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This work reports on investigations of the effects on the evolution of viscous hydrodynamics and on the flow
coefficients of thermal dileptons, originating from a temperature-dependent specific shear viscosity η/s(T ) at
temperatures beyond 180 MeV formed at the Relativistic Heavy-Ion Collider (RHIC). We show that the elliptic
flow of thermal dileptons can resolve the magnitude of η/s at the high temperatures, where partonic degrees of
freedom become relevant, whereas discriminating between different specific functional forms will likely not be
possible at RHIC using this observable.
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I. INTRODUCTION

Recently, two laboratories—the Relativistic Heavy Ion
Collider (RHIC) at the Brookhaven National Laboratory and
the Large Hadron Collider (LHC) at CERN—have created an
exotic state of matter: the quark-gluon plasma (QGP). Since
this discovery, the characterization of the properties of the QGP
has been a mainstream goal of high-energy nuclear physics.
One of the striking discoveries of RHIC, also confirmed at
the LHC, has been the fluid-dynamical behavior of the QGP
[1,2]. The progress in hydrodynamic modeling of relativistic
heavy-ion collisions has been so rapid over the last decade
or so, that there now exists genuine hope to soon be able
to precisely quantify the degree of departure for equilibrium
of the QGP, by assessing its transport coefficients. Much of
the theoretical activity has up to now concentrated on the
determination of the shear viscosity to entropy density ratio,
as revealed by measurements of the hadronic collectivity
[3,4]. In addition, it is now clear that these same flow data
also demand a nonzero value of the specific bulk viscosity,
ζ/s [5].

A promising class of probes with which to investigate the
QGP directly are electromagnetic (EM) signals, i.e., photons
and dileptons, as they do not participate in strong interactions
and can thus escape with negligible final state interactions [6].
Furthermore, these probes are being emitted throughout the en-
tire evolution of the medium, thereby giving local information
about the state of the medium, from the initial nucleon-nucleon
collisions to kinetic freeze-out. The penetrating nature of EM
observables makes them a particularly useful tool to study
the temperature dependence of the transport coefficients of
the QCD medium. A key coefficient present in all recent
hydrodynamical calculations is the shear viscosity η whose
temperature dependence is often assumed to be identical with
that of the entropy density s of strongly interacting media, such
that η/s is left as a constant to be determined by experimental

data. However, it is clear that this is an approximation [7]
and, in fact, calculations based on perturbative QCD [8], on
hadronic degrees of freedom in the confined sector [9–13],
and on functional renormalization group techniques [14] show
that η/s changes with temperature. Calculations from first
principles that address the temperature dependence of η/s are
still challenging and it is therefore imperative to investigate
whether this information can be extracted from empirical data.

After much work on the extraction of an effective value
of η/s in relativistic heavy-ion collisions [2], the temperature
dependence of theη/s ratio has seen increased interest recently,
using hadronic observables [15–17] to quantify its behavior. A
recent study [18] has shown that the elliptic flow of charged
hadrons as a function of transverse momentum at mid-rapidity
is sensitive to a temperature-dependent η/s in the hadronic
phase both at the top RHIC energy and the LHC, while only
LHC data are sensitive to the value of η/s(T ) in the QGP.
This investigation continues in the same spirit, but using a
complementary EM probe, and focusing on the η/s ratio in
the QGP. More specifically, the goal of this paper is to explore
the sensitivity of thermal dileptons to a temperature-dependent
η/s at temperatures T above 180 MeV and at top RHIC
energy, in order to determine whether thermal dileptons break
the degeneracy in vch

2 (pT ), shown in Ref. [18], and further
be used to extract the value of the specific shear viscosity,
and even possibly of its low order derivatives as a function
of T . This investigation focuses on thermal dileptons, rather
than photons, because dileptons have an additional degree of
freedom, the center of mass energy of the lepton pair, also
known as the invariant mass, that allows us to separate the
hadronic from partonic emission sources. As will be shown
later in this contribution, small invariant mass dileptons are
radiated preferentially by hadronic sources, while intermediate
to high invariant mass dileptons originate mostly from partonic
interactions.

2469-9985/2018/98(1)/014902(20) 014902-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.98.014902&domain=pdf&date_stamp=2018-07-05
https://doi.org/10.1103/PhysRevC.98.014902


VUJANOVIC, DENICOL, LUZUM, JEON, AND GALE PHYSICAL REVIEW C 98, 014902 (2018)

This paper is organized as follows: the next section gives
the details of the relativistic fluid-dynamical modeling of
the strongly interacting medium. Section III contains a dis-
cussion of the lepton pair emission rates in both the QGP
and nonperturbative hadronic medium sectors, together with
their respective viscous corrections. Results are shown and
discussed in Sec. IV, followed by a conclusion.

II. MODELING THE EVOLUTION OF THE MEDIUM
CREATED AT RHIC

A. Viscous hydrodynamics

In this work, we assume that the medium created in
relativistic heavy-ion collisions very quickly reaches a state
close to thermal equilibrium, such that relativistic dissipative
fluid dynamics is a valid description of its space-time behavior.
This assumption is supported by the good agreement between
the measured flow coefficients of charged hadrons and the ones
calculated through fluid-dynamical simulations (see, e.g., [2]
for a recent review). In fluid dynamics, the energy-momentum
tensor T μν satisfies the continuity equation,

∂μT μν = 0, (1)

where T μν = T
μν

0 + δT μν . Inviscid (ideal) hydrodynamics
is contained within T

μν
0 , which is expressed as T

μν
0 =

εuμuν − �μνP , where ε is the energy density, P is the
thermodynamic pressure, and �μν = gμν − uμuν is the pro-
jection operator orthogonal to the four-velocity uμ, and gμν =
diag{1,−1,−1,−1}. Throughout this study, deviations from
ideal hydrodynamics appear exclusively via the shear viscous
pressure tensor, i.e., δT μν = πμν , with all other dissipative
effects being neglected. Furthermore, we set the net baryon
four-current to vanish for all space-time points. The equation of
state, which dictates how the thermodynamic pressure changes
as a function of energy density, is taken from Ref. [19] and
corresponds to a parametrization of a lattice QCD calculation,
at high temperatures, smoothly connected to a parametrization
of a hadron resonance gas at lower temperatures, which below
Tch = 0.16 GeV follows a partial chemical equilibrium (PCE)
prescription [20,21].

The dynamics of the shear-stress tensor is given by Israel-
Stewart theory [22–24],

τπ

[
�

μν
αβuλ∂λπ

αβ + 4

3
πμν∂λu

λ

]
= 2ησμν − πμν , (2)

where σμν = �
μν
αβ∂αuβ is the shear tensor and �

μν
αβ =

1
2 (�μ

α�ν
β + �

μ
β�ν

α) − 1
3�αβ�μν is the double, symmetric,

traceless projection operator. Israel-Stewart theory introduces
two transport coefficients, the shear viscosity coefficient (η),
which is already present in Navier-Stokes fluid dynamics,
and the shear relaxation time τπ , germane to Israel-Stewart
hydrodynamics. In this study, the relaxation time is fixed at
τπ = 5 η

ε+P
[25,26]. In principle, additional nonlinear terms

exist in second order dissipative fluid dynamics [25,26], how-
ever we will not be studying their effects here.

Presently, nonperturbative estimates of the aforementioned
temperature-dependent transport coefficients in the strongly
coupled regime are still a rare commodity [14,27–29]. Inspired

by the recent Bayesian analysis within a hydrodynamical simu-
lation [30], which shows an increase inη/s(T ) for temperatures
above ∼180 MeV, we focus on the growth of the specific shear
viscosity at temperatures above the threshold Ttr = 180 MeV
in our hydrodynamical simulations. The growth of η/s(T ) at
high temperature is also present in perturbative analysis [8].
η/s(T ) is modeled by choosing two linear and two quadratic
parametrizations of the temperature:

η

s
(T ) = m

(
T

Ttr

− 1

)
+ 1

4π
,

η

s
(T ) = a

(
T

Ttr

− 1

)2

+ 1

4π
, (3)

where Ttr = 0.18 GeV, while m = 0.5516 and a = 0.4513 are
selected such that η/s = 0.755 at T = 0.4 GeV. Furthermore,
the values m = 0.2427 and a = 0.1986 correspond to η/s =
0.3775 at T = 0.4 GeV. For temperatures below Ttr , η/s =
1/(4π ). Figure 1 shows all the various forms of temperature
dependence used in this calculation. The goal of introduc-
ing different temperature-dependent η/s is to investigate the
sensitivity of thermal dileptons to this transport coefficient.
The fluid-dynamical equations are solved numerically using
MUSIC, which has recently been shown to be in very good
agreement with semianalytic solutions of Israel-Stewart theory
[31]. A simulation using �τ = 0.03 fm/c, a grid spacing of
�x = �y = 1/6 fm, and �η = 1/5 was precise enough to
capture all the relevant physics present in the continuum limit.

B. Initial conditions and hadronic particle production

As the initial conditions are not currently known in de-
tail, especially those of the shear viscous pressure tensor,
we assume that πμν(τ0) ≡ 0 at τ0 = 0.4 fm/c when the
hydrodynamical evolution begins. Given that the incoming
nuclei have a large longitudinal velocity, while their transverse
velocity is assumed to be negligible, we initialize the local fluid
velocity uμ distribution to the Bjorken solution [32]. Thus, we
have factorized the initial energy density profile containing a
longitudinal part along the space-time rapidity (ηs) direction,1

and transverse part [21] in the transverse (x-y) plane:

ε(τ0,x,y,ηs) =
{

exp

[
− (|ηs | − ηflat/2)2

2η2
σ

θ (|ηs | − ηflat/2)

]}
×{W [αnWN(x,y) + (1 − α)nBC(x,y)]},

where the transverse piece is being modeled according to the
Monte Carlo (MC) Glauber prescription, while nWN is the
density of wounded nucleons, nBC is the density of binary
collision, W is an overall normalization factor, and α is the
proportion in which wounded nucleons and binary collisions
contribute to the energy density profile in the transverse plane.
The density of wounded nucleons and binary collisions is
expressed as

nBC/WN(x,y) = 1

2πσ 2

Nbin/part∑
i=1

exp

[
− (x − xi)2 + (y − yi)2

2σ 2

]
,

1ηs = 1
2 ln [ t+z

t−z
].
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FIG. 1. Linear (a) and quadratic (b) temperature dependence of η/s.

where Npart and Nbin are the number of participants and binary
collision of a given event, while (xi,yi) are the coordinates
of the corresponding participant or binary collision on the
transverse plane. In order to determine the number and coordi-
nates of participants and binary collisions, the nucleon-nucleon
inelastic cross section, σNN = 42.1 mb at

√
sNN = 200 GeV,

is used. Table I summarizes the parameters used by the MC
Glauber model to describe the charged pion yield and charged
hadron elliptic flow at RHIC in the 20–40% centrality class (see
also Ref. [33]). Two hundred MC Glauber events were gener-
ated in this study for each of the four η/s(T ) parametrizations,
along with another 200 events where η/s = 1/(4π ). The same
events in the 20–40% centrality class are also used to compute
dilepton observables.

Hadron production proceeds through the Cooper-Frye pre-
scription [34], where the dissipative degrees of freedom are
converted to particles through the 14-moment Israel-Stewart
(IS) approximation [35]. The freeze-out temperature hyper-
surface was chosen to be TFO = 145 MeV [33] and all two-
and three-particle decays of hadronic resonances up to 1.3 GeV
are computed according to Ref. [36].

III. THERMAL DILEPTON RATES

Modern equations of state used to describe the medium
in relativistic heavy ion collisions, such as the one used in
this study, employ a continuous crossover phase transition
between the partonic and the hadronic degrees of freedom. In
the high temperature regime, perturbative partonic reactions
are used to characterize the dilepton production rates, whereas
in the low temperature sector, various hadronic interactions
are responsible for dilepton radiation. The current calculation
follows this prescription and describes the crossover region via

TABLE I. Initial state parameters.

Parameter Value

ηflat 5.9
ησ 0.4
W 6.16 GeV/fm
α 0.25
σ 0.4 fm

a linear interpolation in temperature between the high and the
low temperature regions, occurring at 0.184 < T < 0.22 GeV
[33]. Specifically, the four-momentum dependent total dilepton
rate density d4R

d4q
is

d4R

d4q
= fQGP

d4RQGP

d4q
+ (1 − fQGP)

d4RHM

d4q
, (4)

where d4RQGP

d4q
is the partonic dilepton rate and d4RHM

d4q
is the

hadronic dilepton rate, which are both defined in the following
two sections. Last, fQGP is the QGP fraction chosen such
that fQGP = 1 for temperature T > 0.22 GeV, fQGP = 0 for
T < 0.184, GeV and is linearly rising with temperature for
0.184 < T < 0.22 GeV. Dilepton rates are integrated for all
temperatures above TFO .

A. Isotropic (inviscid) dilepton production rates

The general expression for the rates, in the local rest frame,
takes an elegant form:

d4R�+�−

d4q
= −L(M)

M2

α2
EM

π3

Im�R
EM (M,|q|; T ,μB )

eq0/T − 1
, (5)

where μB = 0 in our hydrodynamical simulation,
M2 = qμqμ, q0 =

√
M2 + q2, αEM = e2

4π
≈ 1

137 , L(M) =
(1 + 2m2

�

M2 )
√

1 − 4m2
�

M2 , m� is the lepton mass, T is the

temperature, and Im�R
EM is the imaginary part of the

trace of the retarded (virtual) photon self-energy.
Recently, the perturbative thermal dilepton rates in the QGP

have been computed at next-to-leading (NLO) [37–39] within a
phenomenologically interesting kinematic region. In a strongly
coupled setting, the Anti–de Sitter and conformal field theory
correspondence has been used to compute emission rates of EM
probes from non-Abelian plasmas exhibiting features similar
to QCD plasmas [40], while lattice calculations for thermal
EM production [41,42] are also available. However, all those
rates are currently not amenable to a dissipative description of
the medium, hence this study will focus on the QGP dilepton
rate within the Born approximation.
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1. Dilepton radiation from the QGP

The Born dilepton rate can be written as

d4R0

d4q
=

∫
d3k1d

3k2

(2π )6k0
1k

0
2

fk1fk2

q2

2
σδ4(q − k1 − k2),

(6)

σ = 16πα2
EM

(∑
f ′ e2

f ′
)
Nc

3q2
,

where fk is the quark/antiquark distribution functions, σ is
the leading-order quark-antiquark annihilation (into a lepton
pair) cross section, Nc is the number of colors, the number
of flavors is labeled by f ′, where only the low-mass ones are
considered, i.e., f ′ = u,d,s. Extending the isotropic dilepton
rate in Eq. (6) to include shear-viscous effects amounts to mod-
ifying the quark/antiquark Fermi-Dirac distribution functions
(fk) to include anisotropic deformations. As shear viscosity
increases in the QGP sector throughout η/s(T ), the dilepton
rates become more sensitive to the form of the anisotropic
correction to the dilepton rate (δR), and a systematic expansion
of the anisotropic (or viscous) correction to the Born rates is
presented in Sec. III B.

2. Dilepton rates from the anisotropic Hadronic medium

In the hadronic sector, we use the vector meson dominance
model (VDM), first proposed by Sakurai [43], to relate the
virtual photon self-energy Im�R

EM to the imaginary part of
the retarded vector meson propagator ImDR

V , or, equivalently,
the spectral function:

Im�R
EM =

∑
V =ρ,ω,φ

(
m2

V

gV

)2

ImDR
V . (7)

In the above equation, vector mesons are denoted by V =
ρ,ω,φ, with mass mV , while their coupling to the photon is
gV . Since the Schwinger-Dyson equation relates the vector
meson self-energy to the vector meson spectral function [44],
it is sufficient to compute the vector meson self-energy to
fully describe medium-induced modifications to the vector
meson spectral function. Our approach to calculating the vector
meson self-energy follows that of Eletsky et al. [45]. The
vacuum piece of the self-energy is computed through chiral
effective Lagrangians. On the other hand, the finite temperature
contribution has been computed through the forward scattering
amplitude approach, which includes experimentally observed
resonances and Regge physics to account for scattering not
going through resonances. Further details about the dilepton
rates in the hadronic sector used within this work, including
viscous corrections, are explored in detail in Ref. [46].

B. A systematic expansion of the anisotropic (viscous)
correction to dilepton production rate in the partonic medium

Dilepton emission rates were recently extended to take
into account deviations from local thermodynamic equilibrium
in both the hadronic [46] and QGP sector, the latter being
done in the Born limit [47]. Such extensions are essential
for a consistent calculation of dilepton production when a
viscous fluid describes the evolution of the medium. In those

calculations, the authors have generalized the single-quark dis-
tribution function to include anisotropic (viscous) correction
using the 14-moment Israel-Stewart (IS) approximation. In
the current calculation, we systematically expand the single-
quark momentum distribution function to go beyond the IS
approximation used in [46,47], by solving the Boltzmann
equation using the constant cross-section approximation. The
same constant cross-section approximation was used when
computing the transport coefficients in Eq. (2). The generalized
version of the quark distribution function fk, present in the
dilepton rate, takes the form

fk = [exp (yk) + 1]−1, (8)

where yk = y(kν,uν ; T ,μ). Assuming yk = y0,k + δyk +
O[(δyk)2], where y0,k = (uνkν − μ)/T and δyk � y0,k, we
expand Eq. (8) to linear order in δyk obtaining

fk = f0,k + δfk,
(9)

δfk = f0,k[1 − f0,k]δyk,

where f0,k = [exp (y0,k) + 1]−1. δyk can be further expanded
as

δyk = Gk
πμνkμkν

[2T 2(ε + P )]
, (10)

where

Gk =
[

1 − tanh(2x − 2x0)

2

]
G low

k

+
[

1 + tanh(2x − 2x0)

2

]
Ghigh

k , (11)

while x = k·u
T

and x0 = 11.2. The formal details of the solving
the Boltzmann equation in the constant cross-section approx-
imation are presented in Appendix A. Here, we simply quote
the final result for G low/high

k :

G low
k = 5.120

0.1 + x
[0.4046 + 0.1559x − 7.405 × 10−3x2

+ 1.693 × 10−4x3],

Ghigh
k = 161.8

(0.1 + x)4
[−0.2587 + 0.4705x − 0.2418x2

+ 6.547 × 10−2x3]. (12)

Given that the functional form of δyk is the same as in
Refs. [46,47], the same projection operator can be employed
to compute the viscous correction to the dilepton rate in the
QGP. That projection operator is

Pαβ = 1

2

gαβ

(u · q)2 − q2
+ 1

2

[
q2 + 2(u · q)2

[q2 − (u · q)2]2

]
uαuβ

+ 3

2

qαqβ

[q2 − (u · q)2]2
− 3

2

[
u · q

[q2 − (u · q)2]2

]

× (uαqβ + uβqα), (13)
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FIG. 2. Relative size of the envelope of the viscous correction
relative to the (ideal) isotropic rate in the local rest frame.

where qμ is the four-momentum of the virtual photon. Using
Pαβ , the viscous correction to the dilepton rate in the local rest
frame of the medium is

d4δR

d4q
= qαqβπαβ

2T 2(ε + P )
b2

(
q0

T
,
|q|
T

)
,

d4δR

d4q
= qαqβπαβ

2T 2(ε + P )

{
Cq

q2

2

σ

(2π )5

T 5

|q|5

×
∫ E+/T

E−/T

dEk

T
f0,k[1 − f0,k]f0(q0 − Ek)D′

}
,

(14)

where E±
T

= q0±|q|
2T

, f0,k = {exp (Ek/T ) + 1}−1, f0(q0 −
Ek) = {exp [(q0 − Ek)/T ] + 1}−1, D′ = {T −4[(3q2

0 − |q|2)
E2

k − 3q0Ekq
2 + 3

4q4]}Gk, and Cq ≈ 0.99. IS δR is recovered
by setting Gk = 1. The complete Born rate can therefore be
expressed as d4R

d4q
= d4R0

d4q
+ d4δR

d4q
, where the first and second

terms are found in Eqs. (6) and (14), respectively.
To appreciate the improvement the generalized δyk in

Eq. (14) brings relative to the IS viscous correction, one cannot
compare δR to R0 directly, as the viscous correction depends
on the size of πμν at every space-time point. However, one can
compare the envelope of the viscous correction b2 to the ideal
QGP dilepton rate. So, intuition on the behavior of the viscous
correction will instead be acquired through the ratio

A

(
q0

T
,
|q|
T

)
= b2

(
q0

T
, |q|

T

)
d4R0
d4q

(15)

evaluated in the local rest frame. The ratio A has a very weak
dependence on |q|

T
, hence evaluating it at |q|

T
= 0 is sufficient.

Figure 2 clearly shows that A for the IS viscous correction

is bounded between 1
3 and 2

3 . Since qαqβπαβ

2T 2(ε+P ) is well behaved in
the vanishing qμ limit, the lower bound on A is not a source of
concern. Using only the upper bound, the IS correction to the

QGP dilepton rate becomes ill-behaved when qαqβπαβ

2T 2(ε+P ) > 3
2 ,

thus making δR > R0. In that respect, the viscous correction
that we have computed is better behaved at large q0/T as A ∼
T/q0, and furthermore is finite at q0/T = 0. This suppression
at large q0/T is needed to ensure that δR is well behaved

when a large πμν is present, due to a η/s(T ). The effects of
the constant cross-section anisotropic δR correction and the
IS δR on the dilepton differential yield will be explored in
Appendix B.

In the Hadronic medium (HM), the IS viscous correction
to the dilepton rate, presented in Ref. [46], has been shown
to be small, relative to the inviscid contribution, and thus
well behaved. This statement remains true once a temperature-
dependent specific shear viscosity is introduced, which affects
the HM dilepton rate in the region 0.18 < T < 0.22 GeV.
Hence, an improved description of viscous correction in the
HM is not warranted.

IV. RESULTS

Before disclosing the effects of η/s(T ) on dilepton flow,
it is important to specify the manner in which dilepton flow
coefficients are computed. Earlier dilepton calculations using
smooth initial conditions have computed the dilepton elliptic
flow coefficient using the event plane method [46,48]. A
recent dilepton study using MC Glauber initial conditions
[33] employs the scalar product method to compute flow
coefficients. The present study continues to use the scalar
product method, such that

vγ ∗
n (X) =

1
Nev

∑Nev

i=1 v
γ ∗
n,i(X)vh

n,i cos
[
n
(
�

γ ∗
n,i(X) − �h

n,i

)]
√

1
Nev

∑Nev

i=1(vh
n,i)

2

=
〈
v

γ ∗
n,i(X)vh

n,i cos
[
n
(
�

γ ∗
n,i(X) − �h

n,i

)]〉
ev,i√〈(

vh
n,i

)2〉
ev,i

, (16)

where Nev = 200, X is any dynamical variable such as M or
pT , and 〈. . .〉ev,i is the average over events i. In a single event
i, the hadronic vh

n,i and �h
n,i are given by

vh
n,ie

in�h
n,i =

∫
dpT dydφpT

[
p0 d3Nh

i

d3p

]
einφ

∫
dpT dydφpT

[
p0 d3Nh

i

d3p

] , (17)

where the charged hadron distribution is integrated over
−0.35 < η < 0.35 and 0.035 < pT < 3 GeV to simulate ac-
ceptance used by the PHENIX experiment at RHIC. The
dilepton v

γ ∗
n,i and �

γ ∗
n,i are computed using the same approach,

with the more general distribution d4N
γ ∗
i

d4p
.

A. Linear η/s(T )

The goal of this section is to investigate the sensitivity
of thermal dileptons to the size of η/s(T )’s slope. Since the
effects a temperature-dependent η/s induces on the evolution
of the medium are rather complicated, keeping identical
initial/freeze-out conditions, regardless of any entropy produc-
tion that η/s(T ) introduces, is important for the purpose of a
comparison.

To quantify the amount of entropy and radial flow generated
via a linearly dependent η/s(T ), as well as the importance of
δf effects, the yield of thermal dileptons as a function of M
and the yield of pions as a function of pT is plotted in Fig. 3.
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FIG. 3. Yield of thermal dileptons (a) and pions (b) for various values of η/s(T ). All results are in the 20–40% centrality class.

The invariant mass thermal dilepton yield is very slightly
modified owing to η/s(T ) as seen in Fig. 3(a). Indeed, the
yield is increased by 5% in the HM region while the QGP
region receives an increase of 10%. Since M is a Lorentz-
invariant quantity, while the invariant mass yield is unaffected
by viscous corrections, the increase in the dilepton invariant
mass yield is a consequence of the entropy production of a
dissipative system. The somewhat larger increase in the pion
yield at higher pT � 1 GeV [see Fig. 3(b)] is dominated by a
combination of a greater radial flow and larger δf contribution
when η/s(T ) is present relative to η/s = 1/(4π ), while at low
pT � 1 GeV greater entropy production and radial flow give
the main contribution to the increase in pion yield. The larger
radial flow generated by η/s(T ) is however not affecting the
elliptic flow of charged hadrons at top RHIC energy as can be
seen in Fig. 4(a), and was first noticed in Ref. [18].

On the other hand, a linearly dependent η/s(T ) changes
the elliptic flow of thermal dileptons quite substantially [see
Fig. 4(b)], with the effect being so large that it may potentially
be measured in experiment. At this point, it is important to
highlight the features that distinguish the effects of η/s(T )
from our earlier study in Ref. [33], where the manner in
which relaxation time τπ and the initial condition of πμν

affect the v2(M) of thermal dileptons was investigated. As
can be seen in Fig. 4(b), η/s(T ) causes an increase in the

thermal v2(M) in the region where HM dileptons dominate,
namely for M � 1.15 GeV. For M � 1.15 GeV, where QGP
dilepton production becomes the main source, a temperature-
dependent specific shear viscosity decreases v2(M). On the
other hand, the effects on the v2(M) observed by increasing τπ ,
as explored in Ref. [33], go in the opposite direction, namely
the v2(M) is decreased for M � 1.15 GeV and increased for
M � 1.15 GeV. Thus the effects of η/s(T ) are distinct from
those associated with τπ . If, on the other hand, one compares
the effects of initial conditions of πμν on dilepton v2(M), as
also studied in Ref. [33], then one notices that increasing initial
πμν increasesv2(M) of dileptons, which is not what is observed
in the present study. Hence, the effects of η/s(T ) are different
from those due to τπ or initial conditions of πμν . However,
the next generation of fluid dynamical approaches should
see dynamically calculated initial shear pressure tensor in
conjunction with temperature-dependent transport parameters.
This will enable a new level of characterization of the initial
states present in models of hadronic collisions.

Having established the features that are associated with
η/s(T ), we isolate in Fig. 5 the QGP contribution to dilepton
anisotropic flow in order to explore how QGP dileptons are
influenced by η/s(T ). For the moment only the constant
cross-section δR is being used since it is this viscous correction
that is used in Fig. 4(b). To better appreciate all the effects of the

FIG. 4. Elliptic flow of charged hadrons (a) and thermal dileptons (b) with different slopes of η/s(T ). Each colored band represents the
statistical error associated with the 200 events run. All results are in the 20–40% centrality class.
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FIG. 5. Elliptic flow v2(M) (a) and ν2(M) (b) of QGP dileptons for different slopes of η/s(T ) using the constant cross section δR. The
definition of ν2(M) is in Eq. (18). Each colored band represents the statistical error associated with the 200 events generated. All results are in
the 20–40% centrality class.

constant cross section δR, a new variable ν
γ ∗
2 (M) is defined:

ν
γ ∗
2 (M) =

〈
vh

2,iv
γ ∗
2,i(M)

〉
ev,i√〈(

vh
2,i

)2〉
ev,i

, (18)

where 〈. . .〉ev,i is an average over events as defined in Eq. (16),
and the sum over i has implicitly been performed. ν

γ ∗
2 (M) is

constructed such that it is not sensitive to event plane angle
misalignment between �

γ ∗
2 (M) and �h

2 and is therefore only
sensitive to the manner in which magnitude of the v2 of charged
hadrons and dileptons is affected by η/s(T ). On the other hand,
v

γ ∗
2 (M) on the left hand side of Eq. (16) is sensitive to both the

overall magnitude of v
γ ∗
2 (M) and vh

2 , as well as the change in
the relative angle between �

γ ∗
2 (M) and �h

2 .
Note that the pT -integrated charged hadron v2 is essen-

tially unaffected by whether the medium has a constant or a
temperature-dependent specific shear viscosity [see Fig. 4(a)]
and therefore, any effects of η/s(T ) are coming from the
numerator of Eqs. (16) and (18). With that in mind, including
the viscous correction δR to the dilepton rate, a temperature-
dependent specific shear viscosity has two effects: one on
the magnitude of vh

2 and v
γ ∗
2 (M) present in the numerator on

the right hand side of Eq. (16) and the other on orientation
between the event planes denoted by �

γ ∗
2 (M) and �h

2 . On
average, η/s(T ) reduces the overall magnitude of the product
v

γ ∗
2 (M)vh

2 once δR is included, as is clearly depicted in
Fig. 5(b). The change in the preferential emission direction
of charged hadrons versus that of dileptons can be appreciated
by comparing v2(M) and ν2(M) presented in Figs. 5(a) and
5(b), respectively. Indeed, a temperature-dependent η/s can
have such a strong effect on the misalignment of �

γ ∗
2 (M)

and �h
2 , that instances of “anticorrelation,” i.e., regions of

invariant mass where π/2 < 2(�γ ∗
2 (M) − �h

2 ) < 3π/2, occur
and generate negative v2(M). Note that without δR, the event
plane angles �

γ ∗
2 (M) and �h

2 are not aligned, however there are
no instances of anticorrelation. In sum, both effects, namely the
reduction, on average, in the overall magnitude of the product
v

γ ∗
2 (M)vh

2 and the anticorrelation between �
γ ∗
2 (M) and �h

2

depicted in Fig. 5, are generated by including the constant cross
section δR in the QGP dilepton rate. Figure 5 is also showing
that the larger the absolute value of πμν is [see Fig. 7(b)], the
larger the viscous correction is, which manifests itself in large
effects on v2(M) and ν2(M).

The effects of inserting a different the envelope function,
i.e., a different coefficient b2 in Eq. (14), on v

γ ∗
2 (M) and ν

γ ∗
2 (M)

are explored in Fig. 6. Two cases are presented: one where the
IS δR is used, which is obtained by setting Gk = 1 in Eq. (14),
and the other where the constant cross section δR is used,
with b2 defined in Eq. (14). Since the envelope, denoted by
b2, doesn’t affect the v2 of charged hadrons, the effects of the
envelope on the magnitude on dilepton flow anisotropy can
be appreciated by first focusing on ν

γ ∗
2 (M) at η/s = 1/(4π ).

Comparing to the result without δR [see Fig. 5(b)], Fig. 6(b)
shows that the constant cross section δR suppresses the ν

γ ∗
2 (M)

in the M < 1 GeV region more than the IS δR does. For M >

1 GeV, the constant cross section δR suppresses the ν
γ ∗
2 (M)

less than the IS δR. So, for the case η/s = 1/(4π ), the entire
invariant mass behavior of ν

γ ∗
2 for both δRs is consistent with

what one would expect by examining Fig. 2.
The energy dependence of δR also affects the final v2(M)

of QGP dileptons as shown in Fig. 6(a), thus emphasizing
the effects of δR on the relative angle between �

γ ∗
2 (M) and

�h
2 . Recall that most of the contribution to the invariant mass

distribution of dilepton yield and v2 is dominated by the low pT

region, with higher pT regions being exponentially suppressed.
The larger the correction to the dilepton yield is (see Fig. 18
of Appendix B), the larger the relative angle between �

γ ∗
2 (M)

and �h
2 is. So, the constant cross section δR has the strongest

effect on the 2[�γ ∗
2 (M) − �h

2 ] at low M , while for IS δR this
happens at larger M , which is consistent with Fig. 2.

Having explored the effects of the four-momentum depen-
dence of the constant cross section δR, the effects of η/s(T ) on
v2(M) of QGP dileptons are now investigated by inspecting the
manner in which the evolution of the hydrodynamic momen-
tum anisotropy 〈(T xx − T yy)/(T xx + T yy)〉 is modified under
the influence of viscosity. The hydrodynamic momentum
anisotropy 〈(T xx − T yy)/(T xx + T yy)〉 is computed in a way
that represents, as closely as possible, how this quantity is
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FIG. 6. Elliptic flow v2(M) (a) and ν2(M) (b) of QGP dileptons for IS δR and constant cross section δR for both η/s = 1/(4π ) and η/s(T ).
Each colored band represents the statistical error associated with the 200 events generated. All results are in the 20–40% centrality class.

probed by dilepton radiation. Indeed, dileptons are sensitive
to the sum/difference of T xx

i (τ,x,y,ηs) and T
yy
i (τ,x,y,ηs) in

every fluid cell of every hydrodynamical event i. Since dilepton
rates are being space-time integrated for each hydrodynamical
simulation before the individual events are combined, the
hydrodynamical momentum anisotropy is computed in that

order as well. Furthermore, as temperature goes down, an
interpolation between the QGP and HM dilepton rates occurs.
So, the hydrodynamic momentum anisotropy is calculated
taking into account that interpolation. Thus, identification of
the hydrodynamical momentum anisotropy in the QGP sector
is possible through

〈
T xx − T yy

T xx + T yy

〉
= 1

Nev

Nev∑
i=1

{∫
τdηsdydxfQGP(T )

[
T xx

i (xμ) − T
yy
i (xμ)

]
∫

τdηsdydxfQGP(T )
[
T xx

i (xμ) + T
yy
i (xμ)

]
}

, (19)

where xμ = (τ,x,y,ηs), fQGP is defined in Eq. (4) and represents the fraction of the cell in the QGP sector, T is the temperature,
and Nev = 200 events. When studying the HM sector, one simply uses (1 − fQGP) when computing 〈(T xx − T yy)/(T xx + T yy)〉.
The anisotropy on the freeze-out surface will be computed via〈

T xx − T yy

T xx + T yy

〉
= 1

Nev

Nev∑
i=1

{∫
d3�μ(xμ)uμ(xμ)B(τ )

[
T xx

i (xμ) − T
yy
i (xμ)

]
∫

d3�μ(xμ)uμ(xμ)B(τ )
[
T xx

i (xμ) + T
yy
i (xμ)

]
}

,

B(τ ) =
{

1 τ ∈ [τj − �τ
2 ,τj + �τ

2 )

0 otherwise
, (20)

where τj = τ0 + j�τ with j ∈ N, d3�μ is the infinitesimal
volume element orthogonal to the freeze-out hypersurface,
uμ is the flow profile on the freeze-out hypersurface, and
�τ = 0.03 fm/c is the hydrodynamical time step used to
propagate the fluid equations forward in time (see Sec. II A).
Figure 7(a) shows the hydrodynamical momentum anisotropy
in the QGP. In that figure, ideal T μν refers to the momentum
anisotropy 〈(T xx − T yy)/(T xx + T yy)〉 computed using only
T

μν
0 of a viscous evolution, while the full T μν curves also

include πμν .
Recall that R0 solely couples to fluid velocity uμ and

temperature T and hence is directly sensitive to modification
of these two quantities owing to the presence of πμν in the
hydrodynamical evolution, while δR couples to πμν in addition
to uμ and T . The elliptic flow and ν2(M) of QGP dileptons
in Fig. 5 without viscous correction δR, is increased with
η/s(T ), owing to the fact that πμν at early times increases the
transverse velocity gradients of the fluid which then generates a
larger radial flow and hydrodynamical momentum anisotropy.

This increase in the momentum anisotropy can be seen in the
top three curves of Fig. 7(a), where πμν was removed when
computing 〈(T xx − T yy)/(T xx + T yy)〉 and hence are labeled
as ideal T μν . On the other hand, the coupling to πμν via
δR is responsible for decreasing the elliptic flow as shown
in Ref. [46] (and references therein), while πμν also reduces
the hydrodynamic momentum anisotropy seen in the bottom
three curves of Fig. 7(a). Thus one notices that the order of
the v2(M) curves obtained without/with the constant cross
section δR [see Fig. 5(a)] follows the order of the curves of
the momentum anisotropy obtained by using ideal/full T μν

[see Fig. 7(a)]. There is also a correlation between higher
M dileptons being more sensitive to the early time dynamics
while lower M dileptons are more sensitive to the later time
evolution.

It should also be noted that the effect of η/s(T ) on the
evolution of πμν/(ε + P ), shown in Fig. 7(b), is in contrast
with that of τπ shown in Ref. [33]. Indeed, starting from zero
initial πμν , increasing the relaxation time results in decreasing
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FIG. 7. (a) Momentum anisotropy of the fluid where QGP dilepton rates are used. The meaning of ideal/full T μν is explained in the text.
The development of πμν/(ε + P ) in the local rest frame at (x,y,ηs) = (0,0,0) is shown in (b) where an average over 200 events was performed.

πμν(τ ) for early τ − τ0 probed by QGP dileptons, which in
turn allows for a faster anisotropic flow development, thus
increasing v2(M) of QGP dileptons. The effect η/s(T ) on
πμν/(ε + P ) shown Fig. 7(b) is the opposite in the early stages
of the evolution: a large πμν at early times slows down the
development of anisotropic flow, thus reducing v2(M) of QGP
dileptons.

Having explored the effects of a η/s(T ) on v2(M) of QGP
dileptons, Fig. 8(a) focuses on the v2(M) of HM dileptons.
There, one notices that η/s(T ) at high temperatures causes
an increase in the v2(M) of HM dileptons as well as an
increase in the development of flow anisotropy in the HM sector
as quantified by the hydrodynamics momentum anisotropy
depicted in Fig. 8(b). Note that the hydrodynamic momentum
anisotropy obtained using both ideal and full T μν increases
when a temperature-dependent η/s is present relative to η/s =
1/(4π ), thus v2(M) of HM dileptons should increase as well,
and indeed it does so. Note that the v2(M) of HM dileptons
are little affected by the viscous correction to the dilepton
rate [46]. So, effects with and without viscous corrections
are not shown in Fig. 8(a), as the curves would lie nearly on
top of one another, thus only the full calculation with viscous
corrections is depicted. Examining more closely the v2(M) of
HM dileptons, one notices that it tracks the development of

hydrodynamic momentum anisotropy obtained by using ideal
T μν , as expected.

The hydrodynamic momentum anisotropy on the freeze-
out surface shown in Fig. 9 behaves differently than at
higher temperatures. Though the curve with η/s = 1/(4π ) in
Fig. 9(a) seems to have a smaller hydrodynamical momentum
anisotropy than the other two cases having η/s(T ), that
difference isn’t very significant given the uncertainties. As far
as Fig. 9(b) is concerned, there one notices that the hydrody-
namical momentum anisotropy on the freeze-out surface is the
same, within the uncertainties, for all three media considered.
Therefore the hydrodynamic momentum anisotropy that builds
up at higher temperatures, and is thus affecting the v2(M) of
dileptons, doesn’t seem to propagate to the freeze-out sur-
face and affect significantly the hydrodynamical momentum
anisotropy there, hence leaving the v2(pT ) of charged hadrons
largely unaffected.

Given that the initial and the freeze-out conditions are the
same for all three media (see Sec. II B for details), the cooling
rate [see Figs. 10(a)–10(c)] of the medium is a competition
between the entropy production rate ∂μSμ = πμνπμν/(2ηT )
and expansion rate θ = ∂μuμ of the system. The entropy
production ∂μSμ has been rescaled by τ such that the amount
of entropy produced in the cell located at x = y = ηs = 0 is

FIG. 8. v2(M) of HM dileptons under the influence of a η/s(T ) is shown in (a), while the hydrodynamic momentum anisotropy evolution
in the HM is displayed in (b). All results shown are within the 20–40% centrality class.
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FIG. 9. (a) The hydrodynamical momentum anisotropy evolution on the freeze-out surface using the full T μν . (b) Presents the same quantity
as (a) except only the inviscid part of T μν is being used to compute the hydrodynamical momentum anisotropy. All results shown are within
the 20–40% centrality class.

given by

S(τ ) =
∫ τ

τ0

dτ ′
∫ �x/2

−�x/2
dx ′

∫ �y/2

−�y/2
dy ′

∫ �ηs/2

−�ηs/2
dη′

s[τ
′∂μSμ],

(21)

and hence one can use the area under the curves in Figs. 10(d)–
10(f) to estimate S(τ ) for the central cell. Focusing on the
dynamics happening during the first fm/c of evolution, we
see that the expansion rate is large and the same regardless of

whether the medium has η/s = 1/(4π ) or η/s(T ). In fact, dur-
ing the first ∼0.3 fm/c of evolution, the differences in entropy
production rate do not affect the temperature profile, which
seems to be driven by the expansion rate θ . Once the expansion
rate is less strong, and the entropy production rate of the media
with η/s(T ) becomes stronger than that of η/s = 1/(4π )
occurring after 0.3 fm/c, then the extra entropy production
present for media η/s(T ) [see Fig. 10(g)] causes a slower
temperature reduction for the media with η/s(T ) relative to
the one with η/s = 1/(4π ), at early times 0.3 � τ − τ0 � 1

FIG. 10. Event-averaged temperature for the cell (x,y,ηs) = (0,0,0) during the first fm/c of evolution (a) and at later stages (b) and (c).
Event-averaged expansion rate θ during the first fm/c of evolution (d) and at later stages (e) and (f). Entropy production rate ∂μSμ rescaled by
τ during the first fm/c of evolution (g) and at later stages (h) and (i).
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FIG. 11. Event-averaged βT during the first fm/c of evolution (a) and at later stages (b),(c).

fm/c [see Fig. 10(a)]. A more quantitative exploration of the
dynamics present during the first fm/c is reserved for a later
study.

At later times presented in Figs. 10(b), 10(e) and 10(h), the
expansion rate remains the same for all three media considered
until τ − τ0 ∼ 1.3 fm/c while the entropy production rate is
larger for the medium with larger η/s, and the order of the
curves in Fig. 10(b) reflects this. However, such a situation
cannot be maintained indefinitely, since the hotter media
with η/s(T ) will have larger pressure gradients than the one
with η/s = 1/(4π ). So, as soon as η/s(T ) allows for these
pressure gradients to be more efficiently converted into a larger
expansion rate, which according to Fig. 10(e) happens when
τ − τ0 � 1.3 fm/c, the fluids with η/s(T ) will start cooling at a
faster rate than the one with η/s = 1/(4π ) and this is reflected
by the temperature profile [see Fig. 10(b)]. Also, Fig. 10(h)

shows that the entropy production for all three media stops
being relevant by τ − τ0 ∼ 4 fm/c. The cooling at τ − τ0 > 4
fm/c in Fig. 10(c) is dominated by the faster expansion rate of
the media with η/s(T ) relative to the one with η/s = 1/(4π );
with θ at τ − τ0 ∼ 4 fm/c being about half the value it had
at τ − τ0 ∼ 1 fm/c and dropping another ∼15% in the in-
terval 4 � τ − τ0 � 5.25 fm/c. Entropy production becomes
negligible the interval 4 � τ − τ0 � 5.25 fm/c as shown in
Fig. 10(i). Ultimately, the medium with η/s = 1/(4π ) will
freeze out later than the other two media. This is not shown in
Fig. 10(c), since hydrodynamical events start freezing out right
after τ − τ0 = 5.25 fm/c, and at that point the event-averaged
temperature becomes ill-behaved.

The transverse flow profile 〈βT (τ )〉 shown in Fig. 11,
qualitatively behaves as expected from the expansion rate.
〈βT (τ )〉 was computed via

〈βT (τ )〉 = 1

Nev

Nev∑
i=1

{∫
τdηsdydxfFO (T )

[[
βx

i (xμ)
]2 + [

β
y
i (xμ)

]2]1/2∫
τdηsdydxfFO (T )

}

fFO(T ) =
{

1 T > TFO

0 otherwise , (22)

where xμ = (τ,x,y,ηs), βj = uj/u0, while uj and u0 are the
spatial and temporal components of the flow uμ, respectively.

Having discussed cooling as a competition between expan-
sion rate and entropy production rate, while also showing that
these dynamics affect transverse flow buildup, the focus is now
given to the development of anisotropic flow. Figure 7(a) shows
that relative to the medium with η/s = 1/(4π ), a medium
with η/s(T ) suppresses more the conversion of the original
geometrical anisotropy into a momentum anisotropy of the
QGP. So, for the first ∼1 fm/c of evolution, the QGP with a
temperature-dependent η/s develops anisotropic flow slower
and is hotter, than the QGP with a constant η/s. However,
inspecting Fig. 8(b) shows that the anisotropic flow buildup
in the hadronic sector, where the viscosity is lower than that
in the QGP, is significantly faster than in the QGP, thus more
efficiently converting pressure gradients into hydrodynamic
momentum anisotropy. Because the dilepton HM rates are not
particularly sensitive to viscous correction of their production
rates, they track more closely the buildup of the momentum
anisotropy originating from the ideal part of T μν as can be
seen by comparing the order of the curves in Figs. 8(a) and
8(b). This difference in the development of the anisotropic flow

between the media with η/s(T ) and the one with η/s = 1/(4π )
is really established during the first ∼1.8 fm/c of evolution
and happens above the freeze-out surface. Because dileptons
are emitted throughout the entire evolution of the medium,
they are sensitive to the difference in anisotropic flow buildup
shown in Fig. 8(b), as can be seen in Fig. 8(a). This difference
in the early anisotropic flow buildup is also imprinted on
the temperature profile of the system in the x-y plane, at
temperatures above the freeze-out surface. At τ − τ0 = 5.25
fm/c shown in Fig. 12, when all three systems have already
started to reduce their momentum anisotropy obtained from the
ideal part of T μν [see Fig. 8(b)], the high temperature contour
lines (see T = 160,163 MeV) show that the medium with a
η/s(T ) produces a more elongated shape than η/s = 1/(4π ).
However, at the freeze-out temperature, that shape for both
media is roughly the same.

Given that the charged hadron v2 in Fig. 4(a) is un-
affected by η/s(T ) and the fact that the hydrodynamical
momentum anisotropy on the freeze-out surface in Fig. 9
is less affected by η/s(T ) compared to higher temperatures,
it seems that the larger anisotropic “push” generated by
a temperature-dependent η/s, present at high temperatures,
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FIG. 12. Event-averaged temperature in the transverse plane at z = 0 at (τ − τ0) = 5.25 fm/c for η

s
= 1

4π
(a) and η

s
= 0.4513( T

Ttr
− 1) + 1

4π

(b). The constant temperature contours ranging from 163 MeV for the inner most contour all the way down to TF0 = 145 MeV, are separated
by 3 MeV intervals.

is mostly quenched by the time the system freezes out, and
thus doesn’t significantly affect the v2 of charged hadrons.

Last, we explore elliptic and triangular flow of thermal
dileptons as a function of pT in Fig. 13. To maximize the
potential opportunity of constraining the size of η/s(T ) in
experimental dilepton data, the invariant mass M was chosen
in a region where the thermal radiation dominates over all other
sources [46].

In particular, notice the size of the difference in the pT de-
pendence of flow harmonics—especially v2(pT � 2 GeV) and
v3(pT � 3 GeV)—when a temperature-dependent η/s is being
used. Such a prominent variation is ideal if the slope of η/s(T )
at high temperatures is to be experimentally constrained. The
caveat, of course, is that one also needs to constrain η/s(T )
for T < Ttr using, e.g., hadrons, which has shown sensitivity
to η/s(T ) for T < Ttr at top RHIC energy [18]. However,
our present goal is to show that the v2 of dilepton at top
RHIC energy can break the degeneracy seen in the behavior
of charged hadron v2(pT ) at midrapidity [18] towards the
presence of an η/s(T ) at high temperatures. Thus dileptons
and hadrons observables should be used simultaneously to put
tighter constraints on the properties of the QCD medium at
high temperatures.

B. Quadratic η/s(T )

We now turn our attention towards the second derivative of
η/s(T ). The initial and freeze-out conditions are unchanged.

As explained in Sec. IV A, the consequences of additional
entropy production for media with a quadratic η/s(T ) relative
to the one with η/s = 1/(4π ) can be seen by examining the
invariant mass dilepton yield in Fig. 14(a). Indeed, the dilepton
yield is increased by about 2% in the HM and 6% in the
QGP regions, respectively. Those two percentages should be
compared with the 5% and 10% increase quoted in the previous
section. As a reference, Fig. 14(b) shows the effects of the
quadratic η/s(T ) on the pT spectrum of charged pions. As in
the previous section, the charged hadron elliptic flow is not
affected by η/s(T ), while elliptic flow of thermal dileptons is
[see Figs. 15(a) and 15(b), respectively].

Though the invariant mass distribution of thermal dilepton
v2 for a quadratic η/s(T ) is similar to a linear η/s(T ), the
average value of the v2 to v3 ratio depicted in Fig. 15(c)
seems to distinguish between a linear and a quadratic η/s(T ),
especially at higher M . Of course, one should be mindful of the
uncertainties around the average value displayed in Fig. 15(c).
Nevertheless, both the invariant mass distribution of v2 and the
v2/v3 ratio are promising quantities to measure experimentally.

FIG. 13. Elliptic (a) and triangular (b) flow of thermal dileptons for a linearly dependent η/s(T ).

014902-12



INVESTIGATING THE TEMPERATURE DEPENDENCE OF … PHYSICAL REVIEW C 98, 014902 (2018)

FIG. 14. Yield of thermal dileptons (a) and pions (b) for various values of η/s(T ).

The transverse momentum distribution of dilepton flow
harmonics at different invariant masses is also an interesting
quantity to consider, given that it can discern some features
that are more akin to a linear versus quadratic η/s(T ).
Starting at intermediate invariant masses, though the overall
magnitude of the signal is small, Fig. 16 shows that vn(pT )
is different for the two functional forms for η/s(T ). At low
invariant masses, a similar statement holds true for higher
flow harmonics, especially at pT � 3 GeV (see Fig. 17). In
both cases, the differences seen in the vn(M,pT ) cannot be

accounted for through a renormalization of the slope alone,
for example. Experimentally distinguishing between the two
forms of η/s(T ) using vn(M,pT ) will be challenging at RHIC
given the sensitivity required, be it in the overall magnitude of
the signal or in the relative difference between signals. In that
regard, though the overall size of η/s(T ) may be constrained at
RHIC, studying dilepton flow at LHC energies constitutes an
auspicious avenue for constraining the shape of the functional
dependence of η/s at high temperatures. Such a study is
currently underway.

FIG. 15. Elliptic flow of charged hadrons (a) and thermal dileptons (b) with different values for a in Eq. (3). (c) v2/v3 ratio for linear and
quadratic η/s(T ).
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FIG. 16. A comparison of v2 (a), v3 (b), and v4 (c) of thermal dileptons using linear and quadratic η/s(T ) at an intermediate invariant mass.
The uncertainties associated with the 200 events generated were removed to improve visual clarity.

V. CONCLUSIONS

The goal of the present work is to investigate the sensi-
tivity of thermal dileptons to a temperature-dependent η/s

at temperatures higher than 180 MeV, at top RHIC energy.
We have studied the sensitivity of dilepton anisotropic flow
coefficients to the slope of a linearly dependent η/s(T ) and
the size of specific shear viscosity’s second derivative with
respect to temperature. Charged hadrons are found to be
poorly sensitive to any temperature dependence, be it linear
or quadratic, of η/s at T > 180 MeV, as was previously found
in Ref. [18]. We have shown that dileptons have sensitivity to
a temperature-dependent η/s at high temperatures.

The STAR Collaboration at RHIC has recently acquired new
dilepton data using its Muon Telescope Detector (MTD) and
Heavy Flavor Tracker (HFT) [49]. Having the MTD and HFT
running at the same time allows one to remove the dilepton
radiation coming from open heavy flavor hadrons in the low to
intermediate invariant mass (i.e., M � 2.5 GeV), thus allowing
one to directly measure thermal dilepton radiation for 1.1 �
M � 2.5 GeV and compare to the results presented herein.
Note that for M � 1.1 GeV, the open heavy flavor and the
dilepton cocktail contribution needs to be removed to expose
thermal radiation. As mentioned in Ref. [46], the dilepton
cocktail consists of late time Dalitz and vector meson decays,
which are both present in the current RHIC data sets. Removing

FIG. 17. A comparison of v3 (a) and v4 (b) of thermal dileptons using linear and quadratic η/s(T ) at low invariant mass. The uncertainties
associated with the 200 events generated were removed to improve visual clarity.
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these two sources is possible, as the NA60 experiment at SPS
has shown in the dimuon channel [50–52], however the data at
RHIC has an increased challenge of removing the open heavy
flavor contribution given that the cross section for heavy flavor
quark production is much larger at RHIC energy than at SPS.
Therefore, given the challenges of removing both the open
heavy flavor and cocktail in the low invariant mass sector,
focusing on the intermediate mass region, where only open
heavy flavor needs to be removed to expose thermal radiation,
seems like a more promising avenue.

The analysis of these dilepton data using the MTD and
the HFT detectors at STAR is currently ongoing [49], with
improved dilepton measurements of v2 expected soon. As
shown here, the ability to measure v2(M) of thermal dileptons
opens the possibility of using thermal dileptons to resolve
details in the overall magnitude of η/s(T ) of the QGP. Thus,
extracting the temperature dependence of η/s via dileptons
seems to be a very promising prospect at RHIC. LHC, on the
other hand, does not currently have the capabilities in place to
accurately measure low to intermediate mass dileptons, with
such measurements only being possible once the LHC detector
upgrades are in place [53].

Though both the slope and the size of the second derivative
did influence the magnitude and shape of the dilepton flow
harmonics, with appreciable effects on v2(M), distinguishing
between a linear versus quadratic temperature dependence
would be difficult at RHIC for M � 2.5 GeV using v2(M)
alone, while the invariant mass distribution of the v2/v3 ratio
is a more encouraging prospect to consider. As far as vn(M,pT )
is concerned, at fixed low invariant mass, though the shape of
v3(pT ) and v4(pT ) is different within the linear and quadratic
temperature dependence of η/s, that difference only becomes
apparent at high transverse momenta. At intermediate invariant
masses where the shape of vn(pT ) varies more significantly
when comparing a linear to a quadratic η/s(T ), the overall
magnitude of the signal is decidedly smaller. Given the dif-
ferential nature of the vn(M,pT ) measurement, extracting the
signal with enough statistics to be able to distinguish between a
linear or quadratic η/s(T ) is experimentally challenging at low
and intermediate invariant masses. Thus, the most promising
dilepton candidate to learn about the temperature dependence
of η/s is v2(M), while the v2/v3 ratio offers a promising new
route.

ACKNOWLEDGMENTS

We are grateful to J.-F. Paquet, C. Shen, B. Schenke, and U.
Heinz for helpful discussions. This work was supported in part
by the Natural Sciences and Engineering Research Council of
Canada, in part by the Director, Office of Energy Research, Of-
fice of High Energy and Nuclear Physics, Division of Nuclear
Physics, of the U.S. Department of Energy under Contracts
No. DE-AC02-98CH10886, No. DE-AC02-05CH11231, and
No. DE-SC0004286, and in part by the National Science
Foundation (in the framework of the JETSCAPE Collab-
oration) through Award No. 1550233. G.V. acknowledges
support by the Fonds de Recherche du Québec—Nature et
Technologies (FRQNT), the Canadian Institute for Nuclear
Physics, and by the Seymour Schulich Scholarship. G.S.D.

acknowledges support through a Banting Fellowship from the
Government of Canada. C.G. gratefully acknowledges support
from the Canada Council for the Arts through its Killam
Research Fellowship program. Computations were performed
on the Guillimin supercomputer at McGill University under
the auspices of Calcul Québec and Compute Canada. The
operation of Guillimin is funded by the Canada Foundation
for Innovation (CFI), the Natural Sciences and Engineering
Research Council (NSERC) of Canada, NanoQuébec, and
the Fonds de Recherche du Québec—Nature et Technologies
(FRQNT).

APPENDIX A: COMPUTING THE VISCOUS CORRECTION
TO THE QGP RATE VIA THE BOLTZMANN EQUATION

The discussion presented here follows Ref. [26]. In order to
derive the δfk used in Eq. (12), the starting point is

δyk = Gkφk, (A1)

where φk is to be computed after performing an irreducible
tensor decomposition and Gk is an arbitrary function of kμuμ.
Indeed, one can decompose φk as

φk = λ
(0)
k +

∞∑
�=1

λ
〈μ1...μ�〉
k k〈μ1 . . . kμ�〉, (A2)

where λ
〈μ1...μ�〉
k = �μ1...μ�

ν1...ν�′ λ
ν1...ν�′
k with �μ1...μ�

ν1...ν�′ being defined
in Refs. [26,54]. For � = 1 and � = 2, the irreducible tensor
�μ1...μ�

ν1...ν�′ simplifies to �μ
ν , and �

μν
αβ , respectively. These two

tensors were defined in Sec. II A. The tensors λ
〈μ1...μ�〉
k , being

expanded in terms of the mutually orthogonal irreducible
tensors k〈μ1 . . . kμ�〉 can be further factorized into a linear
combination of an orthonormal set of functions P

(�)
n,k, that

explicitly depend on Ek = uνkν , and a set of rank-� tensor
coefficient c

〈μ1...μ�〉
n as

λ
〈μ1...μ�〉
k =

N�∑
n=0

c〈μ1...μ�〉
n P

(�)
n,k. (A3)

So, the expansion basis of the tensorial structure of φk is
k〈μ1 . . . kμ�〉, which, analogous to spherical harmonics, contains
the angular dependence of φk. The expansion coefficients are
c
〈μ1...μ�〉
n . Using the spherical harmonics analogy, λ(0)

k , λ〈μ1〉
k , and

λ
〈μ1μ2〉
k can be interpreted as monopole, dipole, and quadrupole

contributions to φk, respectively, and so on for the higher
order tensors. The irreducible tensors k〈μ1 . . . kμ�〉 satisfy the
orthogonality condition∫

dKnkk〈μ1 . . . kμ�〉k
〈μ1 . . . kμ�′ 〉

= �!(2� + 1)δ��′

(2� + 1)!!

∫
dK(�αβkαkβ)�nk, (A4)

where ∫
dK ≡

∫
d4k

(2π )4
δ(kνkν − m2)θ (k0). (A5)

On the other hand, φk’s radial dependence is expanded
using the orthonormal basis functions P

(�)
n,k, which can be
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written as

P
(�)
n,k =

n∑
r=0

a(�)
n,rE

r
k. (A6)

The orthonormal basis functions P
(�)
n,k satisfy∫

dKP
(�)
n,kP

(�)
m,kω

(�) = δmn, (A7)

where

ω(�) = (−1)�

(2� + 1)!!

(�αβkαkβ)�(1 − f0,k)f0,kGk∫
dK(−�αβkαkβ)�f0,k(1 − f0,k)Gk

(A8)

and has the property
∫

dKω(�) = 1. Being interested in com-
puting δyk for shear viscous stresses, the only term needed is
� = 2. Thus δyk can be expressed as

δyk = Gk

N2∑
n=0

P
(2)
n,kc

〈μν〉
n k〈μkν〉, (A9)

where, using the orthogonality condition of the irreducible
tensors,

c〈μν〉
n = 1

2!

∫
dKGkP

(2)
n,kk

〈μkν〉δfk∫
dK(−�αβkαkβ)2f0,k(1 − f0,k)Gk

. (A10)

It is convenient to re-express δyk in terms of irreducible
moments of δfk,

ρμν
n =

∫
dKEn

kk〈μkν〉δfk, (A11)

such that

δfk = f0,k(1 − f0,k)Gk

N2∑
n=0

H(2)
n,kρ

μν
n k〈μkν〉, (A12)

where

H(2)
n,k = 1

2!

∑N2
m=n a(2)

mnP
(2)
m,kGk∫

dK(−�αβkαkβ)2f0,k(1 − f0,k)Gk
. (A13)

At this point, we have expressed δfk in terms of its moments
ρ

μν
n . However, only the lowest of these moments, ρ

μν
0 = πμν ,

are described within hydrodynamics. In order to apply this
formula to describe the momentum distribution of particles
within a fluid, it is still necessary to approximate the remaining
moments in terms of the fluid dynamical degrees of freedom.
In the hydrodynamical limit, one can assume that all moments
ρ

μν
n have sufficiently approached their asymptotic values and

have relaxed to their Navier-Stokes limit. That is,

ρμν
n ≈ 2ηnσ

μν. (A14)

With this approximation it becomes possible to express all
moments ρ

μν
n in terms of πμν , in the following way:

ρμν
n ≈ ηn

η
πμν, (A15)

where we have used the Navier-Stokes limit for πμν , namely
πμν = 2ησμν . Here, ηn is a set of transport coefficients which
contain the microscopic information of the system. In fact, η0

is nothing but the usual shear viscosity coefficient η already

discussed. The remaining transport coefficients are less known,
but can be calculated within the framework of the Boltzmann
equation (or kinetic theory). An estimate of these transport
coefficients was derived in Ref. [25] within the Boltzmann
equation, assuming the colliding quarks are massless and that
their 2 → 2 scattering cross section is constant.2 Using the
same constant cross-section approximation, the final expres-
sion for δfk becomes

δfk = f0,k(1 − f0,k)Gk

[
N2∑
n=0

H(2)
n,k

ηn

η

]
πμν

2(ε + P )

kμ

T

kν

T
,

(A16)

where Gk = Gk[
∑N2

n=0 H(2)
n,k

ηn

η
], and the temperature depen-

dence was introduced by replacing all instances of kμ with
kμ

T
in the above derivation. Keeping terms up to N2 = 3, to

improve convergence of the series for δfk, two functions were
chosen. In the low x = k·u

T
limit (where x < 11.2), Gk = 1

0.1+x
,

whereas Gk = 1
(0.1+x)4 is present in the high x region, i.e.,

for x > 11.2. Collecting powers of x after expanding out the
series

∑N2
n=0 H(2)

n,k
ηn

η
, one can derive Eq. (12). Furthermore, we

have verified that the δfk in Eq. (12) has converged by going
to higher N2 = 4 order, without significantly changing the
coefficients the power series of x. Note that the coefficients in
Eq. (12) were computed assuming that all chemical potentials
are set to zero. If that is not the case, which happens when the
net baryon number diffusion is considered, for example, then
the coefficients depend on the chemical potential. Last, note
that setting Gk = 1, and letting N2 = 0, recovers the original
IS viscous correction.

We conclude this appendix with the following two remarks
regarding δfk:

(i) Using perturbative QCD (pQCD) to derive δfk would
not be suitable. For one, the shear viscosity η0 obtained
through pQCD would be very large [8] (possibly also lead-
ing to very large ηn). Implementing such a large η0 in a
hydrodynamical simulation would not only prevent any fit to
experimental data, but would in fact violate the small Knud-
sen and inverse Reynolds numbers assumption of dissipative
hydrodynamics.

(ii) If one is to apply the above procedure to the hadronic
sector, not only is the mass of hadrons participating in a
particular interaction needed, but also the scattering cross
section (or matrix element) associated with that particular
interaction. So, every single hadron would have its own δfk.
Given that a multitude of hadronic interaction cross sections are
simply not known experimentally (and are poorly constrained
theoretically), there is very little incentive to systematically
expand δfk in the hadronic sector.

2Note that this approximation is not valid in the hadronic sector,
where all colliding particles are massive.
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FIG. 18. The size of the viscous contribution to the dilepton yield in the QGP relative to its ideal (inviscid) dilepton production for a medium
with constant η/s = 1/(4π ). Left column: δN/N0 using the IS δR. Right column: δN/N0 using the constant cross section δR.

APPENDIX B: EFFECTS OF δR CORRECTIONS ON THE
DIFFERENTIAL DILEPTON YIELD OF THE QGP SECTOR

In the light of the viscous correction to the quark distribution
function in the QGP derived in the previous appendix, it is
instructive to investigate the manner in which the differential

dilepton yield is modified. To that end, similar to the ratio A
defined in Eq. (15), consider the quantity

δN

N0
=

∣∣〈 ∫ b

a
pT dpT

∫
dφdysτdηs

d4δR
d4p

〉
ev

∣∣〈 ∫ b

a
pT dpT

∫
dφdysτdηs

d4R0
d4p

〉
ev
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FIG. 19. The size of the viscous contribution to the dilepton yield in the QGP relative to its ideal (inviscid) dilepton production for a medium
with constant η/s = 1/(4π ). Left column: δN/N0 using the IS δR. Right column: δN/N0 using the constant cross section δR.

=
∣∣ dδN
dMdydxdτ

(M,a,b,y = 0)
∣∣

dN0
dMdydxdτ

(M,a,b,y = 0)
, (B1)

where y is the momentum rapidity whereas ys is the space-
time y coordinate. Equation (B1) quantifies the size of the
contribution of the QGP yield coming from the anisotropic
correction to the rate relative to the ideal rate [55].

The behavior of δN/N0 depicted in Figs. 18 and 19 can be
understood as an interplay between the decay of the envelope

function b2 in Eq. (14) and the growth of the term pαpβπαβ

2T 2(ε+P ) ,
which is best described through the ratio A in Eq. (15). For a

fixed M , the A changes slowly with pT while the term pαpβπαβ

2T 2(ε+P )
grows quadratically with pT ,3 whereas for a fixed pT since the

3Note that at the highest pT , there is a slight suppression in the case
of constant cross section δR relative to IS δR owing to the envelope
b2 in Eq. (14).

envelope decays 1/(p · u) the quadratic growth from the term
pαpβπαβ

2T 2(ε+P ) is suppressed. The overall result is that δN/N0 grows
faster in the pT direction than in the M direction, as can be
seen in Figs. 18 and 19, and is consistent with the fact that
A has a stronger energy dependence than three-momentum
dependence.

The behavior of δN/N0 as a function of pT at low invariant
mass and low pT resembles that of photons previously inves-
tigated in [55]. Like in the photon case, the size of the viscous
correction is less than 14% throughout the entire evolution for
pT < 1.6 GeV. Viscous corrections only become large at early
times with relatively high momenta 1.6 < pT < 2.8 GeV. This
is especially true near the edges of the QGP sector in the x
direction, as is the case for photons as well [55]. Furthermore,
the largest contributions from δN/N0 for the low invariant
mass region are happening at high pT and at early times.
Therefore these contributions will not significantly affect the
pT integrated v2(M) at low invariant masses, whose biggest
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FIG. 20. The size of the viscous contribution to the dilepton yield in the QGP relative to its ideal (inviscid) dilepton production using the
constant cross section δR for a medium with linear η/s(T ) and slope m = 0.5516. The left column plots δN/N0 for M = 0.3 GeV whereas
the right column plots the same quantity at M = 1.5 GeV.

contribution comes from the low pT [46] and late times sector
(recall Fig. 8). The constant cross section δR in the QGP
sector will however play a more important role as far as the
pT -integrated v2(M) at higher invariant masses are concerned
(and can be seen in the right column of Fig. 19), where an
improved description for the δR generates a more reliable
v2(M) result.

Having discussed the effects of constant cross section δR
in the temperature-independent η/s, it is instructive to look
at how δN/N0 behaves once η/s is temperature dependent.
In particular, we consider linear η/s(T ) with the highest
slope in Fig. 20. For a low invariant mass M = 0.3 GeV and
pT < 1.6 GeV, the maximum δN correction to the differential
dilepton yield is ∼18% whereas at a higher invariant mass

M = 1.5 GeV, the maximum δN correction rises to ∼29%.
These percentages are sizable but not alarming. At higher
momenta 1.6 < pT < 2.8 GeV, the δN correction does sig-
nificantly increase, however δN/N0 < 1 still holds, which is
encouraging.

It should be emphasized one last time that the effects on the
total v2(M) that were explored Sec. IV originate from the HM
sector of the medium where viscous corrections to the dilepton
rate are small and therefore effects seen on the total v2(M) are
mostly independent of said corrections. The QGP only plays an
important role once M � 1.5 GeV, and the discussion within
this appendix highlights the manner in which QGP dilepton
production is modified owing to the constant cross section δR
relative to the IS one.

014902-19



VUJANOVIC, DENICOL, LUZUM, JEON, AND GALE PHYSICAL REVIEW C 98, 014902 (2018)

[1] U. Heinz and R. Snellings, Annu. Rev. Nucl. Part. Sci. 63, 123
(2013).

[2] C. Gale, S. Jeon, and B. Schenke, Int. J. Mod. Phys. A 28,
1340011 (2013).

[3] P. Romatschke and U. Romatschke, Phys. Rev. Lett. 99, 172301
(2007).

[4] C. Shen, S. A. Bass, T. Hirano, P. Huovinen, Z. Qiu, H. Song,
and U. Heinz, J. Phys. G 38, 124045 (2011).

[5] S. Ryu, J. F. Paquet, C. Shen, G. S. Denicol, B. Schenke, S. Jeon,
and C. Gale, Phys. Rev. Lett. 115, 132301 (2015).

[6] C. Gale, in Relativistic Heavy Ion Physics, Part of Landolt-
Börnstein - Group I Elementary Particles, Nuclei and Atoms,
Vol. 23, edited by R. Stock (Springer Nature, Switzerland, 2010),
p. 445.

[7] L. P. Csernai, J. I. Kapusta, and L. D. McLerran, Phys. Rev. Lett.
97, 152303 (2006).

[8] P. B. Arnold, G. D. Moore, and L. G. Yaffe, J. High Energy Phys.
05 (2003) 051.

[9] M. Prakash, M. Prakash, R. Venugopalan, and G. Welke, Phys.
Rep. 227, 321 (1993).

[10] M. I. Gorenstein, M. Hauer, and O. N. Moroz, Phys. Rev. C 77,
024911 (2008).

[11] K. Itakura, O. Morimatsu, and H. Otomo, Phys. Rev. D 77,
014014 (2008).

[12] J. Noronha-Hostler, J. Noronha, and C. Greiner, Phys. Rev. Lett.
103, 172302 (2009).

[13] C. Greiner, J. M. Noronha-Hostler, and J. Noronha, PoS
BORMIO2011, 033 (2011).

[14] N. Christiansen, M. Haas, J. M. Pawlowski, and N. Strodthoff,
Phys. Rev. Lett. 115, 112002 (2015).

[15] H. Niemi, K. J. Eskola, and R. Paatelainen, Phys. Rev. C 93,
024907 (2016).

[16] G. Denicol, A. Monnai, and B. Schenke, Phys. Rev. Lett. 116,
212301 (2016).

[17] G. Denicol, A. Monnai, S. Ryu, and B. Schenke, Nucl. Phys. A
956, 288 (2016).

[18] H. Niemi, G. S. Denicol, P. Huovinen, E. Molnar, and D. H.
Rischke, Phys. Rev. Lett. 106, 212302 (2011).

[19] P. Huovinen and P. Petreczky, Nucl. Phys. A 837, 26 (2010).
[20] H. Bebie, P. Gerber, J. Goity, and H. Leutwyler, Nucl. Phys. B

378, 95 (1992).
[21] T. Hirano and K. Tsuda, Phys. Rev. C 66, 054905 (2002).
[22] W. Israel, Ann. Phys. 100, 310 (1976).
[23] W. Israel and J. Stewart, Ann. Phys. 118, 341 (1979).
[24] R. Baier, P. Romatschke, D. T. Son, A. O. Starinets, and M. A.

Stephanov, J. High Energy Phys. 04 (2008) 100.
[25] G. S. Denicol, H. Niemi, E. Molnár, and D. H. Rischke, Phys.

Rev. D 85, 114047 (2012); 91, 039902(E) (2015).

[26] G. Denicol, J. Phys. G 41, 124004 (2014).
[27] A. Nakamura and S. Sakai, Phys. Rev. Lett. 94, 072305 (2005).
[28] H. B. Meyer, Nucl. Phys. A 830, 641C (2009).
[29] M. Haas, L. Fister, and J. M. Pawlowski, Phys. Rev. D 90, 091501

(2014).
[30] J. E. Bernhard, J. S. Moreland, S. A. Bass, J. Liu, and U. Heinz,

Phys. Rev. C 94, 024907 (2016).
[31] H. Marrochio, J. Noronha, G. S. Denicol, M. Luzum, S. Jeon,

and C. Gale, Phys. Rev. C 91, 014903 (2015).
[32] J. D. Bjorken, Phys. Rev. D 27, 140 (1983).
[33] G. Vujanovic, J.-F. Paquet, G. S. Denicol, M. Luzum, S. Jeon,

and C. Gale, Phys. Rev. C 94, 014904 (2016).
[34] F. Cooper and G. Frye, Phys. Rev. D 10, 186 (1974).
[35] D. Teaney, Phys. Rev. C 68, 034913 (2003).
[36] J. Sollfrank, P. Koch, and U. W. Heinz, Z. Phys. C 52, 593

(1991).
[37] M. Laine, J. High Energy Phys. 11 (2013) 120.
[38] I. Ghisoiu and M. Laine, J. High Energy Phys. (online) 10 (2014)

083.
[39] J. Ghiglieri and G. D. Moore, J. High Energy Phys. 12 (2014)

029.
[40] S. Caron-Huot, P. Kovtun, G. D. Moore, A. Starinets, and L. G.

Yaffe, J. High Energy Phys. 12 (2006) 015.
[41] H.-T. Ding, A. Francis, O. Kaczmarek, F. Karsch, E. Laermann,

and W. Soeldner, Phys. Rev. D 83, 034504 (2011).
[42] O. Kaczmarek, E. Laermann, M. Müller, F. Karsch, H.-T. Ding,

S. Mukherjee, A. Francis, and W. Soeldner, PoS ConfinementX,
185 (2013).

[43] G. Gounaris and J. Sakurai, Phys. Rev. Lett. 21, 244 (1968).
[44] C. D. Roberts and A. G. Williams, Prog. Part. Nucl. Phys. 33,

477 (1994).
[45] V. L. Eletsky, M. Belkacem, P. J. Ellis, and J. I. Kapusta, Phys.

Rev. C 64, 035202 (2001).
[46] G. Vujanovic, C. Young, B. Schenke, R. Rapp, S. Jeon, and C.

Gale, Phys. Rev. C 89, 034904 (2014).
[47] K. Dusling and S. Lin, Nucl. Phys. A 809, 246 (2008).
[48] R. Chatterjee, D. K. Srivastava, U. W. Heinz, and C. Gale, Phys.

Rev. C 75, 054909 (2007).
[49] F. Geurts (private communication).
[50] R. Arnaldi et al. (NA60), Eur. Phys. J. C 59, 607 (2009).
[51] R. Arnaldi et al. (NA60), Eur. Phys. J. C 61, 711 (2009).
[52] S. Damjanovic et al. (NA60), J. Phys. G 35, 104036 (2008).
[53] P. Jacobs and G. Roland (private communication).
[54] S. R. de Groot, W. A. van Leeuwen, and C. G. van Weert,

Relativistic Kinetic Theory: Principles and Applications (North-
Holland; Elsevier, Amsterdam; New York, 1980).

[55] C. Shen, J.-F. Paquet, G. S. Denicol, S. Jeon, and C. Gale, Phys.
Rev. C 95, 014906 (2017).

014902-20

https://doi.org/10.1146/annurev-nucl-102212-170540
https://doi.org/10.1146/annurev-nucl-102212-170540
https://doi.org/10.1146/annurev-nucl-102212-170540
https://doi.org/10.1146/annurev-nucl-102212-170540
https://doi.org/10.1142/S0217751X13400113
https://doi.org/10.1142/S0217751X13400113
https://doi.org/10.1142/S0217751X13400113
https://doi.org/10.1142/S0217751X13400113
https://doi.org/10.1103/PhysRevLett.99.172301
https://doi.org/10.1103/PhysRevLett.99.172301
https://doi.org/10.1103/PhysRevLett.99.172301
https://doi.org/10.1103/PhysRevLett.99.172301
https://doi.org/10.1088/0954-3899/38/12/124045
https://doi.org/10.1088/0954-3899/38/12/124045
https://doi.org/10.1088/0954-3899/38/12/124045
https://doi.org/10.1088/0954-3899/38/12/124045
https://doi.org/10.1103/PhysRevLett.115.132301
https://doi.org/10.1103/PhysRevLett.115.132301
https://doi.org/10.1103/PhysRevLett.115.132301
https://doi.org/10.1103/PhysRevLett.115.132301
https://doi.org/10.1103/PhysRevLett.97.152303
https://doi.org/10.1103/PhysRevLett.97.152303
https://doi.org/10.1103/PhysRevLett.97.152303
https://doi.org/10.1103/PhysRevLett.97.152303
https://doi.org/10.1088/1126-6708/2003/05/051
https://doi.org/10.1088/1126-6708/2003/05/051
https://doi.org/10.1088/1126-6708/2003/05/051
https://doi.org/10.1088/1126-6708/2003/05/051
https://doi.org/10.1016/0370-1573(93)90092-R
https://doi.org/10.1016/0370-1573(93)90092-R
https://doi.org/10.1016/0370-1573(93)90092-R
https://doi.org/10.1016/0370-1573(93)90092-R
https://doi.org/10.1103/PhysRevC.77.024911
https://doi.org/10.1103/PhysRevC.77.024911
https://doi.org/10.1103/PhysRevC.77.024911
https://doi.org/10.1103/PhysRevC.77.024911
https://doi.org/10.1103/PhysRevD.77.014014
https://doi.org/10.1103/PhysRevD.77.014014
https://doi.org/10.1103/PhysRevD.77.014014
https://doi.org/10.1103/PhysRevD.77.014014
https://doi.org/10.1103/PhysRevLett.103.172302
https://doi.org/10.1103/PhysRevLett.103.172302
https://doi.org/10.1103/PhysRevLett.103.172302
https://doi.org/10.1103/PhysRevLett.103.172302
https://doi.org/10.22323/1.135.0033
https://doi.org/10.22323/1.135.0033
https://doi.org/10.22323/1.135.0033
https://doi.org/10.22323/1.135.0033
https://doi.org/10.1103/PhysRevLett.115.112002
https://doi.org/10.1103/PhysRevLett.115.112002
https://doi.org/10.1103/PhysRevLett.115.112002
https://doi.org/10.1103/PhysRevLett.115.112002
https://doi.org/10.1103/PhysRevC.93.024907
https://doi.org/10.1103/PhysRevC.93.024907
https://doi.org/10.1103/PhysRevC.93.024907
https://doi.org/10.1103/PhysRevC.93.024907
https://doi.org/10.1103/PhysRevLett.116.212301
https://doi.org/10.1103/PhysRevLett.116.212301
https://doi.org/10.1103/PhysRevLett.116.212301
https://doi.org/10.1103/PhysRevLett.116.212301
https://doi.org/10.1016/j.nuclphysa.2016.01.014
https://doi.org/10.1016/j.nuclphysa.2016.01.014
https://doi.org/10.1016/j.nuclphysa.2016.01.014
https://doi.org/10.1016/j.nuclphysa.2016.01.014
https://doi.org/10.1103/PhysRevLett.106.212302
https://doi.org/10.1103/PhysRevLett.106.212302
https://doi.org/10.1103/PhysRevLett.106.212302
https://doi.org/10.1103/PhysRevLett.106.212302
https://doi.org/10.1016/j.nuclphysa.2010.02.015
https://doi.org/10.1016/j.nuclphysa.2010.02.015
https://doi.org/10.1016/j.nuclphysa.2010.02.015
https://doi.org/10.1016/j.nuclphysa.2010.02.015
https://doi.org/10.1016/0550-3213(92)90005-V
https://doi.org/10.1016/0550-3213(92)90005-V
https://doi.org/10.1016/0550-3213(92)90005-V
https://doi.org/10.1016/0550-3213(92)90005-V
https://doi.org/10.1103/PhysRevC.66.054905
https://doi.org/10.1103/PhysRevC.66.054905
https://doi.org/10.1103/PhysRevC.66.054905
https://doi.org/10.1103/PhysRevC.66.054905
https://doi.org/10.1016/0003-4916(76)90064-6
https://doi.org/10.1016/0003-4916(76)90064-6
https://doi.org/10.1016/0003-4916(76)90064-6
https://doi.org/10.1016/0003-4916(76)90064-6
https://doi.org/10.1016/0003-4916(79)90130-1
https://doi.org/10.1016/0003-4916(79)90130-1
https://doi.org/10.1016/0003-4916(79)90130-1
https://doi.org/10.1016/0003-4916(79)90130-1
https://doi.org/10.1088/1126-6708/2008/04/100
https://doi.org/10.1088/1126-6708/2008/04/100
https://doi.org/10.1088/1126-6708/2008/04/100
https://doi.org/10.1088/1126-6708/2008/04/100
https://doi.org/10.1103/PhysRevD.85.114047
https://doi.org/10.1103/PhysRevD.85.114047
https://doi.org/10.1103/PhysRevD.85.114047
https://doi.org/10.1103/PhysRevD.85.114047
https://doi.org/10.1103/PhysRevD.91.039902
https://doi.org/10.1103/PhysRevD.91.039902
https://doi.org/10.1103/PhysRevD.91.039902
https://doi.org/10.1088/0954-3899/41/12/124004
https://doi.org/10.1088/0954-3899/41/12/124004
https://doi.org/10.1088/0954-3899/41/12/124004
https://doi.org/10.1088/0954-3899/41/12/124004
https://doi.org/10.1103/PhysRevLett.94.072305
https://doi.org/10.1103/PhysRevLett.94.072305
https://doi.org/10.1103/PhysRevLett.94.072305
https://doi.org/10.1103/PhysRevLett.94.072305
https://doi.org/10.1016/j.nuclphysa.2009.09.053
https://doi.org/10.1016/j.nuclphysa.2009.09.053
https://doi.org/10.1016/j.nuclphysa.2009.09.053
https://doi.org/10.1016/j.nuclphysa.2009.09.053
https://doi.org/10.1103/PhysRevD.90.091501
https://doi.org/10.1103/PhysRevD.90.091501
https://doi.org/10.1103/PhysRevD.90.091501
https://doi.org/10.1103/PhysRevD.90.091501
https://doi.org/10.1103/PhysRevC.94.024907
https://doi.org/10.1103/PhysRevC.94.024907
https://doi.org/10.1103/PhysRevC.94.024907
https://doi.org/10.1103/PhysRevC.94.024907
https://doi.org/10.1103/PhysRevC.91.014903
https://doi.org/10.1103/PhysRevC.91.014903
https://doi.org/10.1103/PhysRevC.91.014903
https://doi.org/10.1103/PhysRevC.91.014903
https://doi.org/10.1103/PhysRevD.27.140
https://doi.org/10.1103/PhysRevD.27.140
https://doi.org/10.1103/PhysRevD.27.140
https://doi.org/10.1103/PhysRevD.27.140
https://doi.org/10.1103/PhysRevC.94.014904
https://doi.org/10.1103/PhysRevC.94.014904
https://doi.org/10.1103/PhysRevC.94.014904
https://doi.org/10.1103/PhysRevC.94.014904
https://doi.org/10.1103/PhysRevD.10.186
https://doi.org/10.1103/PhysRevD.10.186
https://doi.org/10.1103/PhysRevD.10.186
https://doi.org/10.1103/PhysRevD.10.186
https://doi.org/10.1103/PhysRevC.68.034913
https://doi.org/10.1103/PhysRevC.68.034913
https://doi.org/10.1103/PhysRevC.68.034913
https://doi.org/10.1103/PhysRevC.68.034913
https://doi.org/10.1007/BF01562334
https://doi.org/10.1007/BF01562334
https://doi.org/10.1007/BF01562334
https://doi.org/10.1007/BF01562334
https://doi.org/10.1007/JHEP11(2013)120
https://doi.org/10.1007/JHEP11(2013)120
https://doi.org/10.1007/JHEP11(2013)120
https://doi.org/10.1007/JHEP11(2013)120
https://doi.org/10.1007/JHEP10(2014)083
https://doi.org/10.1007/JHEP10(2014)083
https://doi.org/10.1007/JHEP10(2014)083
https://doi.org/10.1007/JHEP10(2014)083
https://doi.org/10.1007/JHEP12(2014)029
https://doi.org/10.1007/JHEP12(2014)029
https://doi.org/10.1007/JHEP12(2014)029
https://doi.org/10.1007/JHEP12(2014)029
https://doi.org/10.1088/1126-6708/2006/12/015
https://doi.org/10.1088/1126-6708/2006/12/015
https://doi.org/10.1088/1126-6708/2006/12/015
https://doi.org/10.1088/1126-6708/2006/12/015
https://doi.org/10.1103/PhysRevD.83.034504
https://doi.org/10.1103/PhysRevD.83.034504
https://doi.org/10.1103/PhysRevD.83.034504
https://doi.org/10.1103/PhysRevD.83.034504
https://doi.org/10.22323/1.171.0185
https://doi.org/10.22323/1.171.0185
https://doi.org/10.22323/1.171.0185
https://doi.org/10.22323/1.171.0185
https://doi.org/10.1103/PhysRevLett.21.244
https://doi.org/10.1103/PhysRevLett.21.244
https://doi.org/10.1103/PhysRevLett.21.244
https://doi.org/10.1103/PhysRevLett.21.244
https://doi.org/10.1016/0146-6410(94)90049-3
https://doi.org/10.1016/0146-6410(94)90049-3
https://doi.org/10.1016/0146-6410(94)90049-3
https://doi.org/10.1016/0146-6410(94)90049-3
https://doi.org/10.1103/PhysRevC.64.035202
https://doi.org/10.1103/PhysRevC.64.035202
https://doi.org/10.1103/PhysRevC.64.035202
https://doi.org/10.1103/PhysRevC.64.035202
https://doi.org/10.1103/PhysRevC.89.034904
https://doi.org/10.1103/PhysRevC.89.034904
https://doi.org/10.1103/PhysRevC.89.034904
https://doi.org/10.1103/PhysRevC.89.034904
https://doi.org/10.1016/j.nuclphysa.2008.06.007
https://doi.org/10.1016/j.nuclphysa.2008.06.007
https://doi.org/10.1016/j.nuclphysa.2008.06.007
https://doi.org/10.1016/j.nuclphysa.2008.06.007
https://doi.org/10.1103/PhysRevC.75.054909
https://doi.org/10.1103/PhysRevC.75.054909
https://doi.org/10.1103/PhysRevC.75.054909
https://doi.org/10.1103/PhysRevC.75.054909
https://doi.org/10.1140/epjc/s10052-008-0857-2
https://doi.org/10.1140/epjc/s10052-008-0857-2
https://doi.org/10.1140/epjc/s10052-008-0857-2
https://doi.org/10.1140/epjc/s10052-008-0857-2
https://doi.org/10.1140/epjc/s10052-009-0878-5
https://doi.org/10.1140/epjc/s10052-009-0878-5
https://doi.org/10.1140/epjc/s10052-009-0878-5
https://doi.org/10.1140/epjc/s10052-009-0878-5
https://doi.org/10.1088/0954-3899/35/10/104036
https://doi.org/10.1088/0954-3899/35/10/104036
https://doi.org/10.1088/0954-3899/35/10/104036
https://doi.org/10.1088/0954-3899/35/10/104036
https://doi.org/10.1103/PhysRevC.95.014906
https://doi.org/10.1103/PhysRevC.95.014906
https://doi.org/10.1103/PhysRevC.95.014906
https://doi.org/10.1103/PhysRevC.95.014906



