τ )χab(x + �x,y + �y,τ ) − τuy(x + �x,y,τ )χab(x + �x,y,τ )

+ τuy(x,y + �y,τ )χab(x,y + �y,τ ) − τuy(x,y,τ )χab(x,y,τ )}. (12)

At the initial time τ0, the susceptibility is assumed to have already reached its equilibrium value, which necessitates that a
number of pairs already exist. For the points x ′,y ′,z′,τ ′ = τ0, the number of pairs created is

dNab = �x�y

4
τ0{χab(x + �x,y + �y,τ0) + χab(x + �x,y,τ0) + χab(x,y + �y,τ0) + χab(x,y,τ0)}. (13)

For the current run, there was no initial transverse flow,
otherwise more terms would be added as in Eq. (12). The

two particles from one of these initial pairs were initially
placed at the transverse coordinate x⊥ = (x,y), according to
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Eq. (13). However, the two partners were not placed at the same
longitudinal coordinate. Instead, each charge was randomly
moved from a given starting point by a Gaussian random
number with standard deviation σ0, effectively stating that
by the time the hydrodynamic treatment was started, each
existing charge would have diffused in spatial rapidity from
the point at which that charge and its partner had been created.
Physically, this initial separation might have little to do with
diffusive dynamics, and instead might be due to the process
of charges being created pair-wise by breaking strings or in
the decay of longitudinal chromoelectric fields. To convert the
field, or string, energy into particles, the charges might tunnel
a certain distance on the order of a unit of rapidity. Here, σ0 is
treated as an unknown parameter. If σ0 is much less than the
subsequent diffusion distance, σ0 becomes irrelevant. Given
that the diffusion distance is expected to be of the order of a unit
of rapidity, results should be sensitive to values of σ0 more than
a few tenths of spatial rapidity. The initial separation of the two
charges from the same pair in the same transverse direction was
neglected. The initial longitudinal separation is critical because
the large initial velocity gradient, dvz/dz = 1/τ , magnifies
any small initial spread. Because there is little initial transverse
velocity gradient, small initial transverse separations should
not significantly affect the final separations of the charges.

The sample charges eventually cross the hypersurface and
are translated into hadrons. For each of these small charges,
δQa , a small change is seen in the number of emitted hadrons
of a specific species δNh. The hypersurface element �μ is
characterized by its direction, which is proportional to −∂μT
and the collective four-velocity at that point, uμ. The Cooper-
Frye formula is adjusted by modifying the phase space density
for hadron species h according to a small chemical potential,
δμa/T = −δαa ,

fh( p,r,t) → fh( p,r,t)e−δαaqh,a , (14)

where qh,a is the charge of type a carried by a single hadron
of type h. The additional net charge induced by the chemical
potential must reproduce the small charge Qa that passes
through the hypersurface element �μ,

δQa = −�μ

∑
h

∫
d3p

(2π )3Ehp

pμ

qha

fh(q,r,t)�(p · �)qhbδαb,

= Mabδαb,

Mab ≡ −�μ

∑
h

d3p

(2π )3Ehp

pμ

qha

fh(q,r,t)�(p · �)qhb. (15)

The choice of whether to include the step function �(p · �) is
somewhat arbitrary. The step function excludes emission into
the surface, which occurs when the hypersurface is receding
into the matter at subluminal speeds. In matter that speed is

v� = d�0

|d�| . (16)

For v� > 1 the step function is irrelevant. For elements where
v� < 1, keeping the step function eliminates emission into the
surface but also leads to a violation of energy and momentum
conservation. Studies of heavy ion collisions show that this
backflow contribution is less than one percent of the total

emission [35], so for calculating Mab, it is neglected here [36].
Once the step function is eliminated from the equation, parity
eliminates the part of the integral proportional to p · � when
calculated in the matter frame, and Mab and the number of
hadrons Nh emitted normally through the surface is

Mab = (u�)χab,

χab =
∑

h

nhqhaqhb,

Nh = (u�)nh, (17)

where nh is the density of hadrons in an equilibrated system of
type h at the interface temperature. One can now solve for the
chemical potential and find the additional emission,

δαa = M−1
ab δQb,

δNh = nhχ
−1
ab qhaδQb, (18)

and the number of additional emitted particles of type h, δNh,
depends only on the additional charge that flows through the
surface, δQa , and not on the size of the surface element.
Hadrons were produced randomly via Monte Carlo so that
the number of hadrons δNh would be reproduced on average.
Momenta were assigned consistent with the interface tempera-
ture, thermal motion, and viscous corrections according to the
methods described in [35]. Unstable particles were decayed
statistically according to weights taken from the Particle Data
Group [34].

The numerator,

Nhh′(�y) =
∫

dydy ′〈[Nh(y) − Nh̄(y)][Nh̄′(y ′)

−Nh′(y ′)]〉δ(�y − |y − y ′|), (19)

for the charge balance function is then constructed by binning
on the measure of relative momentum, e.g., �y, whenever two
particles of type h or h′ are found with h and h′ resulting
from the charge pairs of type a and b respectively from
the source function at Sabd

4x. Particles from charges that
originated from different points in space-time are uncorrelated
because the charges of type a were randomly assigned to
positive or negative, and the charges of the type-b charges
were picked to be the same or opposite as the a particles from
the same space-time point according to the sign of Sab. Thus,
by attaching information to identify particles from the same
space-time point, only those pairs from the same space-time
point were used to construct the numerator, which greatly
reduces the noise inherent in the calculation and allows smooth
results to be generated with only a few minutes of CPU time.
Also, to increase the efficiency of the calculation, charges were
created with an oversampling factor of Mc and hadrons for a
given charge were created with an oversampling factor of Mh.
The numerator and denominators of the balance function were
then scaled to account for the oversampling.

Decays also represent additional sources of correlation.
For example a neutral particle might decay into two charged
particles which must then be included in the balance function
numerator. This is accounted for by producing an ensemble of
uncorrelated particles from the hypersurface, unrelated to the
sampling charges. This sampling ignores charge conservation,
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as each emission is independent. However, the decays of
such resonances do lead to additional correlations. Particles
from the same decay are then evaluated for their contribution
to the binning of the numerator Nhh′(�y). The ensembles
created here are the same ones that are used to calculate the
denominator of the balance function described below.

For a charge neutral system, the charge balance functions
from Eq. (10) can be equivalently expressed in terms of Nhh′ ,

Bhh′(�y) = Nhh′(�y)

〈Nh + Nh̄〉
. (20)

The choice to define the balance function with a division by the
average number is motivated by having a result that integrates
to some constant that is quasi-independent of multiplicity. If
h and h′ both refer to all positive particles (and h̄ and h̄′ refer
to all negative particles), the balance function would integrate
to unity for perfect acceptance. If the system were not charge
neutral, then the definition in Eq. (10) would still integrate to
unity, and for that reason Eq. (10) would be a more attractive
option for a system with a significant net charge, such as
what would be encountered in the beam-energy scan program
planned for RHIC in the coming years.

Calculating the denominator, 〈Nh + Nh′ 〉 in Eq. (20), does
not involve the charges that represent the numerator. Instead,
it relies only on the list of hypersurface elements and their
properties. The number of such particles for a hypersurface
element � is

Nh = (2Sh + 1)
∫

d3p

(2πh̄)3E
(p · �)fh(p). (21)

Again, because the step function, as in Eq. (15), is ignored,
the integral is easy to calculate in the frame of the fluid. In
that frame the zeroth component of � is u�, and Nh = nhu�,
as mentioned in Eq. (17), where nh is the density of hadrons.
Hadrons are generated Monte Carlo consistent with Nh. The
momentum spectrum of the particles is corrected for shear
anisotropy using the methods of [35]. Also arbitrarily, if the
momentum of a particle was found to be emitted into the
surface, i.e., p · � < 0, the particle was regenerated. Once
emitted, the unstable particles are decayed.

For h and h′ referring to all charged particles, the balance
function should integrate to unity. This tests the accuracy of
the procedure. Given that the balance-function numerator is
calculated using the representative sample charges to generate
hadrons as they pass through the hypersurfaces, and that the
denominator uses only the hypersurface elements, the test
is highly nontrivial. For the calculations presented here, the
balance function normalization came within one or two tenths
of a percent of unity.

Experimental acceptance plays a pivotal role in the balance
function. For example, the normalization of the all-charge
balance function is reduced to approximately 0.3. This means
that for each observed charge, the number of additional
observed opposite charges, vs the number of additional same-
sign charges was approximately 30%. The other 70% of the
balancing charge was either outside the acceptance, or not
recorded due to the efficiency which is typically about 70%
for identified particles. If one used those charges that were not

identified as pions, kaons, or protons, the efficiency would be
somewhat higher.

Binning the balance function is rather straightforward. One
performs a sum of all hadron pairs where one came from
the corresponding ab elements of the source function. If
the particles were charged pions, charged kaons, protons, or
antiprotons, the corresponding bin in relative rapidity was in-
cremented. For the denominator, a sum over all hyperelements
was evaluated, with hadrons being created and decayed as
mentioned above. For calculating the denominator, hadrons
were boosted so that their rapidities would randomly cover a
region −ηmax < y < ηmax, with ηmax = 0.9 being large enough
that no particles with that rapidity could be detected. For
evaluating the numerator, the particle generated by charge
a was also boosted randomly, and the particle generated by
charge b was boosted by the same amount so that the relative
rapidity was unchanged.

III. HYDRODYNAMIC EVOLUTION OF THE
CORRELATION FUNCTION

As prescribed by Eq. (8), the source function that drives the
growth of the correlation function, C ′

ab(�η), is prescribed by
the rate of change of the susceptibility, shown as a function of
temperature in Fig. 1. For the correlation function in relative
rapidity and for a boost-invariant system, integrating Eq. (8)
over transverse coordinates becomes

∂

∂τ
C ′

ab(�η) = Sab(τ )

= ∂

∂τ

{
τ

∫
dxdyχab(x,y,τ )γ⊥(x,y,τ )

}
, (22)

where γ⊥ is the Lorentz contraction factor for the transverse
flow, γ⊥ =

√
1 + u2

x + u2
y . In a time dτ the number of created

sampling charge pairs of type ab within one unit of rapidity is
Sab(τ )dτ . The sampling charges are created at each space-time
point according to Eq. (12). The charges are tagged so that
they can be paired with the partner charge from the same
pair at the end of the collisions. The susceptibilities from
lattice as a function of temperature are shown in Fig. 1, and
the resulting source functions are displayed in Fig. 2, where
the hydrodynamic evolution was taken from descriptions of
full-energy Au+Au collisions at RHIC. Assuming isospin
symmetry, χuu = χdd , χus = χds , and Suu = Sdd and Sus =
Sds , there are four independent components of χ and of S:
χuu, χss , χud , and χus , and Suu, Sss , Sud , and Sus .

As described in the Introduction, susceptibilities provide
valuable insight into the quark chemistry at a given tempera-
ture. At high temperatures, quarks are uncorrelated with one
another, and the only correlation comes from a quark with itself
(plus a small correction due to the Pauli-exclusion principle).
Because the density of quarks for a massless quark parton gas
is proportional to the entropy density, one expects χuu/s ≈
χdd/s ≈ χss/s at high temperature and that those values should
vary little with T . It is remarkable to see how χab/s from the
lattice calculations in Fig. 1 approach this Stefan-Boltzmann
limit for temperatures only modestly higher than 200 MeV. In
contrast, at low temperatures quarks form hadrons, and even
though hadrons are independent of one another, there exist
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FIG. 2. The source function that generates the correlation func-
tion C ′

ab(�η) is shown as a function of proper time τ . The function
is found by convoluting the susceptibility from lattice calculations
with the hydrodynamic evolution as prescribed in Eq. (22). Multiplied
by the bin width, 0.5 fm/c, the values give the number of produced
charge pairs within the time step that sample the evolution. The initial
spike of the source function describes the correlation created at initial
thermalization, τ0.

correlations between quarks within a hadron. For example for
a �++ baryon (uuu) contributes a factor of 9 to the χuu and
a K+ meson (us̄) contributes +1 to χuu, +1 to χss , and −1 to
χus . Because of the heavier mass of strange hadrons, χss/s falls
with temperature as T falls in the hadron region. In contrast,
χuu rises due to the fact that a large number of up and down
quarks must appear as the system goes through hadronization.
If one were to plot the hadron susceptibility,

χBB/s = 1

9s
(4χuu + χdd + χss + 4χud + 4χus + 2χds)

≈ 1

9s
(5χuu + χss + 4χud + 6χus), (23)

one would see that the baryon susceptibility would fall precip-
itously for low T due to the large thermal penalty coming from
the heavy baryon masses.

It is assumed that chemical equilibrium has been attained by
the time the hydrodynamic evolution has begun. Thus, a large
number of pairs are created in the first instant, which gives
a peak to Sab(τ ≈ τ0 = 0.6 fm/c). This initial surge, along
with the continuous contribution for later times, is displayed
in Fig. 2. This was generated from the hydrodynamic solution
for zero-impact-parameter collisions of Au nuclei at the highest
RHIC energy,

√
sNN = 200 GeV. Unlike the correlation at

later times, the initial correlation does not increment C ′
ab(�η)

at �η = 0. Instead, the initial relative spatial rapidity of the two
charges was assigned randomly with a Gaussian distribution

FIG. 3. The correlation C ′
ab as a function of relative rapidity at

breakup. The uu, dd , and ss components have an extended range
because they originate from the original creation of charge at τ0.
The off-diagonal elements, ud , ud , and ds arise from the creation of
mesons at hadronization. The reduction of strangeness as the system
falls below Tc explains the rise in C ′

ss at small �η.

described by σ0, to account for the fact that the correlation
could have been sourced at any time τ < τ0, and thus may
have already spread significantly. The sensitivity of the final
observed correlations to σ0 is investigated in Sec. V.

The charges propagate with straight trajectories at the speed
of light, punctuated with randomizing collisions as described
in Sec. II. Each charge ultimately crosses the hypersurface
defining the boundary with the hadronic phase. At this point,
each pair of charges was binned according to the relative
spatial rapidity �η with its partner. This produces a statistical
sampling of the correlation function, C ′

ab(�η), in relative
spatial rapidity at decoupling, and is displayed in Fig. 3.
Comparing with the source function Sab(τ ) in Fig. 2, one can
see how contributions from Sab(τ ) for early times leads to
broader peaks in the correlation function. This is especially
true for the initial correlation generated by Sab(τ0). Not only
does this correlation have more time to spread, it may have
been created with a significant width if σ0 is large. Given that
all correlations are ultimately measured in momentum space,
and are thus spread out by the thermal motion, having σ0 � 0.5
should lead to a significant broadening of the correlation
derived from the initial source.

The uu component of the source is strong and indeed
generates long-range structure to Cuu from the initial corre-
lation. Similarly, the ss component from the initial correlation
translates into a long-range component for the strange quarks.
Because charge balance enhances charges of the opposite sign,
these long-range contributions are negative. Due to the surge
of new up and down quarks that appear during hadronization,
the ensuing correlation for uu charge has additional negative

014904-8



EVOLUTION OF CHARGE FLUCTUATIONS AND … PHYSICAL REVIEW C 98, 014904 (2018)

FIG. 4. The kernel Khh′ ;ab translates correlations indexed by charge, a,b = u,d,s, to those indexed by hadron species, h,h′ = π,K,p. After
convoluting with the susceptibility χab or the source function Sab, due to the isospin symmetry of χ and S, only four independent combinations
of Khh′ ;ab contribute, and are shown above. The right-side panel (b) differs from (a) by including the effects of decays as described in Eq. (27).
Feed down decays are especially important for spreading the effect of correlations involving strange quarks amongst all hadron species. These
values assumed an interface temperature of 155 MeV.

contributions that then contribute to Cuu for small �η. In
contrast, the number of strange quarks can fall at later times,
and this contribution becomes negative for Css , so that Css has a
significant positive contribution at later times. The off-diagonal
contributions, ud and us, are nonexistent for a plasma of
independent quarks, and the corresponding source functions
come in at later times. Given the much larger number of up
and down, relative to strange quarks, in the hadron phase, the
correlation for ud is much stronger than that for us in Fig. 3.

IV. HADRONIZATION

Unfortunately, measurements of C ′
ab are not currently pos-

sible. The nonmeasurement of neutrons plus the violation of
strangeness in weak decays makes this difficult. Fortunately,
three species of hadrons can be measured and identified with
high efficiency: pions, kaons, protons, and their antiparticles.
For correlations of the type, C ′

hh′ , this leads to six correlation
functions: C ′

ππ , C ′
πK , C ′

πp, C ′
KK , C ′

Kp, C ′
pp. The u, d, and

s charges sampling C ′
ab, eventually cross the hypersurface

into the hadronic realm. The linear response described in
Eq. (18) translates a differential charge, δQa , passing through
the hypersurface into a differential number of hadrons, δNh.

This can be applied to derive C ′
hh′ from C ′

ab,

C ′
hh′(�η) =

∫
dηdη′〈[Nh(η) − Nh̄(η)][Nh̄′(η′) − Nh′(η′)]〉

× δ(�η − |η − η′|)
=

∑
ab

Khh′;abC
′
ab(�η),

Khh′;ab = −4nhnh′qhcq
′
h′dχ

−1
ca χ−1

db . (24)

The negative sign in the definition of the kernel comes from
having defined Chh′ as positive when there are positive corre-
lations between hadrons of type h with antiparticles of type h̄′.

The kernel Khh′;ab can be represented as a 6 × 4 matrix.
Using isospin symmetry between the u and d indices, C ′

ab has
four independent combinations of ab that contribute.

C ′
hh′(�η) =

4∑
α=1

K̃hh′;αC̃ ′
α(�η),

K̃hh′;1 = Khh′;uu + Khh′;dd ,C̃
′
1(�η)

= C ′
uu(�η) =C ′

dd (�η),

K̃hh′;2 = Khh′;ud + Khh′;du,C̃
′
2(�η) = C ′

ud (�η) = C ′
du(�η),
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K̃hh′;3 = Khh′;us + Khh′;su + Khh′;ds + Khh′;sd ,C̃
′
3(�η)

= C ′
us(�η) = C ′

su(�η) = C ′
ds(�η) = C ′

sd (�η),

K̃hh′;4 = Khh′;ss ,C̃
′
4(�η) = C ′

ss(�η). (25)

For example, even though KπK;us is significant, KπK;ds is
nearly the same but with opposite sign, thus they cancel one
another when calculating C ′

hh′(�η).
Because pions, kaons, and protons are the best measured

outgoing hadrons, we presently consider only six combinations
of hh′: ππ , πK , πp, KK , Kp, and pp. At this point the
STAR Collaboration at RHIC has measured balance functions
for four of the six combinations, ππ , KK , Kp, and pp.
Figure 4 shows these kernels for a transition temperature of
T = 155 MeV. The elements are stronger when the charge
indices match the quark composition of the hadrons. For
instance Kππ ;ud and Kππ ;uu are both large. From the kernel one
can see that the Kp balance function will be driven largely by
the us and ss correlations. Because ss and us correlations have
opposite sign, the two contributions to the balance functions
have opposite sign. Further, one can see from Fig. 2 that the
ss correlation is established very early in the collision when
the quarks are initially produced, whereas the us correlation
is seeded late, when kaons begin to appear. Thus, the Kp
balance function has a positive contribution, which will be
narrow in relative rapidity, and a negative contribution that
extends further in rapidity. The weight between these two
contributions provides sensitive insight into the evolution of
the charge-charge correlation.

Figure 5 shows the correlation function C ′
hh′ (�η) calculated

from Eq. (24). As expected, C ′
ππ is approximately an order of

magnitude stronger than the other correlations at small �η.
The KK correlations are broad because they are dominated
by the ss correlations, which are seeded at early times. The

FIG. 5. Hadronic correlations in coordinate space immediately
after hadronization.

pp correlations are not only seeded early, but have negative
contributions to the source function at later times. This leads
to the dip in the correlation function at small �η. Due to the
factors of density in Eq. (24), the correlations in Fig. 5 are much
stronger for pions than for kaons or protons. Ultimately, this
correlation leads to the balance function numerator. Because
the definition of balance functions include a division by the
yield of the specific hadron, the magnitude of balance functions
for different species, e.g., pp vs ππ , are more similar than the
correlations in Fig. 5.

The kernel defined in Eq. (24) can also be convoluted with
the susceptibility or the source function,

Shh′(τ ) ≡
∑
ab

Khh′;abSab(τ ),

χhh′(τ ) ≡
∑
ab

Khh′;abχab(τ ). (26)

These quantities provide insight into the times and tempera-
tures where the correlations that lead to final-state hadronic
correlations for specific species, hh′, are seeded. They are il-
lustrated in Fig. 6. One can see that Spp has a large positive con-
tribution at small τ and a negative contribution at large τ due to
the reduction of baryon number in the hadronic phase due to the
high thermodynamic penalty due to the high baryon masses.

The correlation function C ′
hh′(x1,x2), graphed as a function

of relative spatial rapidity in Fig. 5, drives the final-state
observed correlation. However, final-state correlations con-
tinue to develop during the hadronic stage. Balancing charges
continue to diffuse away from one another in coordinate space,
and resonances can decay or annihilate with one another, which
represents an additional source to the correlation. For this
study, treatment of the hadronic stage is confined to a Monte
Carlo treatment of decays described in Sec. II. This affects the
correlation in two ways. First, when a given hadron decays,
there is a correlation between the products of that decay.
For example, the decay of ρ0 leads to a positive correlation
between the π+π− products. Second, if two balancing charges,
a and b, produce hadrons ha and hb, via the Monte Carlo
mechanism described in Sec. II, those two hadrons might
well be unstable and decay [37]. The final-state products are
then evaluated for their contribution to the correlation function
in lieu of their parent products. This can significantly affect
the final-state correlations. For example, at the hypersurface
there may be a correlation between positive kaons and lambda
hyperons because of the antistrange quark in the K+ and the
strange quark in the lambda. The lambdas can undergo weak
decay and produce protons, which then leads to a positive
correlation between positive kaons and positive protons. This
then leads to a negative contribution to CKp, and because
it was originally seeded by the ss correlations, which were
seeded early, it is broad in �η. To gain an idea of the role of
feed-down corrections to the kernel, Fig. 4 also presents the
kernel including the effects of decays,

K̃hh′;ab =
∑
gg′

wghwg′h′Kgg′;ab, (27)

where wgh describes the average number of hadrons of type h
produced by the decay of a hadron of type g. Figure 4 shows
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FIG. 6. The susceptibility, χab(T ), from Fig. 1, and the source function Sab(τ ), from Fig. 2, are convoluted with the kernel Khh′ ;ab to define
Shh′ and illustrate the temperatures and times at which correlations of specific hadron species are seeded.

how the influence of ss correlations is spread over several other
species by decays, primarily weak decays.

V. RESULTS

As described in Sec. II, once the sampling charges are
converted into hadrons, the created hadron pairs are then
decayed, with their products binned to create the numerator
of the balance function, Nhh′(�y). The numerator also in-
cludes contributions from hadronic decays of an uncorrelated
background. Balance functions Bhh′(�y) were then created
by dividing the numerator by the mean multiplicity of type
h hadrons. By tagging pairs of correlated particles, the un-
correlated background was strongly suppressed, which makes
it possible to accurately calculate Bhh′(�y) with only a few
minutes of CPU time. By accounting for the experimental
acceptance, as also described in Sec. II, the balance functions
can be directly compared to data. Unlike much of the theoret-
ical studies of fluctuations in heavy-ion collisions, which are
based on heuristic arguments about choosing the right window
in rapidity, to correspond to the charge fluctuation at a given
stage of the collision, these calculations make strict quantitative
predictions. These predictions cover a dozen bins of �y, for
each of six charge balance functions indexed by hadron species.
For each balance function, details of the shape and magnitude
should be reproduced if the model accurately depicts the
chemical evolution, diffusion, and flow of the reaction. Here,
we consider only balance functions binned by relative rapidity,
but future studies might perform analyses based on bins of
relative azimuthal angle, invariant relative momentum,
or of the pair’s average rapidity, average transverse momentum,
or of the average azimuthal angle relative to the reaction plane.

To date, only the STAR Collaboration at RHIC has pre-
sented charge balance functions indexed by identified hadronic
species. Preliminary results exist for ππ , KK , pK , and pp
binned by relative rapidity. There is no reason not to expect
that πK or πp could be analyzed from previous experimental
runs. If the goal is to determine Cab(�η) from Bhh′(�y), and
given there are only four independent correlations indexed
by charges, uu, ud, us, and ss, only four sets of hadronic
species, hh′, should be sufficient to determine Cab. However,
more measurements are always welcome, and would certainly
enhance the confidence with which one could deconvolute
Bhh′ to determine Cab. In addition to studying all six hadronic
combinations studied here, one could imagine identifying
other species, such as lambdas, should experimental statistics
become sufficient.

Figure 7 shows the balance functions calculated from
the hydrodynamic model here, with and without the STAR
acceptance filter. For each π,K,p hadron measured in the
STAR TPC (time projection chamber) the chance that an
associated particle, i.e., one related by charge conservation to a
recorded particle, is also within the acceptance and is measured
and identified is approximately 25%. Thus, the charge balance
functions are dampened by that same factor compared to calcu-
lations assuming a perfect acceptance. The balance function is
completely damped as the width �y approaches the maximum
width of the detector. For such pairs, both particles must be
emitted at the edge of the rapidity coverage, which forces
the balance functions to zero. The maximum width is �y =
1.8 due to the pseudorapidity coverage of ±0.9. However,
effectively, the damping is even stricter because particles with
finite pseudorapidity η = 0.9 maps to a lower rapidity. Thus,
the acceptance more strongly dampens the proton and kaon
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FIG. 7. Calculations for default parameters are shown with and
without corrections for STAR acceptance. Applying the filter indeed
brings the balance function into the neighborhood of preliminary
measurements from STAR for central Au+Au collisions at

√
snn =

200 GeV. Experimental results are reproduced at the ≈20% level.
The limited acceptance of STAR significantly restricts the insight one
might possibly gain from a broader-acceptance device.

balance functions than it does the ππ balance function because
protons and kaons move more slowly than pions.

Preliminary results from the STAR Collaboration [24] from
central (0–5% most central) Au+Au collisions at

√
snn =

200 GeV. These are shown alongside the calculations in Fig. 7.
Model calculations were performed for default parameters.
Due to baryon annihilation in the hadronic phase, the pion,

kaon, and baryon yields cannot be simultaneously matched by
assuming chemical equilibrium at one temperature [38–44].
First, the decoupling temperature was set to 140 MeV. This
is a reasonable temperature for reproducing the baryon yield,
but may be too low to reproduce kaon yields. The initial width
of the charge correlations when the hydrodynamic treatment
is begun was set at σ0 = 0.25 and the diffusion constant used
lattice values. The calculations roughly match the data, at the
levels of 10–20%. Significant discrepancies remain, which will
be investigated below.

To gain insight into the sensitivity of the charge balance
function to quantities that affect the production and diffusion
of charge throughout the reaction region, three parameters were
varied relative to the default calculation presented in Fig. 7, and
results are displayed in Fig. 8. First, the left-side panels demon-
strate the sensitivity to variation of the decoupling temperature.
Calculations for all six combinations of hadronic species were
performed for three values of the decoupling temperature,
Tf = 155, 140, and 125 MeV. Of the six balance functions,
those involving protons are the most affected because the yields
of protons falls precipitously in calculations, like these, where
chemical equilibrium is attained. The fall of the proton yield
at low temperature requires that the components of the source
function which are related to C ′

pp turn negative at large times, as
shown in Fig. 6. This leads to a dip in the pp balance function at
small relative rapidity. For lower decoupling temperatures, this
dip becomes increasingly pronounced. For a perfect detector,
the net area underneath the balance function curves should
stay mainly independent of the decoupling temperature, or
the yields, because for every observed proton, there should
be either one more antibaryon or one more baryon. To balance
the stronger dip at �y near zero of the balance functions for
lower Tf , the additional strength might well appear at larger
relative rapidity, where observation is inaccessible due to the
limited coverage of STAR.

The middle panels of Fig. 8 demonstrate the sensitivity of
the balance function to the width of the initial correlation,
C ′(�η,τ = τ0). Because protons and kaons are relatively more
sensitive to source functions at early times, they are also
more sensitive to the initial width σ0. Increasing σ0 from
zero to one unit of relative rapidity moves strength of the pp
balance function away from the measured region. Sensitivities
to changes of the diffusion constant are shown in the right-side
panels of Fig. 8. Halving the diffusion constant more strongly
constrains the balancing charge to smaller relative rapidity.
Also shown are the effects of increasing the diffusion constant
tenfold. Increasing the diffusion is similar to what happens
when σ0 is increased because both effects mainly spread out
the response to early-time elements of the source function, and
thus both mainly affect the balance functions involving protons
or kaons. In the future, one might analyze balance functions
binned by relative azimuthal angle. In addition to being a
sensitive test of radial flow [45], these balance functions should
be sensitive to the diffusion constant, but not so sensitive to σ0.

VI. SUMMARY AND OUTLOOK

Charge fluctuations represent a well-posed observable that
provides the best insight into a system’s chemistry. Due to the
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FIG. 8. The left-side panels (a)–(f) show charge balance function calculations where the decoupling temperature is varied. For low
temperatures, the fall in the baryon yield is accompanied by a negative contribution to the source function for Saa at late times. This then
provides a dip in the balance function at small relative rapidity. Varying the width of the initial correlations, σ0, broadens the correlations C ′

aa at
early times as seen in the central panels (g)–(l). This mainly affects the balance functions involving protons and kaons. Finally, in the right-side
panels (m)–(r), increasing the diffusion constant also more strongly broadens the correlations driven by early sources, such as BKK and Bpp .

evolving and finite-size nature of heavy-ion reaction regions,
charge correlations represent the best chance of discerning
insight into the local fluctuations, and into the evolving
chemistry of a heavy-ion reaction. Here, for the first time, the
evolution of the charge correlation function has been calculated
based on a realistic hydrodynamic evolution and with realistic
sources. The equations of state that drive the hydrodynamics,
the sources of the charge correlation, and the evolving diffusion
constant are all taken from lattice calculations. A space-time
description of the three-by-three charge correlation function is
evaluated throughout the hydrodynamic phase, and the corre-
lations are projected onto correlations with hadronic indices,
i.e., charge balance functions. Charge balance functions were
calculated for all combinations of charged pions, kaons, and
protons. These six balance functions were binned as a function
of relative rapidity. Results are shown to be sensitive to the

decoupling temperature, diffusion constant, and to the initial
width of the correlation at the beginning of the hydrodynamic
evolution.

The discrepancy between STAR measurements and the
model was at the 20% level for the default parameter set.
Adjusting the three parameters mentioned above seemed able
to change many of the balance functions at that level, but
it appears that the data will not be reproduced at a high
level of accuracy by adjusting these three parameters alone.
The observed pp balance function appears narrower than
any of the calculations. It is difficult to see how one could
reduce the strength for �y near 0.8 from the model to fit the
experimental pp balance function without worsening the fits
of other balance functions. The ππ balance function was also
found to be modestly broader than the experimental one for all
the parameter variations explored here. In fact, the ππ balance
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function was remarkably insensitive to any change in the three
parameters described above.

It is possible that one could find a satisfactory reproduction
of the experimental data by adjusting other parameters or
by changing other model features. For example, one might
increase the viscous distortion of the spectra. In the calcu-
lations, the viscous distortion was determined by the off-
diagonal elements of the stress-energy tensor. However, those
distortions were small because at the end of a central Au+Au
collision the size of the transverse velocity gradients have
grown close to the size of the longitudinal velocity gradient.
Thus, even with a higher viscosity, the distortion might stay
small. Another possibility would be to treat the initial width of
the ss and uu or dd correlations as separate parameters.

However, fine-tuning parameters to reproduce data should
not be done until the model is sufficiently sophisticated that,
somewhere within its parameter space, it includes all the
features whose inclusion or variation might change results
at the level to which one wishes to reproduce the data. Even
though these calculations are far more realistic than previous
calculations, serious shortcomings remain. First, and most
importantly, the hadronic stage is poorly treated. Currently,
hadrons are immediately emitted from the hydrodynamic stage
onto the final (aside from decays) state. Due to the loss of both
chemical and local kinetic equilibrium, the standard way to
treat the hadronic stage has been through microscopic simu-
lations. The calculations shown here required little numerical
expense (only a few minutes for a given point in parameter
space) because one could tag those particles originally coming
from the same source point. Once an emitted particle h collides
with third bodies, the correlation spreads to a large number of
particles plus those final-state trajectories altered by the exis-
tence of h. Thus, evolving two-particle correlations through a
hadron cascade is challenging. Given that the chemistry, e.g.,
baryon annihilation, evolves significantly during this stage,
and in ways not particularly well reproduced by equilibrium
models, this remains a priority going forward.

By adding a microscopic simulation, one would expect
a narrowing of the balance function, which should improve
agreement with experiment. For example, if charges are created
early and if the system broke up immediately, before collective
flow developed, balance functions in azimuthal angle would
be broad, extending all the way to �φ = π . Collisions and
the growth of strong collective flow focuses conserved charge
pairs into a tight window. By adding more collisions, and more
collective flow, by adding a hadronic simulation, one would
expect further narrowing of the balance function. One would
also expect further narrowing in relative rapidity when adding
a hadronic simulation. This might be especially important for
the pK balance function. The narrow component is related
to the source us and ds source functions, which develop
late in the collision and have narrow widths in coordinate
space. Thus, this peak is very sensitive to the thermal broaden-
ing, which might be significantly reduced by the additional
cooling that might ensue in a hadronic cascade. However,
it is difficult to estimate how much additional narrowing
would ensue. As the system further evolves, collective flow
increases, but so does the diffusive separation in coordinate
space.

It should also be restated that the calculations here were
based on the assumption of boost invariance, of equal numbers
of particles and antiparticles, and of zero isospin. It is not
clear how improving any of these would change the resulting
balance functions, or if the changes would even be substantial.
Even changes of a few percent might be important if they
are combined with other changes of a few percent. Finally, it
should be emphasized that the data are preliminary. Instead
of dividing the numerator of the balance function by the
yields to find a balance function, one could divide by the
correlation by similar binnings of mixed events. One would
then see that the strength of that correlation would be at the
level of a few tenths of a percent. Thus, any unaccounted
detector effects might significantly alter the balance function.
As seen in Fig. 7 the final experimentally constructed balance
functions are strongly damped by the experimental acceptance
and efficiency. Any changes in the efficiency might also make
a significant difference, so the authors look forward to seeing
fully vetted results.

Despite the challenges described above, the possibilities
for this class of observable are exciting. Once one separates
charge balance function by hadron species, it would appear
that it becomes possible to image the final-state correlationC ′

ab,
expressed in spatial rapidity, using experimental balance func-
tions binned by relative rapidity in momentum space,Bhh′ (�y).
Six combinations hh′ are experimentally observable, which
should enable imaging of the entire three-by-three correlation
C ′

ab(�η). Ultimately, one could analyze balance functions in
terms of all six dimensions of relative and average momenta,
similar to what happened with femtoscopic correlations at
small relative momentum.

If the imaging above is indeed accomplished, it means much
more than the reproduction of an experimental measurement,
even a rich one. These analyses provide potential insight and
answers to some of the field’s most basic questions: Did we
produce a chemically equilibrated quark-gluon plasma? If so,
how and when was the charge produced? And, can we extract
an otherwise unobtainable bulk property of the quark-gluon
plasma—the diffusion constant for light quarks?
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APPENDIX: GENERATING HYPERSURFACE ELEMENTS
FROM HYDRODYNAMIC HISTORY

The Cooper-Frye formula [46] is used to generate a list
of emitted particles from a given hypersurface element d�μ.
When these elements are timelike, one can boost to a frame
where the element has only a time component and d�0 is a
differential volume in that frame. If the element is spacelike,
one can boost and rotate to a frame where d�z is the only
component, and represents a differential area with its normal
pointed in the z direction, multiplied by a differential time.
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To generate hadrons, either to represent the emission or to
feed a hadronic simulation, one starts with a list of hypersurface
elements. For each element, the information needed is (a) the
four components of d�μ and (b) the collective velocity uμ

at that point. Typically, one also records the position at the
center of the element if one plans to use the particles to feed a
simulation. Also, if the hypersurface is not defined by a fixed
temperature and chemical potential, one would also record
those values. Hydrodynamic histories are usually stored in
rectangular meshes. For our case, we assume boost invariance,
so the information is three dimensional, divided into bins of
proper time τ and the two transverse coordinates x and y.
The step sizes are dτ and dx = dy. It is straightforward to
extend the ideas below to meshes with varying step sizes or to
four-dimensional meshes.

Formally, a hypersurface is defined by some function
C(T (r),μ(r)) = 0, where r is a four-vector describing the
space-time position, T is a temperature, and μ is the chemical
potential. For C < 0, one is inside the hydrodynamic region
and for C > 0, one is in the hadronic realm. The most
common choice for systems with equal numbers of particles
and antiparticles is C = Tf − T . The hypersurface is defined
as

d�μ = d4r∂μ�[C(r)], (A1)

where � is a step function. For C(r) = Tf − T (r),

d�μ = −d4rδ[T (r) − Tf ]∂μT (r). (A2)

One can use the delta function to reduce the differential by one
dimension,

d�μ = − τ�ηdxdy

∂τT

∣∣∣∣
τf

∂μT (r),

= − τ�ηdydτ

∂xT

∣∣∣∣
xf

∂μT (r),

= − τ�ηdxdτ

∂yT

∣∣∣∣
yf

∂μT (r). (A3)

Any of the three expressions above (it would be four if there
weren’t invariance in �η) suffice in principle, but to increase
accuracy one may choose one of the three based on the
particular situation.

The temperature is stored at discrete points, τi,xj ,yk , and a
differential element is defined by the eight points at the edges of
the cubic differential volume, ri,j,k = τi,xj ,yk,ri+1,j,k , ri,j+1,k ,
ri,j,k+1, ri,j+1,k+1,ri+1,j,k+1, ri+1,j+1,k , ri+1,j+1,k+1. For the first
expression in Eq. (A3), one checks to see whether both T
evaluated at the later time, i + 1, is below Tf and T evaluated
at the earlier time, i, is above Tf . These two temperatures are

Tτ− = 1
4

(
Ti,j,k + Ti,j+1,k + Ti,j,k+1 + Ti,j+1,k+1

)
, (A4)

Tτ+ = 1
4

(
Ti+1,j,k + Ti+1,j+1,k + Ti+1,j,k+1 + Ti+1,j+1,k+1

)
.

(A5)

If a differential volume satisfies this criteria, i.e., (Tf −
Tτ+)(Tf − Tτ−) < 0, the volume is added to the list of hy-
perelements. The derivatives ∂μT are found by averaging the

four values at the points just above/below the center point of
the sphere, evaluated in the center of the faces of each sphere.
For this case,

∂τT = Tτ+ − Tτ−
dτ

,

∂xT = Tx+ − Tx−
dx

,

∂yT = Ty+ − Ty−
dy

. (A6)

Here, Tx−, Tx+, Ty−, and Ty+ are defined in similar fashions
to Tτ− and Tτ+. Using the first criteria in Eq. (A3),

d�0 = τ�ηdxdy,

d�x = τ�ηdτdy
∂xT

∂τT
,

d�y = τ�ηdτdx
∂yT

∂τT
. (A7)

For these last two components the ratios of derivatives rep-
resent the inverse speeds at which the surfaces collapse, and
|d ��| = d�0/v�, where v� is the speed at which the surface
moves inward, antiparallel to the temperature gradient. The
direction of d �� is also antiparallel to the temperature gradient,
typically outward toward the hadronic phase. If the surface
collapses instantaneously, that speed is infinite and d�0 is the
only nonzero component of the hypervolume.

Rather than choosing the first expression in Eq. (A3), one
could use the second, or third. For a static surface, the derivative
∂τT = 0, and d�x and d�y are undefined. To avoid this, one
uses the local temperature gradients for each volume element to
choose which of the three criteria to apply. Comparing, δTτ =
dτ |∂τT |, δTx = dx|∂xT |, δTy = dy|∂yT |, one picks the largest
of the three, then correspondingly chooses from three criteria.
With this choice, the hypersurface will be represented by the
largest number of hyperelements, e.g., more elements with
smaller volumes, and thus should be most accurate. In the code
used here, the criteria was slightly altered. If δTτ > dx|∇T |,
one would use the first criteria. Otherwise, one would base the
choice on δTx vs δTy . For most of the emission the latter two
criteria were typically used, and for the last few fm/c, the first
criteria came into play. Because the hydrodynamic evolution
was written with much smaller time steps than spatial steps,
dτ = 0.02 fm/c and dx = dy = 0.1 fm/c, the first criteria
did not come into play until the hypersurface was collapsing
much faster than the speed of light. Adjusting the criteria for
choosing between the three expressions in Eq. (A3) had only
a negligible effect.

To test the algorithm described above, an artificial space-
time evolution was considered. For this case, the shape of the
hypersurface was taken to be circular, by defining a temperature
and collective velocity by

R(τ ) = R0 − vs(τ − τ0),

T (r,τ ) = Tf − Ts[r − R(τ )]/R0,

ux = uR

r

R(τ )
cos φ,
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uy = uR

r

R(τ )
sin φ,

uz = sinh η
√

1 + u2
x + u2

y,

u0 = cosh η
√

1 + u2
x + u2

y (A8)

with R0 = 10 fm, τ0 = 0.6 fm/c, Ts = 100 MeV, Tf =
155 MeV, and uR = 1. This hypersurface collapsed at the
speed of light, vs = 1. Spectra were calculated both by a
semianalytic treatment (still involving a integral over time)
to one where the temperature and collective velocities were
written to a mesh with resolution dτ and dx = dy.

For the semianalytic treatment, the hypersurface elements
are found using Eq. (A1),

d�μ = τdηdφrdτ
∂μT

∂rT

∣∣∣∣
r=R(τ )

,

d�0 = cosh ητdηdφdτvsR(τ ),

d�x = τdηdφdτR(τ ) cos φ,

d�y = τdηdφdτR(τ ) sin φ,

d�z = sinh ητdηdφdτvsR(τ ). (A9)

The spectra for particles of mass m are then found by
integrating the Cooper-Frye formula [46],

Ep

dN

d3p
=

∫
d�μpμe−u·p/Tf ,

=
∫

dητdτdφR(τ )(vsEp cosh η + p cos φ)

× exp
{

− βE

√
1 + u2

R cosh η + βpuR cos φ
}
.

(A10)

The integrals over η and φ can be performed analytically,

Ep

dN

d3p
= (2s + 1)

2π2

∫ τ0+R0/vs

τ0

dττR(τ )

×{
vsEK1

(
βE

√
1 + u2

R

)
I0(βpuR)

+p⊥K0
(
βE

√
1 + u2

R

)
I1(βpuR)

}
. (A11)

Here, the intrinsic spin is s and β = 1/T .
Spectra for pions, kaons, and protons were calculated by

numerically integrating the expression in Eq. (A11). They
were then compared to results obtained by reading the hy-
drodynamic history, described in Eq. (A8), from a mesh, then
following the algorithm to generate hypersurface elements
described above. The size of the mesh, dτ = 0.02 fm/c,
dx = dy = 0.1 fm/c, was the same as what was used to record

FIG. 9. Spectra for the simple parametrization of the hydrody-
namic history, described Eq. (A8), are calculated from a nearly
analytic formula, Eq. (A11), and from reading the history from a
mesh and applying the algorithm described here. The nearly analytic
(lines) and the spectra calculated from a discretized mesh (points)
agree well.

the real hydrodynamic evolutions. Figure 9 shows that the
spectra indeed match well, with discrepancies below one tenth
of one percent. The test was repeated with a coarser mesh, and
the agreement was still at the level of one or two tenths of a
percent.

In addition to testing the spectra, the quantity

v4 ≡ 〈cos 4φ〉 (A12)

was calculated using the hydrodynamic mesh. Here, the 〈. . .〉
denotes an average over emitted particles. Because the sur-
face ostensibly has cylindrical symmetry, v4 should be zero.
However, the rectangular mesh explicitly breaks the symmetry,
so the measure of v4 provides a test of the accuracy of the
procedure. For the same resolution used here, |v4| was on the
order of 10−5.

This method applied here is fast and easy to implement, but
it is by no means the most sophisticated. In [47] the contribution
from each cell is evaluated in detail, and the surface through the
interior of a cell is estimated, which may be larger or smaller
depending on the degree to which the hypersurface clips the
cell. Because the method presented here seems to work at better
than the 0.1% level, it is sufficient for this example, but the
methods of [47] might be warranted for systems with coarse
grids, or with small scale temperature variations.
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