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New method to calculate the nuclear radius from low energy fusion and total reaction cross sections
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We introduce a new method to calculate the nuclear radius from low energy fusion and total reaction cross
section measurements. We apply it for several light stable and unstable projectiles on light mass targets (9Be, 12C,
and 27Al). Our results are in reasonable agreement with the radii obtained from high energy experimental data.
We also interpreted the results as a function of the isospin of the projectile, mass of the interacting target, and
neutron and proton numbers.
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I. INTRODUCTION

With the advent of new accelerator facilities, there has
been a great improvement in the study of reactions induced
by radioactive ion beams, in order to investigate the effects
of nuclear structure on reaction mechanisms [1–9]. Light
nuclei located near or far from the line of stability usually
exhibits exotic structures, such as a halo- or skin-like structure
and the study of nuclear reactions with the exotic nuclei is
very interesting due to their extended size and weakly bound
cluster like structures. The weakly bound nature of these exotic
nuclei results in a larger nuclear radii, which may result in
the increased probabilities for specific reaction channels such
as transfer or breakup [10–14]. It is well established that the
nuclear interaction cross sections of the stable and unstable
nuclei can be measured by using high energy heavy ion
reactions [10]. The interacting radius can be deduced directly
from the total reaction cross section (TRCS) measurements by
using a geometric relation valid at high energies:

σR = πR2
I , (1)

where RI is the interacting radius, which is the sum of the
projectile and target radii (RI = Rp + Rt ) [15]. Moreover,
the total reaction cross sections can be obtained directly from
experiments or can be extracted by analyzing elastic scatter-
ing angular distributions using different model calculations
[13,16]. More recently, several reports show that low energy
elastic scattering measurements of systems involving exotic
projectiles such as 6He [11–14], 11Li [17], 11Be [18], and
others, provide estimations of the TRCS. Elastic scattering
measurements provide information about the strong nuclear
potential as well as the total reaction cross sections [16].
However, TRCS are usually affected by couplings between
elastic and other reaction channels such as fusion, transfer
reactions, inelastic scattering, breakup, and so on. In general,
in the elastic scattering of light nuclei at low energy, the fusion
reaction is the one that contributes most significantly to the total
reaction cross section. In case of very weakly bound exotic
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projectiles such as 6He, 11Li, 11Be, and others, the breakup
channel may have a relevant effect on the total reaction cross
section. Scattering of these exotic nuclei on heavy targets are
usually influenced by breakup reactions occurring in the long-
range Coulomb field, far away from the short-range nuclear
interaction. This long-range Coulomb breakup is induced by
the strong dipole and quadrupole projectile polarizabilities and
may contribute significantly to the total reaction cross sections,
affecting the nuclear radius obtained directly from Eq. (1).

For light targets, on the other hand, the scattering at energies
above the Coulomb barrier is dominated by the short-range
nuclear interaction and the effect of the Coulomb breakup
seems to be less important. Thus it seems to be possible to
obtain information of the nuclear radius directly from total
reaction cross section measurements using light targets.

In this paper, we propose a new method to obtain the pro-
jectile nuclear radius from fusion cross section measurements
at low energy. We used total reaction cross section data where
fusion data are not available.

The structure of this paper is organized as follows. Section II
describes the method to obtain the nuclear radius using fusion
and TRCS data. Section III presents the application of the
method for several stable and unstable projectiles (6He, 6,7,8Li,
7,9Be, 8,10B, and 12C) on 9Be, 12C, and 27Al targets. Section IV
interprets the results as a function of the isospin, proton and
neutron numbers. Finally, Sec. V summarizes the conclusions.

II. METHODOLOGY

The energy dependence of the total reaction cross section
at near barrier energies can be described by the well-known
geometric formula [19]:

σR = πR2
I

(
1 − VB

E

)
, (2)

where VB is the Coulomb barrier height and it is only valid for
E > VB . Equation (2) is deduced from the exact formula: σR =
π
k2

∑lgraz

0 (2l + 1)T (l), assuming a sharp cutoff transmission
coefficient T (l) = 1 for l � lgraz and T (l) = 0 for l > lgraz

a semiclassical relation for the grazing angular momentum:
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FIG. 1. Nuclear (dashed line), Coulomb (dotted line), and total
effective (solid line) potentials as a function of the radius for a Woods-
Saxon shape with V0 = 15 MeV, r0 = 1.3 fm, and a = 0.65 fm for the
6He + 27Al system. The position (RB ), height (VB ) of the Coulomb
barrier and the nuclear radius (R) taken at one-half of the nuclear
saturation value are shown.

lgraz = RI

√
2μ(E − VB)/h̄, where μ is the reduced mass of

the system.
In the high energy limit, Eq. (2) can be simplified to Eq. (1).

At low energies it takes into account the reduction of the
reaction cross section due to the proximity of the Coulomb
barrier.

Recently, it was found that the fusion cross sections of heavy
systems are well reproduced by Eq. (2), provided that VB and
RB (RI = RB , where RB is the Coulomb barrier radius) are
obtained from calculations for the short range nuclear potential
using a double folding potential [20].

If the nuclear potential is known, the Coulomb barrier height
VB and position RB can be obtained from Eq. (3) below:

d

dr
[Vcoul(r) + Vnucl(r)]r=RB

= 0, (3)

where Vcoul(r) = Z1Z2e
2/r and Vnucl(r) is the real part of the

short range nuclear interaction.
In Fig. 1, we plot Veff = Vnucl(r) + Vcoul(r) for a Woods-

Saxon nuclear potential and l = 0. In this figure we can see
that the Coulomb barrier height VB and radius RB are fully
determined by the nuclear potential in the surface region (r >
R) and are not affected by its shape in the inner region (r < R).

Therefore, the tail of the short-range nuclear potential
determines the Coulomb barrier parameters. In this way, the
problem is simplified, since the nuclear potential takes the
exponential form in the surface region. Considering a Woods-
Saxon shape the tail of the potential reduces to V → V0e

R
a e

−r
a

for r � R. In addition to this, in Ref. [20] it is shown that
it is possible to reproduce the exponential tail of a double
folding potential using a Woods-Saxon potential with the fixed
geometry as R = 1.3(A1/3

1 + A
1/3
2 ), a = 0.65 fm and V0 ≈ 15

MeV. The use of a Woods-Saxon shape allows to obtain
an analytical solution to Eq. (3) in the relevant region (see
calculation details in Ref. [20]). Thus, the final expressions for

VB and RB proposed by Ref. [20] are given by

VB = ZpZte
2

RB

− 15

x + 1
, (4)

where x is a dimensionless parameter written as

x = 27.1
(
A

1/3
p + A

1/3
t

)2

ZpZt

. (5)

The relation between the nuclear radius R and the Coulomb
barrier radius RB is given by

RB = R + 0.65 ln(x), (6)

Formulas (4), (5), and (6) provide values for VB and RB

compatible with the results obtained from numerical resolution
of Eq. (3) using double folding potentials [20]. We see from
the above equations that VB and RB basically depend on a
single dimensionless parameter x, which is a simple function
of the mass and charge of the colliding nuclei. In Ref. [20],
the estimates from these formulas show a good agreement
with the fusion cross section for stable systems at energies
above the Coulomb barrier.

In addition, the above formulas allow an estimation of
the nuclear radius in a inverse way, i.e., first the Coulomb
barrier radius RB is directly obtained from fusion cross section
measurements using Eq. (2), and then the nuclear radius R is
calculated from Eq. (6). As the dependence on VB of Eq. (2)
is only a correction, one can use VB as obtained in zero order
from Eq. (4) with RB from Eq. (6) with R = 1.3(A1/3

1 + A
1/3
2 ).

This allows us to adjust a single parameter RB in Eq. (2) to fit
fusion or total reaction cross section data.

It is to be noted that the nuclear radius R, as defined here,
stands for the radius where the density of the nuclear matter
falls to one-half of its saturation value.

III. RESULTS

A. Identical systems

As a first step, the new method to obtain the nuclear radius
using fusion and total reaction cross sections was applied
on 9Be + 9Be, 10B + 10B, and 12C + 12C identical systems
[21–25]. For these systems there are available fusion and TRCS
data as a function of the energy. The analysis was performed
as follows: first the Coulomb barriers VB were obtained in
zero order using Eqs. (4), (5), and (6) with R = 1.3(2A1/3)
with Ap = At = A. Then, RB was adjusted to best fit the
TRCS (or fusion) data using Eq. (2). The error bar in RB was
estimated by varying the RB value in order to produce two
dashed curves, as shown in the figures. Finally, the nuclear
radius R for the identical systems was calculated from Eq. (6),
since R = 2R(p) and then the projectile radius is obtained
using R(p) = R/2.

Figure 2 shows the RB best fits (solid lines) obtained using
Eq. (2) with RB = 7.27 fm and RB = 7.43 fm, for 9Be + 9Be
and 12C + 12C systems, respectively. The nuclear radius was
calculated using Eq. (6) and the results are R(p) = 2.53(23) fm
for 9Be and R(p) = 2.82(28) fm for 12C nucleus. This values
are in good agreement with ones obtained by Tanihata et al.
at high energy, reported as 2.45(1) fm and 2.61(2) fm for 9Be
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FIG. 2. Total fusion (solid squares) and total reaction (solid
circles) cross section for (a) 9Be + 9Be and (b) 12C + 12C systems
[21,22,24]. Solid lines are the RB fits using Eq. (2) and the dashed
lines provide an estimation of the RB error bars.

and 12C, respectively [10]. Furthermore, Ref. [26] presents the
experimental root-mean-square (rms) nuclear charge radii for
909 isotopes of 92 elements from 1H to 96Cm, obtained by
analysis of radii changes determined from optical and, to a
lesser extent, Kα x-ray isotope shifts absolute radii measured
by muonic spectra and electronic scattering experiments. In
this case, the rms radius of the 9Be and 12C are reported as
2.52(1) fm and 2.47(2) fm [26], respectively.

Figure 3 shows the results for 10B + 10B (a) fusion [23]
and (b) TRCS [25] data. The 10B nuclear radius obtained
from fusion cross section is R = 1.95(15) fm and obtained
from TRCS data is R = 2.20(15) fm. Both values are however
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FIG. 3. (a) Total fusion and (b) total reaction cross sections for
the 10B + 10B system [23]. The solid curves are the best RB fits using
Eq. (2) and the dashed lines provide an estimation of the RB error
bars.
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FIG. 4. Total reaction cross sections (solid circles) for (a) the
6He + 9Be system [13,43], (b) the 6He + 12C system [32], and (c)
the 6He + 27Al system [39]. Solid line is the RB fit using Eq. (2) and
the dashed lines provide an estimation of the RB error bars.

smaller than the rms radius value of R = 2.43(5) fm reported
in Ref. [26].

B. Application for He, Li, and Be projectiles

Once the radii of 9Be and 12C have been determined from
data of identical systems, it is possible to apply this method to
data of non-identical systems involving 9Be and 12C targets
with different projectiles, in order to obtain the projectile
radius. We apply it to 6He, 6,7,8Li, 7,9Be, and 8,10B on 9Be, 12C,
and 27Al targets. For 27Al the radius was assumed to be
R = r0A

1/3, where r0 is taken as 1.3 fm and A = 27. No error
was assumed for the 27Al radius.

The total reaction cross sections were obtained di-
rectly from available elastic scattering angular distributions
[13,21,24,25,27–40]. When several results of total reaction
cross sections were available for the same system, the average
value and standard deviations were used. As described in
Sec. III A, the fusion or TRCS data were fitted to obtain
RB . Then, the nuclear radius R was calculated from Eq. (6).
Since R = R(p) + R(t), the projectile radius is obtained by
R(p) = R − R(t), where R(t) is the target radius determined
in Sec. III A.

Figures 4, 5, 6, 7, 8, 9, and 10 show the results of RB fit for all
systems studied. In particular, the total reaction cross section
for the 6Li + 9Be system was extracted by using three different
approaches: Woods-Saxon, São Paulo potential [41,42], and
collective model [30] formalisms. The last one interprets the
excitations in terms of the deformation of the charge and/or
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FIG. 5. Total reaction cross sections (solid circles) for (a) the
6Li + 9Be system [30,44–46], (b) the 6Li + 12C system [33,34], and
(c) the 6Li + 27Al system [39]. Solid line is the RB fit using Eq. (2)
and the dashed lines provide an estimation of the RB error bars.

mass distribution of the nuclei [30]. Compatible results of total
reaction cross sections were obtained for the same energy and
the average values with respective standard deviations were
used. The results are shown in Fig. 5.
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FIG. 6. Total reaction cross sections (solid circles) for (a) the
7Be + 9Be system [27,47] and (b) the 7Be + 27Al system [48]. Solid
line is the RB fit using Eq. (2) and the dashed lines provide an
estimation of the RB error bars.
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FIG. 7. Total reaction cross sections (solid circles) for
(a) the 7Li + 9Be system [27], (b) the 7Li + 12C system [36],
and (c) the 7Li + 27Al system [39]. Solid line is the RB fit using
Eq. (2) and the dashed lines provide an estimation of the RB error
bars.

Table I presents the results for RB , R, the projectile
radius R(p) for all analysed systems. The reduced radii [r0 =
R(p)/A1/3

p ] were also calculated and the results are shown in
Table I.
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FIG. 8. Total reaction cross sections (solid circles) for (a) the 8B +
12C system [37] and (b) the 8B + 27Al system [28]. Solid line is the
RB fit using Eq. (2) and the dashed lines provide an estimation of the
RB error bars.
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FIG. 9. Total reaction cross sections (solid circles) for (a) the
8Li + 9Be system [28,29,31], (b) the 8Li + 12C system [28,35], and
(c) the 8Li + 27Al system [28]. Solid line is the RB fit using Eq. (2)
and the dashed lines provide an estimation of the RB error bars.
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FIG. 10. Total reaction cross sections (solid circles) for (a) the
9Be + 12C system [38] and (b) the 9Be + 27Al system [49]. Solid line
is the RB fit using Eq. (2) and the dashed lines provide an estimation
of the RB error bars.

As far as the errors of the method are concerned a comment
is necessary. The RB error is propagated to R in formula (6)
and then the projectile radius, as mentioned before, is deter-
mined from equation R(p) = R − R(t). The error propagation

TABLE I. Coulomb barrier energy in the center of mass system (VB ), Coulomb barrier radius (RB ), x parameter [see Eq. (5)], nuclear radius
(R), projectile radius [R(p)], projectile radius obtained from literature [R(p)lit], projectile reduced radius [r0 = R(p)/A(p)1/3], and a list of
references for the total reaction and fusion cross sections used in this calculations.

System VB (MeV) RB (fm) x R (fm) R(p) (fm) R(p)lit r0 (fm) Refs.

9Be + 9Be 2.53 7.27(45) 29.31 5.07(45) 2.53(23) 2.45(1) [10] 1.22(11) [21,22]
6He + 9Be 1.22 7.42(25) 51.45 4.85(25) 2.32(34) 2.48(1) [50–52] 1.28(19) [13,43]
6Li + 9Be 1.92 7.13(35) 34.30 4.83(35) 2.30(42) 2.09(2) [10] 1.27(23) [30,44–46]
7Li + 9Be 1.89 7.19(10) 36.01 4.86(10) 2.32(25) 2.23(2) [10] 1.21(13) [27]
7Be + 9Be 2.61 7.03(25) 27.01 4.88(25) 2.35(34) 2.22(2) [10] 1.23(18) [27,47]
8Li + 9Be 1.87 7.19(20) 37.59 4.83(20) 2.29(30) 2.36(2) [10] 1.15(15) [28,29,31]
12C + 12C 5.80 7.43(55) 15.78 5.64(55) 2.82(28) 2.61(2) [10] 1.23(12) [24]

2.47(2) [26]
6He + 12C 1.86 7.45(28) 38.08 5.08(28) 2.26(39) 2.18(2) [10] 1.25(22) [32]

2.21(6) [15]
6Li + 12C 2.92 7.10(30) 25.39 4.99(30) 2.18(41) 1.20(23) [33,34]
7Li + 12C 2.87 7.35(7) 26.59 5.22(7) 2.40(29) 1.25(15) [36]
8Li + 12C 2.83 7.96(15) 27.70 5.80(15) 2.98(32) 1.49(16) [28,35]
8B + 12C 4.98 7.41(11) 16.62 5.58(11) 2.76(30) 1.38(15) [37]
9Be + 12C 3.84 7.87(07) 21.56 5.87(07) 3.05(29) 2.52(1) [26] 1.47(14) [38]
6He + 27Al 3.90 8.34(15) 24.19 6.27(15) 2.37(15) 2.59 [53] 1.30(8) [39]
6Li + 27Al 6.08 8.76(20) 16.12 6.95(20) 3.05(20) 1.68(11) [39]
7Li + 27Al 5.99 8.51(15) 16.77 6.68(15) 2.78(15) 1.45(9) [39]
8Li + 27Al 5.90 8.85(73) 17.37 6.99(73) 3.09(73) 1.55(37) [28]
7Be + 27Al 8.22 8.25(30) 12.58 6.60(30) 2.70(30) 1.41(16) [48]
9Be + 27Al 7.99 8.83(60) 13.45 7.14(60) 3.24(60) 1.56(29) [49]
8B + 27Al 10.35 9.67(90) 10.42 8.15(90) 4.25(90) 2.12(45) [28]
10B + 10B 4.06 5.84(29) 20.13 3.88(29) 1.95(15) 2.43(5) [26] 0.90(7) [23]
10B + 10B 4.06 6.34(30) 20.13 4.39(30) 2.20(15) 2.43(5) [26] 1.02(7) [25]
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FIG. 11. Reduced radii of different stable and unstable nuclei as
a function of isospin.

becomes critical here since, if the errors in R(t) are large,
they will propagate it to R(p). In cases where R(p) = R(t),
as the 9Be + 9Be and 12C + 12C, we have R(p) = R/2 and
the propagation does not affect much the relative errors. But,
if R(t) > R(p) this effect may become critical, introducing
prohibitive errors to the projectile radius determination.

In particular, a weighted average with 9Be and 12C targets
was used to obtain the radius for the 6He projectile. The result
is R = 2.29(26) fm, in agreement with the previous reports of
6He radius [10,15,52–54].

IV. NUCLEAR RADIUS AS A FUNCTION OF PROJECTILE
ISOSPIN, TARGET MASS, PROJECTILE NEUTRON, AND

PROTON NUMBERS

The present results were systematically analysed by plotting
the reduced radius r0 of the different stable and unstable nuclei
on light targets (9Be, 12C, and 27Al) as a function of (i) isospin
of the projectile, (ii) mass of the target, (iii) projectile neutron
number (for a fixed proton number), and (iv) projectile proton
number (for a fixed neutron number). Here, the projectile
isospin is defined as (N − Z)/A, where A is the mass, N is
the neutron number, and Z is the proton number.

Figure 11 presents r0 as a function of the isospin. One can
also observe that near the line of stability (isospin smaller
than 1/2) the nuclear radius tends to be smaller and increasing
slightly for nonzero isospin. Despite the large error bars, this
may be an indication that nuclei along the stability valley tend
to have radii smaller than nuclei away from the stability valley.

We have tried to interpret the results by plotting the reduced
radius for the same projectile as a function of the mass of the
targets (9Be, 12C, and 27Al). The results are shown in Fig. 12
and one can clearly observe that the radius of the projectile is
not so independent of the interacting target mass. Furthermore,
the same projectile on 9Be and 12C targets provides reasonably
compatible results, showing the validity of our method. On
the other hand, the r0 obtained with 27Al target shows, for
some projectiles, values that are higher than the ones obtained
from 9Be and 12C targets. This may be considered a limitation
of our method when the mass number (A) becomes large.
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FIG. 12. Reduced radii of different projectiles plotted as a func-
tion of mass of the targets. Black points represents the 9Be target, red
points the 12C target, and green points the 27Al target.

As previously mentioned, for heavier targets, reactions in the
Coulomb field may become more important, affecting the
TRCS and consequently the radius estimations. In this cases,
fusion cross sections should be used instead of TRCS.

Finally, Fig. 13 shows the reduced radius r0 as a function
of N (fixing Z) and Z (fixing N ).

Even though the error bars are large, one can observe that,
for the equal number of neutrons and protons, the nucleus
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FIG. 13. Reduced radii of different nuclei as a function of Z (fixed
N ) and N (fixed Z).
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seems to be more tightly packed, indicating that the nuclear
radius is smaller in this configuration. From Fig. 13(a) for a
fixed Z is possible to observe a small increase in the size of the
nuclei according to the neutron number increase. Similarly,
from Fig. 13(b) one can observe an identical result for a
fixed N .

V. SUMMARY AND CONCLUSIONS

We presented a simple formalism to determine the nuclear
radius from low energy fusion cross section data. When fusion
data are not available, total reaction cross section data were
used. We applied this methodology to several stable and
unstable light nuclei interacting on light targets. The present
results are in reasonable agreement with the radii obtained
from reactions at high energies. Further, similar results were
obtained for the same projectiles on different targets prove the
reliability of this method.

It is observed that there is a slight tendency of the reduced
radius, as a function of the isospin, showing an increase for
nuclei away from the stability valley. The observed effects
are small and similar to the error bars, however they may
indicate a slight increasing trend of the nuclear radius for exotic
projectiles such as 6He and 8B.

The present method is applicable to light systems at energies
above the Coulomb barrier. At energies on the top of the
Coulomb barrier and below, other effects due to coupled

channels may become important, which are not accounted by
the simple formula presented here. For heavier systems the
effect of reactions in the long range Coulomb field certainly
affects considerably the total reaction cross sections.

Indeed, for weakly bound and exotic projectiles there are
indications that the complete fusion process may be suppressed
above the Coulomb barrier. A possible explanation for this
reduction is due to the breakup of the projectile prior to the
fusion process. If the projectile breaks before it fuses with the
target, it would enhance the barrier for the fragments and even-
tually reduce the complete fusion probability. Suppressions of
about 30% have been observed for 6,7Li and 9Be projectiles on
medium mass and heavy targets [55]. In this case, one should
use the total fusion (complete + incomplete) instead of the
complete fusion to extract the radius.

Given the simplicity of the method, we believe it is a
useful tool to estimate the nuclear radius from cross section
measurements at low energies. On the other hand, the method
is a tool that provides good estimations of the fusion cross
sections for stable systems at energies above the Coulomb
barrier.
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