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Neutron width statistics in a realistic resonance-reaction model
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A recent experiment on s-wave neutron scattering from 192,194,196Pt found that the reduced neutron width
distributions deviate significantly from the expected Porter-Thomas distribution (PTD), and several explanations
have been proposed within the statistical model of compound nucleus reactions. Here, we study the statistics
of reduced neutron widths in the reaction n + 194Pt within a model that combines the standard statistical model
with a realistic treatment of the neutron channel. We find that, if the correct secular energy dependence of the
average neutron widths is used, the reduced neutron width distribution is in excellent agreement with the PTD
for a reasonable range of the neutron-nucleus coupling strength and depth of the neutron channel potential.
Within our parameter range, there can be a near-threshold bound or virtual state of the neutron channel potential
that modifies the energy dependence of the average width from the

√
E dependence, commonly assumed in

experimental analysis, in agreement with the proposal of Weidenmüller [Phys. Rev. Lett. 105, 232501 (2010)].
In these cases, the reduced neutron width distributions extracted using the

√
E dependence are broader than the

PTD. We identify a relatively narrow range of parameters where this effect is significant.

DOI: 10.1103/PhysRevC.98.014604

I. INTRODUCTION

The statistical model of compound nucleus (CN) reactions
predicts that reduced widths for any channel follow the Porter-
Thomas distribution (PTD) [1,2], a χ2 distribution in ν = 1 de-
grees of freedom. Recently, an experiment on s-wave neutron
scattering from 192,194,196Pt found a much broader distribution
of the reduced neutron widths [3]. Several explanations have
been proposed for this deviation from the PTD within the
statistical model, but none has fully resolved the issue.

In Ref. [4], it was argued that the secular energy dependence
of the average neutron widths can deviate from the usually
assumed

√
E form for Pt isotopes because of a near-threshold

bound or virtual state of the neutron channel potential. The au-
thors of Ref. [3] showed that using the modified normalization
proposed in Ref. [4] [see Eq. (4) below] to extract the reduced
widths did not improve the agreement between their data and
the PTD [5]. However, their procedure for determining the
resonances might not hold in the presence of a bound or virtual
state very close to threshold [4,5], so the possible existence of
such a state is still an open question.

Other work has attempted to explain the experimental
results through the nonstatistical interactions between the CN
states due to coupling to the neutron channel. It has been
shown that the imaginary nonstatistical interaction can cause
deviation from the PTD even for fairly weak coupling [6,7].
However, it is not clear how strong this effect would be in Pt
isotopes. In Ref. [8], it was proposed that the real shift due to
off-shell coupling to the neutron channel perturbs the GOE near
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threshold. However, it was subsequently proven [9] that in the
model of Ref. [8] the PTD would hold locally in the resonance
spectrum. Many-body correlations beyond the statistical model
have also been studied [10].

However, no study has incorporated all the relevant physics
of the statistical model. Importantly, near threshold, the real
and imaginary nonstatistical interactions have a strong energy
dependence that has been neglected in all prior numerical and
analytical work [6–10]. Moreover, no study has used realistic
parameters for neutron scattering from Pt isotopes. For these
reasons, prior work has not fully settled the question of whether
PTD violation within the statistical model could occur for this
reaction. This problem is of considerable importance because
the statistical model is widely used in CN reaction calculations.

Here, we study neutron scattering off 194Pt within a reaction
model that combines a realistic treatment of the neutron
channel with the usual description of the internal CN states by
the Gaussian orthogonal ensemble (GOE) of random-matrix
theory [2]. Our model enables us to study average neutron
widths, the reduced width distribution, and the elastic and
capture cross sections within the same framework. We start
with a baseline physical parameter set for the model taken
from the literature. We then vary the parameter set to produce
the conditions under which the proposed mechanisms for PTD
violation could be operative. Finally, we discuss the compati-
bility of these varied parameter sets with the scattering data.

Our main conclusion is that, within the reasonably large pa-
rameter range studied, the reduced neutron width distribution
is in excellent agreement with the PTD. Thus, when described
realistically, the nonstatistical interactions cannot explain the
observed deviation from the PTD within the parameter range
used. Evidence of PTD violation may be observed only if the
secular energy dependence of the average neutron width is not
described correctly. Within our parameter range, there can be
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a near-threshold bound or virtual state of the neutron channel
potential. In the presence of such a state, the energy dependence
of the average neutron width differs significantly from the

√
E

dependence [4], and reduced width distributions extracted with
the

√
E assumption are broader than the PTD. We identify

measurable signatures of this state’s existence.

II. HAMILTONIAN AND RESONANCE DETERMINATION

Our model Hamiltonian matrix H combines a mesh repre-
sentation of the neutron channel with the GOE description of
the internal states. The neutron channel mesh has spacing �r
and radial sites ri = i�r , (i = 1, . . . ,Nn). The channel Hamil-
tonian matrix is Hn,ij = [2t + V (ri)]δij − tδi,j+1 − tδi,j−1,
where t = h̄2/2m(�r)2 and V (r) is the channel potential. The
energies of the Nc internal states follow the middle third of
a GOE spectrum with average spacing D. To each internal
energy we add the imaginary constant (−i/2)�γ to account
for resonance decay by γ -ray emission. The neutron channel
couples to each internal state μ at a single site re = ie�r with
strength vμ = v0(�r)−1/2sμ, where v0 is a coupling constant
and sμ are drawn from a normal distribution with zero average
and unit variance. The explicit �r dependence of vμ is required
to achieve a fixed v0 in the continuum limit �r → 0. All
results shown below were calculated using (�r,Nn,Nc) =
(0.01 fm,1500,360).

We find the complex wave numbers kr that correspond to
the neutron resonances by solving the Schrödinger equation
H �u = E�u (�u is a column vector with Nn + Nc components)
with the appropriate boundary conditions for the neutron wave
function u(r). We impose u(0) = 0 for the wave function
to be regular at the origin. A resonance is a pole of the
S matrix corresponding asymptotically to a purely outgoing
wave, i.e., u(r) → B(k)eikr for large r . For sufficiently large
Nn, this condition yields u(Nn + 1) = u(Nn)eik�r . We obtain
the nonlinear eigenvalue problem

M(k)�u = [H − teik�rC − E]�u = 0, (1)

where Cij = δi,j δi,Nn
. We solve (1) iteratively to find the

resonances kr , adapting a method from Ref. [11]. The reso-
nance energies Er and total widths �r are determined from
h̄2k2

r /2m = Er − (i/2)�r . The partial neutron widths �n,r

are then given by �n,r = �r − �γ . Elastic and capture cross
sections are calculated from the elastic scattering amplitude,
which is determined using the boundary conditions of a
scattering wave. Further details and the relevant computer
codes are provided in the Supplemental Material [12].

III. APPLICATION TO n+194Pt

We determine a baseline parameter set as follows. We take a
Woods-Saxon potential in the neutron channel with parameters
V0 = −44.54 MeV and (r0,a0) = (1.27,0.67) fm (see Eqs. (2-
181) and (2-182) of Ref. [13]). The mean resonance spacing
D = 82 eV and the total γ decay width �γ = 72 meV are taken
from the RIPL-3 database [14]. We choose a coupling strength
of v0 = 11 keV-fm1/2 to reproduce roughly the RIPL-3 neutron
strength function S0

√
En = �̄n/D at neutron energy of En = 8

keV (see Table I).

TABLE I. Calculated resonance properties of the n + 194Pt re-
action for various parameter sets. The neutron strength function
parameter S0 = (�̄n/D)/

√
E and average elastic scattering cross

section σ̄el are evaluated at E = 8 keV. The RIPL-3 strength function
parameter is 2 × 10−4 eV−1/2 [14]. The capture cross section σ̄γ is the
average over the interval 5–7.5 keV corresponding to the measured
value of 0.6 b [17]. Reductions A and B are as described in the caption
to Fig. 3. The row labeled χ 2

r PTD contains the χ -squared results
comparing the reduced width distributions to the PTD. The values νfit

and χ 2
r fit refer to the maximum-likelihood fit to Eq. (5).

Model baseline M2 M3 M4 M5 M6

V0 (MeV) −44.54 −41.15

v0 (keV-fm1/2) 11.0 5.5 22.0 1.6 0.8 3.2
S0 × 104 (eV−1/2) 2.0 0.5 5.4 2.0 0.5 8.2
σ̄el (b) 30. 19.0 23. 279. 288. 249.
σ̄γ (b) 0.44 0.32 0.50 0.47 0.39 0.53
χ 2

r PTD A 0.9 1.0 1.1 0.9 1.0 1.4
χ 2

r PTD B 1.0 1.0 1.3 5.8 6.0 6.1
νfit A 1.0 1.0 0.98 1.0 1.0 0.98
χ 2

r fit A 0.9 1.0 1.0 0.9 1.0 1.3
νfit B 1.0 1.0 0.97 0.92 0.92 0.92
χ 2

r fit B 1.0 1.1 1.1 3.4 3.8 3.7

Figure 1 shows the elastic and capture cross sections for the
baseline model averaged over neutron energy in bins of 1 keV
width. We also show elastic and capture cross sections from
the JEFF-3.2 library [15], which are based on the reaction code
TALYS [16], averaged over the same energy bins. The histogram
in the bottom panel of Fig. 1 shows experimental energy-
averaged capture cross sections [17]. Overall, the agreement
with other calculations and experiment is sufficiently close to
take the baseline parameter set as our starting point.
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FIG. 1. Elastic scattering (top) and capture (bottom) cross sec-
tions. Our baseline calculations, averaged over 1 keV bins (black
circles joined by dashed line), are compared with cross sections
from the JEFF-3.2 library [15], averaged over the same bins (blue
squares joined by dashed-dotted line). Error bars indicate standard
deviations from ten realizations of the GOE. The red histogram shows
experimental average capture cross sections [17].
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FIG. 2. Comparison of �̄n(E) calculated for the different models
of Table I (histograms) with

√
E (solid blue lines), the neutron

probability density u2
E(re) (red dashed lines), and the formula in

Eq. (4) [4] (green dashed-dotted lines). Functions are normalized to
match the model calculations at E = 8 keV.

IV. REDUCED NEUTRON WIDTH STATISTICS

The reduced neutron width γn,r is defined by

γn,r = �n,r/�̄n(Er ), (2)

where �̄n(E) is the average width that varies smoothly with
the neutron energy E and Er is the resonance energy. Figure 2
shows the average widths calculated for various parameter sets.
In each case, the data was computed for 100 GOE realizations,
from each of which we take as data 160 resonances from the
middle of our model resonance spectrum. The real parts of
these resonance energies fall mostly in the interval E = 1–14
keV, which covers the bulk of the experimental range of
Ref. [3]. For the baseline model, the histogram compares
well with the

√
E dependence. The probability density of

the neutron scattering wave function1 at the interaction point,
u2

E(re), is also shown in Fig. 2 and, for the baseline model, is
hardly distinguishable from the

√
E curve, in agreement with

the statistical model prediction [4,18].
Next, we determine the reduced widths and compare their

distribution with the PTD. We consider the distributions
extracted using the average widths calculated from the model,
which we call reduction A, as well as those extracted using
the �̄n(E) ∝ √

E ansatz, which we call reduction B. Figure 3
shows as histograms the calculated probability distributions
of the logarithm y = ln x of the normalized reduced widths
x = γn/〈γn〉 for the baseline model. For both reductions A
and B, we find excellent agreement with the PTD for y

P(y) = xPPT(x) =
√

x

2π
e−x/2. (3)

For a quantitative comparison, we compute the reduced χ -
squared value χ2

r , using χ2
r ≈ 1 as a criterion for a good fit

1We normalize the wave function according to Eq. (2.3.7) of
Ref. [18].
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FIG. 3. The histograms describe the distributions of the logarithm
of the normalized reduced widths for the baseline model. The reduced
widths are calculated from Eq. (2). Reduction A (left) uses �̄n(E)
from the model, while reduction B (right) uses �̄n(E) ∝ √

E. The
solid lines are the PTD.

[19]. The baseline model yields χ2
r ≈ 1 for both reductions A

and B (see Table I).

V. PARAMETER VARIATION

Here we vary the parameters v0 and V0 to investigate
proposed explanations for PTD violation. First, we vary the
coupling strength v0 by a factor of two smaller or larger than
the baseline value, keeping V0 fixed at its baseline value.
These sets are labeled, respectively, by M2 and M3 in Table I.
As shown in Table I, the average elastic scattering cross
section at E = 8 keV varies only in the range 19–30 b, and
the average capture cross section in the interval 5–7.5 keV
varies by a similar fractional amount. The reduced width
distributions from reductions A and B are nearly identical
to the corresponding baseline distributions in Fig. 3. The χ2

r

values for the PTD are all close to 1, indicating good agreement
with the PTD. In the strong coupling case M3, the average
width shown in Fig. 2 deviates somewhat from the expected√

E dependence. This is a numerical effect due to the finite
bandwidth of internal states [12].

Next, we vary V0 to investigate the effect of a near-threshold
bound or virtual state in the neutron channel. With our baseline
potential, there is a bound 4s neutron level at energy ≈ −0.7
MeV.2 Changing V0 to −41.15 MeV results in a weakly
bound state with energy E0 ≈ −2 keV. This change in V0 is
sufficiently moderate to justify its inclusion in our parameter
set.3 We adjust v0 in model M4 to reproduce the RIPL-3
strength function parameter S0 and vary v0 by a factor of
two smaller or larger for models M5 and M6, respectively.
The average capture cross sections for models M4–M6, shown

2Like a resonance, a bound state is a pole of the S matrix. We find
the bound-state energies of the Woods-Saxon potential using the same
method by which we determine the resonance energies for our model
Hamiltonian [12].

3We note that the parameters of the baseline potential from Ref. [13]
were obtained from a global fit of single-particle energies at the
Fermi level. However, the states reached by neutron scattering are
significantly higher than the Fermi energy, and empirical potentials
fitted to higher energy scattering data typically become weaker as the
incident nucleon energy increases.
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in Table I, are only slightly larger than those of the baseline
model. However, the elastic cross sections are much larger than
the baseline values. Thus, experimental elastic cross sections
could be used to narrow the parameter values of our model.
Unfortunately, we know of no published experimental elastic
cross sections for this reaction.

As shown in Fig. 2, the average neutron widths for models
M4–M6 have an energy dependence that differs significantly
from

√
E. However, the quantity u2

E(re) remains an excellent
estimator of the correct energy dependence of the average
widths. An analytic expression was derived in Ref. [4] for a
near-threshold bound or virtual state with energy E0 (E0 < 0)

u2
E(re) ∝

√
E

E + |E0| . (4)

Using E0 ≈ −2 keV from our model in Eq. (4), we find
excellent agreement with both u2

E(re) and the average widths
(see Fig. 2).

The reduced width distributions for model M4 are shown
in the top panels of Fig. 4 (similar results are obtained for
models M5 and M6). The distributions extracted with the
calculated �̄n(E) (reduction A) are well described by the PTD,
as is confirmed by the χ2

r values in Table I. In contrast, the
distributions obtained using the

√
E dependence (reduction

B) are noticeably broader than the PTD, and the χ2
r values for

this reduction are significantly larger than 1.
As we make the neutron potential slightly less attractive,

the weakly bound state becomes a virtual state whose energy
E0 is also negative but on the second Riemann sheet.4 For
example, when V0 = −40.85 MeV, we have a virtual state with
E0 ≈ −2 keV. According to Eq. (4), the maximal deviation of
the average width from

√
E occurs for E0 = 0. We then expect

to see the maximal deviation from the PTD in reduction B. In
our model, this occurs for V0 = −41 MeV. The reduced width
distributions for this case are shown in the bottom panels of
Fig. 4. For reduction B, we observe an even stronger deviation
from the PTD, as expected.

Finally, for all the parameter sets considered, we made a
maximum-likelihood fit of the calculated distributions to a χ2

distribution in ν degrees of freedom

P(x|ν) = ν(νx)ν/2−1

2ν/2�(ν/2)
e−νx/2. (5)

More specifically, we find the value νfit that maximizes the
likelihood function L(ν) = ∏

i P(xi |ν), where xi are the nor-
malized reduced width data values. The PTD is recovered
for ν = 1. As shown in Table I, for reduction A, all models

4For a bound state, theS matrix has a pole on the positive imaginary k

axis. As we make the potential less attractive, an l = 0 pole crosses the
threshold and goes onto the negative imaginary k axis. The resulting
virtual state has negative energy and zero width. In contrast, for l > 0
a bound-state pole on the positive imaginary k axis moves into the
negative imaginary half-plane in k and describes a resonance with
positive energy and a finite width. See pp. 244–246 of Ref. [20].
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FIG. 4. As in Fig. 3 but for model M4 (top), and for the model
with E0 ≈ 0 (bottom). χ 2 distributions in ν = νfit degrees of freedom
are shown by the dashed gray lines. See text for details.

reproduce the PTD. Moreover, for reduction B, models M1–
M3 also reproduced the PTD. However, for models M4–M6
and for reduction B, we obtain νfit = 0.92 for all cases, and the
χ2

r values are significantly larger than 1.

VI. CONCLUSION

We have studied the statistics of neutron resonance widths in
the n + 194Pt reaction within a model that combines a realistic
treatment of the neutron channel with the GOE description
of the internal states. Our model is the first to incorporate all
aspects of the statistical model for a single-channel reaction.
Our main conclusion is that the PTD describes well the
distribution of reduced neutron widths (2) for a reasonably
large parameter range around baseline values taken from the
literature. Our results indicate that nonstatistical interactions
do not explain the experimentally observed PTD violation.
These interactions may be more important in other systems,
where the coupling between the channels and the internal states
is stronger.

Apparent PTD violation may be observed only if the
secular energy dependence of the average neutron width is
not described correctly. Within our parameter range, this can
happen in the presence of a near-threshold bound or virtual
state of the neutron channel potential. In this case, the energy
dependence of the average width differs significantly from√

E, and the distributions of reduced widths extracted with
the usual

√
E ansatz are broader than the PTD. However,

significant deviations from the
√

E behavior require that the
magnitude |E0| of the energy of this near-threshold state be
no more than a few keV for 192,194,196Pt. Moreover, as stated
above, the authors of Ref. [3] showed that using the form
(4) did not improve their data’s agreement with the PTD
[5]. However, a state so close to threshold might undermine
the experimental resonance determination procedure [4,5].
We have found that the magnitude and shape of the elastic
neutron cross section are strongly affected by a near-threshold
state in the neutron channel potential (see Table I). Therefore,
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experimental measurements of the elastic cross section would
be useful in determining the possible existence of such a
near-threshold state.
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