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Valuable theoretical predictions of nuclear dipole excitations in the whole nuclear chart are of great interest for
different applications, including in particular nuclear astrophysics. Here we extend our large-scale calculations of
the E1 and M1 absorption γ -ray strength function obtained in the framework of the axially symmetric deformed
quasiparticle random-phase approximation (QRPA) based on the finite-range D1M Gogny force to the deexcitation
strength function. To do so, shell-model calculations of the deexcitation dipole strength function are performed
and their limit at low γ energies used to complement phenomenologically the QRPA calculations. We compare
our final prediction of the E1 and M1 strength with available experimental data at low energies and show that a
fairly good agreement is obtained. Predictions of the dipole strength function for spherical and deformed nuclei
within the valley of β stability as well as in the neutron-rich region are discussed and compared with traditional
Lorentzian-type prescriptions. Its impact on the total radiative width as well as radiative neutron and proton
capture cross sections is studied.
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I. INTRODUCTION

Radiative neutron capture cross sections play a key role
in almost all nuclear applications. Despite a huge effort to
measure such radiative neutron capture cross sections, the-
oretical predictions are required to fill the gaps, both for
nuclei for which measurements are not feasible at the present
time, in particular for unstable targets, and for energies that
cannot be reached in the laboratory. Some applications, such
as nuclear astrophysics, also require the determination of
radiative neutron capture cross sections for a large number
of exotic neutron-rich nuclei [1]. In this case, large-scale
calculations need to be performed on the basis of sound and
accurate models to ensure a reliable extrapolation far away
from the experimentally known region.

The neutron capture rates are commonly evaluated within
the framework of the statistical model of Hauser-Feshbach,
although the direct capture contribution plays an important
role for very exotic nuclei [2]. The fundamental assumption of
the Hauser-Feshbach model is that the capture goes through
the intermediary formation of a compound nucleus in thermo-
dynamic equilibrium. In this approach, the (n, γ ) cross section
strongly depends on the electromagnetic interaction, i.e., the
photon deexcitation probability. In turn, it is well known
that the photon strength function is dominated by the dipole
contribution. The various multipolarities of the γ -ray strength
function are traditionally modeled by the phenomenological
Lorentzian approximation or some of its energy-dependent
variants [3].

The reliability of the γ -ray strength predictions can, how-
ever, be greatly improved by the use of microscopic or semimi-
croscopic models. Such an effort can be found in Refs. [4–8]

where a complete set of E1 and M1 γ -ray strength functions
was derived from mean-field-plus–quasiparticle random-phase
approximation (QRPA) calculations. When compared with
experimental data and considered for practical applications,
all mean-field-plus-QRPA calculations need, however, some
phenomenological corrections. These include a broadening of
the QRPA strength to take the neglected damping of collective
motions into account as well as a shift of the strength to lower
energies due to the contribution beyond the one-particle–one-
hole excitations and the interaction between the single-particle
and low-lying collective phonon degrees of freedom [9–16].
In addition, most of the mean-field-plus-QRPA calculations
assume spherical symmetries, so that phenomenological cor-
rections need to be included in a way or another in order to
properly describe the splitting of the giant dipole resonance in
deformed nuclei. State-of-the-art calculations including effects
beyond the one-particle–one-hole excitations and phonon cou-
pling are now available [9–16] but they remain computer-wise
intractable for large-scale applications.

Recently, axially symmetric-deformed QRPA calculations
based on Hartree-Fock-Bogoliubov (HFB) calculations us-
ing the finite-range Gogny interaction have been shown to
provide rather satisfactory predictions of the E1 [7] and
M1 strengths [8]. However, such QRPA calculations only
describe the photoabsorption and it is now well accepted
that the deexcitation strength function may differ from the
photoabsorption one, especially at low photon energies [3,17].
In particular, a non-zero limit of the dipole strength has been
observed experimentally [18,19] and confirmed by shell model
(SM) calculations [20–25].

In the present paper, we extend our previous HFB+QRPA
study of the E1 and M1 photoabsorption strength [7,8] to
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the deexcitation strength including a low-energy limit inspired
from SM calculation and adjusted on existing low-energy data.
The paper is organized as follows. In Sec. II, the E1 and M1
HFB+QRPA dipole photoabsorption strength functions are
rapidly described together with the way corrections beyond
QRPA are included phenomenologically. The deexcitation
dipole strength function is discussed in Sec. III and low-energy
contributions introduced to take into account the predictions
of the SM and available experimental data. In Sec. IV, we
compare measured average radiative width obtained with
our D1M+QRPA strength and with Lorentzian-type models.
Finally, the impact of the newly calculated γ -ray strength
functions on the Hauser-Feshbach estimate of the radiative
neutron and proton capture cross sections is studied and com-
pared with results obtained with more traditional Lorentzian-
type prescriptions in Sec. V. Conclusions are drawn in
Sec. VI.

II. THE D1M+QRPA DIPOLE STRENGTH

The QRPA formalism based on axially symmetric-
deformed HFB equations solved in a finite harmonic oscillator
basis in cylindrical coordinates has been described in detail
in Refs. [7,8,26–29]. In the present study, the D1M Gogny
force [30] is used. Previous studies [7] have shown that the
experimental peak energy of the giant dipole resonance (GDR)
(lying typically around 13–16 MeV [31]) is systematically
overestimated by our D1M+QRPA calculations by typically
2.5 MeV; this is a general rule for spherical as well as deformed
nuclei. Similarly, a study of the QRPA low-energy vibrational
states shows that the first experimental energies [32] are
overestimated by typically 500 keV, as shown in Fig. 1. For this
reason, the effects beyond the one-particle–one-hole QRPA
can be empirically included by considering an energy shift
that increases with energy. In comparison with our previous
study of the E1 QRPA strength [7], we now adopt a simpler
treatment of the renormalization procedure to reproduce both
the experimental GDR properties and low-energy vibrational
states. More specifically, for theE1 andM1 QRPA strength, we
now apply an energy shift of � = 0.5 MeV for εγ � 0.5 MeV,
� = 2.5 MeV for εγ = 18 MeV, and � = 5 MeV for εγ �
21 MeV. For energies in the 0.5 � εγ � 21 MeV range, the
energy shift � is interpolated linearly between the anchor
values at 0.5, 18, and 21 MeV.

Similarly, an empirical damping of the collective motions is
introduced in the QRPA strength by folding each E1 strength
by a standard Lorentzian (SLO) function of width � that has
been adjusted on photoabsorption data and is assumed to be
dependent on the atomic mass A only. We adopt the final
expression � (MeV) = 7 − A/45 for A � 200 and 2.5 MeV
otherwise. For the M1 strength, a constant value of � =
0.5 MeV is adopted [8].

With such a systematic renormalization of the HFB+QRPA
calculations, experimental strength functions based on pho-
toabsorption measurements (see also Fig. 7 below) or nuclear
resonance fluorescence can be rather well described, as already
shown in Refs. [7,8]. In particular, we compare in Figs. 2
and 3 the strength functions extracted from photoabsorption
data [33] with the D1M+QRPA calculations for some 60
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FIG. 1. Experimental–theoretical comparison of the energy of the
low-energy vibrational states (a) Kπ = 0−, (b) Kπ = 1−, (c) Kπ =
2−, and (d) Kπ = 3−. The red curve corresponds to the energy shift
applied to the HFB+QRPA strength. The color code refers to the
atomic mass range of the nuclei.

nuclei lying between 72Ge and 198Pt. Strengths for spherical
as well as deformed nuclei are rather satisfactorily described
in the 10- to 20-MeV photon energy range in terms of GDR
centroid energy, width of the resonance, and overall amplitude
of the strength. For some strongly deformed prolate nuclei,
like 176Hf, the ratio of the two GDR peaks is found to be
inverted with respect to photoabsorption data. This inversion
could originate either from an oblate, instead of a prolate,
deformation like in 194Pt or a smaller quadrupole deformation
like the one characterizing 190Os. However, such an inversion is
mainly a consequence of the folding procedure which assumes
an energy-independent width applied similarly to both the
Kπ = 0− and 1− components.

III. E1 AND M1 DEEXCITATION STRENGTH FUNCTION

When considering the deexcitation strength function, de-
viations from the photoabsorption strength can be expected,
especially for γ -ray energies approaching the zero limit. While
studies in the framework of the temperature-dependent linear
response theory for superfluid Fermi liquids have been per-
formed for some decades [34], little microscopic calculations
of the E1 and M1 deexcitation strength function are practically
available today, especially for their low-energy limit [35,36].
Recently, new calculations within the SM framework have
been performed for both the E1 and M1 modes. In particular,
it was found [22] that the E1 remains constant at energies
εγ � 5 MeV. In addition, available SM calculations [20–25] all
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FIG. 2. Comparison of the experimental GDR strength [33] (black squares) with the D1M+QRPA predictions (red lines) for 30 nuclei
between 72Ge and 148Nd.

predict an exponential increase of the M1 deexcitation strength
function at decreasing energies approaching zero. The upbend
of the strength function observed experimentally [18,19] has
therefore been assumed to be of the M1 nature, though no
experimental evidence exists for the moment. The low-energy
limits obtained by SM were found to be relatively insensitive to
the excitation energy U of the initial decaying state for the M1
strength (see, e.g., Ref. [23]) and for the E1 strength, as shown
in Fig. 4.1 The deexcitation strength function can therefore be
taken from the QRPA calculation (Sec. II) provided additional
contributions at low energies inspired from SM predictions are
included.

The final E1 and M1 strengths, including the low-energy
contributions and hereafter denoted as D1M+QRPA+0lim,

1Note that throughout this paper we use the definition
fX1(Ei, Eγ , J, π ) = 16π/9(h̄c)3〈B(X1; Ei, Eγ , J, π )〉ρ(Ei, J, π )
(where X = M or E) to extract the radiative strength from the SM
results. This expression leads to lower values in comparison with
previous studies [20–25], which used to estimate the strength on the
basis of the total level densities ρ(Ei ).

can be expressed as

←−
fE1(εγ ) = f

QRPA
E1 (εγ ) + f0U/[1 + e(εγ −ε0 )], (1)

←−
fM1(εγ ) = f

QRPA
M1 (εγ ) + Ce−ηεγ , (2)

where f
QRPA
X1 is the D1M+QRPA dipole strength at the photon

energy εγ , U (in MeV) is the excitation energy of the initial
deexciting state and f0, ε0, C, and η are free parameters
that can be adjusted on SM results and available low-energy
experimental data such as those obtained with the Oslo
method [18,19,37] or the average radiative widths [3] (see
below). The low-energy limit of the M1 strength is assumed
here to be independent of the deformation, although following
SM studies [23–25], it was found that, for deformed nuclei,
the M1 upbend is less pronounced, part of the strength being
transferred into the scissors mode region.

The impact of the low-energy limit applied to the
D1M+QRPA strength is illustrated in Fig. 5 for the E1 channel
in 44Ti where the values of f0 = 10−10 MeV−4 and ε0 =
3 MeV are considered for the low-energy strength [Eq. (1)].
Larger values around f0 = 5 × 10−10 MeV−4 and ε0 = 5 MeV
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FIG. 3. Same as in Fig. 2 for 30 nuclei between 150Nd and 198Pt.

are found to be in closer agreement with the zero energy
limit empirically determined within the generalized Lorentzian
(GLO) approach [17].
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FIG. 4. Illustration for 44Sc of the low-energy E1 strength
function predicted by the SM for three different initial excitation
energies U .

For the M1 strength, we compare in Fig. 6 the 134Xe
and 136Ba SM predictions with those obtained with the
D1M+QRPA+0lim [Eq. (2)] corresponding to the parameters
C = 10−8 MeV−3 and η = 0.8 MeV−1. To account for differ-
ent magnitudes and slopes of the M1 strengths at low energies
predicted in available SM studies, Refs. [20–25], we consider
in the present paper two sets of parameters leading, in a first
approximation, to lower and upper limits of the low-energy
contribution. These correspond to the following parameters:

(i) lower limit (D1M + QRPA + 0lim−): f0 =
10−10 MeV−4, ε0 = 3 MeV, C = 10−8 MeV−3, η =
0.8 MeV−1.

(ii) upper limit (D1M + QRPA + 0lim+): f0 =
5 × 10−10 MeV−4, ε0 = 5 MeV, C = 3 ×
10−8 MeV−3, η = 0.8 MeV−1.

The total E1 + M1 dipole strength obtained with Eqs. (1)
and (2) is compared with experimental data extracted from
photoabsorption measurements and the Oslo method in Fig. 7
for a sample of 4 nuclei and in Fig. 8 for 30 nuclei for which
Oslo data are available. Note that the dipole strength data
extracted from the Oslo method only include experimental
systematic uncertainties and not model-dependent statistical
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FIG. 5. Illustration for 44Ti of the low-energy contribution to the
E1 strength function [Eq. (1)] applied to the D1M+QRPA strength
for various initial excitation energies U , as suggested by the SM
calculations [22]. The values of f0 = 10−10 MeV−4 and ε0 = 3 MeV
are used in the empirical low-energy strength.

uncertainties which can be significantly larger and even change
the slope of the dipole strength (see Refs. [38,49] for more
details).

The present E1 and M1 strengths are also found to be in
rather good agreement with the data extracted from average
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FIG. 6. (a) Illustration for 134Xe of the low-energy contribution
to the M1 strength function [Eq. (2) with C = 10−8 MeV−3 and η =
0.8 MeV−1] applied to the D1M+QRPA strength, as suggested by the
SM calculations. (b) Same for 136Ba.
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FIG. 7. The D1M + QRPA + 0lim± dipole strength function
f1 = fE1 + fM1 given by Eqs. (1) and (2) compared with exper-
imental photodata and Oslo measurements for (a) 98Mo [38,39],
(b) 139La [40,41], (c) 148Sm [42,43], and (d) 238U [44–47].

resonance capture (ARC) experiments [50]. As shown in Fig. 9,
the E1 strength in the 5- to 8-MeV photon energy range where
ARC data exist is rather well reproduced by the D1M+QRPA
calculation for the 47 nuclei recently reanalyzed. In contrast,
the M1 QRPA strength seems to be more systematically
underestimated, especially for the spherical 96Mo and 98Mo
isotopes. For this reason, the E1/M1 ratios are overesti-
mated. Note that the E1 and M1 strengths in the 5–8 MeV
photon energy range characterizing the ARC measurements
are not affected significantly by the low-energy component
[Eqs. (1) and (2)] which becomes relevant only below typically
3–4 MeV.

IV. AVERAGE RADIATIVE WIDTH

Among the various experimental data, the average radiative
width is known to play a key role in reaction modeling [3]. The
average radiative width is defined as [3]

〈�γ 〉 = D0

2π

∑
X,L,J,π

∫ Sn+En

0
TXL(εγ )

× ρ(Sn + En − εγ , J, π )dεγ , (3)

where D0 is the average resonance spacing for s-wave neu-
trons, Sn is the neutron separation energy, En is the neutron
incident energy,

TXL = 2πε2L+1
γ

←−
fXL(εγ ) (4)

is the electromagnetic transmission coefficient (X = M or E)
for a multipolarity L, and ρ is the energy-, spin- (J ), and parity-
(π ) dependent nuclear level density.

It has been a long-standing problem that phenomenological
SLO model [3] tend to overestimate the average radiative width
significantly, while its improved and widely used version, the
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FIG. 8. Comparison of the experimental Oslo strength [48] (black squares) with the D1M + QRPA + 0lim± predictions (full red lines for
0lim+ and dotted lines for 0lim− parametrization) for 30 nuclei between 44Ti and 238Np.

so-called GLO model,2 underestimates 〈�γ 〉. For this reason,
the SLO model also tends to overestimate the radiative neutron
capture cross sections for low-energy (keV) neutrons, while
the GLO model overestimates them (see also Ref. [51]). Such
deviations are shown in Fig. 10 where the experimental average
radiative widths are compared with predictions for SLO [3,31],
GLO [3,17], and the present D1M + QRPA + 0lim± [Eqs. (1)
and (2)]. It can be seen that, in contrast to the SLO and
GLO models, the present D1M + QRPA + 0lim± strengths
(including both the M1 and E1 contributions) reproduce
globally rather well the experimental average radiative width.
The low-energy components [Eqs. (1) and (2)] contribute in a
non-negligible way to the 〈�γ 〉 integral [Eq. (3)], especially the
M1 upbend for spherical nuclei where a significant additional
dipole strength is included at low energies (Fig. 6). Such a

2Note that we will refer here as GLO model the GLO model for the
E1 channel supplemented by the SLO model for the M1 component,
as defined in the RIPL library [3] and corresponding to the original
work of Kopecky et al. [17].

contribution as well as the M1 scissors mode around 3 MeV
for deformed nuclei are absent in the Lorentzian approach and
explain why the GLO model underestimates the experimental
〈�γ 〉. The average radiative width remains, however, sensitive
to the nuclear level densities [see Eq. (3)], as illustrated in
Fig. 10 where the error bars on the predictions represent the
corresponding sensitivity using different nuclear level density
models [52,53].

The deviation with respect to experimental data can be
characterized by the root mean square (rms) factors, εrms and
frms, defined as

εrms = exp

[
1

Ne

Ne∑
i=1

ln ri

]
, (5)

frms = exp

[
1

Ne

Ne∑
i=1

ln2 ri

]1/2

, (6)

where Ne is the number of experimental data and ri is, for
each data point i, the ratio of theoretical to experimental 〈�γ 〉
which takes into account the experimental uncertainties δexp,
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more precisely

r = 〈�γ 〉th

〈�γ 〉exp − δexp
if 〈�γ 〉th < 〈�γ 〉exp − δexp

= 〈�γ 〉th

〈�γ 〉exp + δexp
if 〈�γ 〉th > 〈�γ 〉exp + δexp

= 1 otherwise. (7)

The closer the εrms and frms factors are to 1, the better
the theory reproduces experimental data within their 1-σ
uncertainties. We give in Table I the εrms and frms factors for the
〈�γ 〉 values with respect to the experimental data [3]. While
the GLO strength clearly gives large deviations [as seen in
Fig. 10(b)], the D1M+QRPA+0lim strength underestimates
measured value globally between 12% and 26% for D1M +
QRPA + 0lim− but is in rather good agreement for the D1M +
QRPA + 0lim+ case, especially with the HFB+Combinatorial
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FIG. 10. Comparison between experimental (black circles) [3]
and theoretical (colored diamonds) average radiative width 〈�γ 〉 as a
function of A. The strength corresponds to (a) the SLO model [3]
for both the E1 and M1 strengths, (b) the GLO model [3,17],
(c) D1M + QRPA + 0lim−, and (d) D1M + QRPA + 0lim+. The
error bars on the theoretical predictions illustrate the uncertainties
associated with the use of different nuclear level density models (open
diamonds for the Combinatorial model [52] and full diamonds for the
constant temperature model [53]).

level densities. The frms factor in this latter case is as low as
1.27, as confirmed by Fig. 10(d). The constant-temperature
level density formula leads systematically to lower predictions
of the average radiative width.
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TABLE I. εrms and frms for the theoretical to experimental ratios
of both 〈�γ 〉 and the MACS 〈σ 〉. The theoretical estimates are
obtained with the present D1M + QRPA + 0lim± or the Lorentzian
(GLO) [3,17] strengths and with either the constant temperature
(CT) [53] or the HFB+Combinatorial (Comb) [52] models of nuclear
level densities.

〈�γ 〉 〈σ 〉
εrms frms εrms frms

0lim− (Comb) 0.88 1.35 1.07 1.44
0lim− (CT) 0.74 1.55 0.95 1.37
0lim+ (Comb) 1.02 1.27 1.30 1.55
0lim+ (CT) 0.90 1.32 1.15 1.40
GLO (Comb) 0.48 2.44 0.61 1.92
GLO (CT) 0.38 3.02 0.53 2.07

V. RADIATIVE NUCLEON CAPTURES

The radiative neutron and proton capture cross sections and
reaction rates of astrophysical interest have been calculated
systematically on the basis of the Hauser-Feshbach statistical
model described by the TALYS reaction code [54]. The widely
used GLO model [3,17] is considered here for a comparison
with the present D1M+QRPA+0lim model. Either the HFB
plus combinatorial model of nuclear level densities [52] or
the constant temperature plus Fermi gas model [53] are
adopted for the cross-section calculations. When no experi-
mental masses [55] are available, the HFB-31 mass model is
used [56].

Figure 11 illustrates the impact of the low-energy M1
strength on the radiative neutron capture cross section. The
low-energy E1 component [Eq. (1)] has a rather negligible

102

103
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Musgrove et al. (1974)
D1M+QRPA
D1M+QRPA+E1 0lim
D1M+QRPA+M1 0lim
D1M+QRPA+0lim

 [
m

b]

E
n
 [MeV]

135Ba(n, )136Ba

+
+

+

FIG. 11. 135Ba(n, γ )136Ba cross section, as a function of the
neutron energy, obtained with the D1M+QRPA E1 and M1 strengths
(solid line). The dotted, dashed, and dash-dot lines show the impact
of the low-energy E1 limit [Eq. (1)], the M1 limit [Eq. (2)], or both,
respectively. The 0lim+ parametrization of the zero limit is used
as well as the combinatorial nuclear level density model [52]. The
experimental data are taken from Refs. [57,58].

effect; it increases the cross section by no more than 20% in
the 0lim+ case (and only 2% in the 0lim− case) due to the
ε3
γ dependence weighting the γ -ray strength function in the

calculation of the transmission coefficient TE1 [see Eq. (4)].
The M1 upbend is seen to increase the cross section by about
40% in the 0lim+ case (though only 10% in the 0lim− case),
although the M1 low-energy contribution is located below
4 MeV (Fig. 6). The exponential increase of the M1 strength at
decreasing energies [Eq. (2)] counterbalances the ε3

γ effect in
the calculation of TM1 [Eq. (4)] and leads to the non-negligible
impact on the cross section. The inclusion of both the E1
and M1 low-energy limits is also seen to give a cross section
reproducing experimental data significantly better than without
such contributions (Fig. 11).

Figure 12 compares the 240 experimental neutron
Maxwellian-averaged capture cross sections (MACS) [59] at
30 keV (assuming the target in its ground state only) for nuclei
with 20 � Z � 83 with the TALYS predictions obtained either
with the GLO model or the D1M + QRPA + 0lim− model.
Both the HFB+Combinatorial and constant temperature mod-
els of nuclear level densities are considered. Note that in the
TALYS calculation the strength function is not renormalized
to reproduce the experimental average radiative width. Only
nuclei with Z � 20 are considered in the comparison to
ensure the validity of the Hauser-Feshbach approach, the
cross section for lighter nuclei being affected by the direct
contribution [2] and the resolved resonance regime [60] at
the 30-keV neutron energies considered here. The deviation
with respect to experimental data can be characterized by
the same εrms and frms factors as defined for the average
radiative width [Eqs. (5) and (6)]. In this case, the experimental
error bars are usually rather small (a few percentages), so
that ri = 〈σ 〉ith/〈σ 〉iexp and the uncertainties have a small
impact on the calculation of the rms factors. As shown in
Table I, the rms deviation factors are better reproduced with
D1M + QRPA + 0lim− parametrization and optimum when
using the constant temperature formula for level densities. The
D1M + QRPA + 0lim+ that used to optimize the experimental
average radiative widths slightly overestimate the MACS.

In the GLO case, a frms deviation of about 2 and mean
deviation εrms significantly lower than 1 are obtained on
the theoretical to experimental MACS ratios (Table I). The
MACS like the average radiative widths are clearly underes-
timated [compare Figs. 10(b) and 12(a)]. This explains why
reaction codes need to renormalize the E1 strength function
on experimental average radiative width to reproduce accu-
rately the radiative neutron capture cross section. However,
such a renormalization, if efficient at low neutron energies
to compensate the missing strength, may lead to different
energy dependencies of the neutron capture cross section. An
example is provided for 101Mo in Fig. 13 where the GLO
strength gives 〈�γ 〉GLO = 0.15 eV, i.e., a factor of 6 lower
than then experimental value 〈�γ 〉exp = 0.09 ± 0.01 eV [3].
As seen in Fig. 13(b), such a low dipole strength leads to
a neutron capture cross section a factor of about 4–5 lower
than experimental data. Multiplying artificially the overall E1
strength by a factor gnorm = 〈�γ 〉exp/〈�γ 〉GLO = 6 provides,
however, a cross section in good agreement at low energies
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FIG. 12. Ratio of the theoretical to experimental MACS at kT =
30 keV as a function of the atomic mass A for all nuclei between
Ca and Bi for which experimental MACS exist [59]. (a) The theo-
retical MACS are obtained with the GLO model [3,17]. (b) Same
as in (a) when the MACS are obtained with the present D1M +
QRPA + 0lim−. In both panels, the full symbols are calculations
with the HFB+Combinatorial model of nuclear level densities [52]
and the open symbols with the constant temperature plus Fermi gas
model [53].

with experimental data. Such a renormalization has become
a default procedure in most of the reaction codes. In contrast,
the D1M + QRPA + 0lim+ strength gives an average radiative
width of 0.082 eV in agreement with experiments and therefore
does not need to be renormalized. It is seen in Fig. 13(a) to
be relatively close to the renormalized GLO strength at low
energies, hence giving rise to relatively similar cross section
for keV neutrons. However, at neutron energies above 1 MeV,
significant deviations between the cross sections obtained with
the renormalized GLO and D1M+QRPA+0lim strengths can
be observed since both strengths differ now in the energy
region of relevance, i.e., in the GDR region. The long-standing
problem between the compatibility of the predicted radiative
width and experimental capture and photo data is largely solved
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FIG. 13. (a) E1 + M1 dipole strength of 101Mo calculated with
the GLO model [3] (solid blue line), with the GLO after renormalizing
theE1 strength by a factor of 6 (dotted line) and with D1M + QRPA +
0lim+ (solid red line). (b) 100Mo(n, γ )101Mo cross sections calculated
with the GLO (solid blue line), renormalized GLO (dotted line), and
D1M + QRPA + 0lim+ (red solid sline) dipole strength functions.
Also shown are the experimental data from Refs. [61–65].

with the present D1M+QRPA+0lim model where both the
average radiative width and neutron capture cross sections are
consistently estimated and globally in agreement with experi-
mental data, including photoabsorption and photodeexcitation
data, as discussed in Secs. II and III. Such a conclusion holds
regardless of the nuclear level density model adopted.

Figures 14 and 15 show the ratio of the MACS at a temper-
ature T = 109 K typical of the r-process nucleosynthesis [1]
obtained with the present D1M + QRPA + 0lim+ to those
obtained with the GLO model recommended in Refs. [3,17].
When approaching the neutron dripline (Sn = 0), the MACS
calculated with D1M+QRPA+0lim strength is seen to be a
factor up to 500 larger than the one obtained with the traditional
GLO model. The most significant effects responsible for
such an increase of the MACS are (i) the low-energy E1
strength predicted for neutron-rich nuclei by the D1M+QRPA
approach (as already discussed in Ref. [7]) and (ii) the low-
energy M1 upbend introduced in Eq. (2). In particular, the
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FIG. 14. Ratio of the (n, γ ) MACS at T = 109 K obtained with
the present D1M + QRPA + 0lim+ [Eqs. (1) and (2)] to the one
obtained with the GLO model [3,17]. The ratio is given for all nuclei
with 8 � Z � 94 lying between the proton and neutron driplines
as a function of the neutron separation energy Sn. The HFB plus
combinatorial model of nuclear level densities is adopted [52].

M1 upbend can affect the MACS of exotic neutron-rich nuclei
by a factor up to 100. In contrast, the low-energy limit of
the E1 strength function included in Eq. (1) only affects the
MACS by 20 to 50% due to the ε3

γ dependence weighting the
γ -ray strength function, as discussed in Sec. IV. This is not
the case for the M1 upbend, where the fast increase of the M1
strength at decreasing energies approaching zero is capable
of counterbalancing the ε3

γ effect in the calculation of TM1,
as also shown in Fig. 11. This effect becomes dominant for
exotic neutron-rich region with low neutron separation energy
(Sn � 2 MeV). As far as the HFB+QRPA prediction of the
M1 spin flip is concerned, it is almost always insignificant with
respect to the stronger E1 contribution at the relevant energies
of 8–9 MeV, so that its impact on the MACS is reduced to no
more than 10% in comparison with the MACS obtained with
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FIG. 15. Color-coded representation in the (N,Z) plane of the
ratio of the (n, γ ) MACS at T = 109 K obtained with the present
D1M + QRPA + 0lim+ [Eqs. (1) and (2)] to the one obtained with
the GLO model [3,17]. Open black squares correspond to the stable
nuclei and very long-lived actinides.
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FIG. 16. Ratio of the Maxwellian-averaged astrophysical
Cl(p, γ ) reaction rates 〈σv〉 at T = 2 × 109 K obtained with the
present D1M + QRPA + 0lim+ to the one obtained with the GLO
model [3,17] for the Cl isotopes. The dotted, dashed, and dash-dot
lines show the impact on the p-capture rates of the low-energy E1
limit [Eq. (1)], the M1 limit [Eq. (2)], or both, respectively. The
proton drip line is indicated at N = 12 and the valley of β stability
at N = 18 and N = 20.

the SLO M1 strength [3]. Finally, the low-energy M1 scissors
mode predicted in deformed nuclei by the HFB+QRPA can
impact the MACS by a factor of 2. This extra strength is
never included in cross-section calculations based on the
Lorentzian-type strength functions, except recently through a
phenomenological approximation [51]. It affects the average
radiative width as well as the neutron capture cross section of
deformed nuclei in a non-negligible way.

In comparison with the traditional GLO approach, the
HFB+QRPA strength function affects not only the radiative
neutron capture cross section but also the radiative proton
capture cross section on the neutron-deficient side of the valley
of β stability. For such neutron-deficient nuclei, the QRPA
calculation predicts extra E1 strength at energies around a few
MeV, leading to an increase of the electromagnetic deexcitation
transmission coefficient in the compound nucleus. As shown in
Fig. 16, the proton capture by Cl neutron-deficient isotopes is a
few times larger with the D1M+QRPA strength in comparison
with GLO. While the low-energy E1 contribution may affect
the reaction rate by a factor of 2, the low-energy M1 upbend
added to the D1M+QRPA strength [Eq. (2)] is seen to have
an even larger impact on the radiative proton capture rate for
the most exotic neutron-deficient Cl isotopes with an increase
of the rate by a factor 800 in the case of 29Cl(p, γ )30Ar.
In Fig. 17, the proton MACS at a temperature typical of
the p-processes nucleosynthesis [66] of T = 2 × 109 K is
compared systematically, for all nuclei with 8 � Z � 94 lying
between the proton and neutron drip lines, when use is made
of the Lorentzian-type or the QRPA approaches. The proton
MACS of light n-deficient nuclei up to Sn appears to be
significantly affected by a factor as high as a few hundreds.
Interestingly, deformed stable or slightly neutron-rich nuclei
with 60 � Z � 80 and in the actinide region also present an
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FIG. 17. Color-coded representation in the (N,Z) plane of the
ratio of the (p, γ ) MACS at T = 2 × 109 K obtained with the present
D1M + QRPA + 0lim+ [Eqs. (1) and (2)] to the one obtained with
the GLO model [3,17]. Open black squares correspond to the stable
and very long-lived nuclei.

increase of their proton MACS by a factor 2–3, essentially due
to the larger E1 strength in the low-energy tail of the GDR
with respect to the GLO approach (see also Ref. [7]).

VI. CONCLUSIONS

HFB+QRPA models are now available for applications and
have shown their capacity to predict photoabsorption γ -ray
strength functions. Effects beyond the one-particle–one-hole
excitations and the interaction between the single-particle and
low-lying collective phonon degrees of freedom can be empir-
ically taken into account by renormalizing the HFB+QRPA
strength through an energy shift and a damping width. A simple
prescription has been proposed and shown to reproduce the
GDR properties fairly well. It also agrees satisfactorily with
newly derived ARC data though it seems to underestimated

slightly the M1 channel. The axially symmetric deformed
QRPA calculation also allows us to estimate coherently the
contribution of the scissors mode.

We have extended our HFB+QRPA calculations of the pho-
toabsorption strength to the determination of the deexcitation
strength function. To do so, SM calculations of the deexcitation
dipole strength function as well as experimental data have been
considered to provide insight in the low-energy limit. Those
suggest that at photon energies approaching the zero limit, the
E1 strength remains constant while the M1 strength increases
exponentially. We showed that, in a first approximation, the
HFB+QRPA strength can be complemented by simple ana-
lytical expressions to account for the missing strength at the
lowest energies approaching zero. These contributions have
been shown to reproduce satisfactorily experimental data at
low energies but also to affect significantly the calculation
of the average radiative width as well as radiative nucleon
capture cross sections. Although the additional dipole strength
is located at low energies, typically below 3–4 MeV, it impacts
the overall radiative width, especially due to the increasing M1
strength at decreasing photon energies. This extra strength can
affect the radiative neutron capture cross section of neutron-
rich nuclei as well as proton capture cross section of neutron-
deficient nuclei by factors up to a few hundreds for the most
exotic nuclei. Future work will need to estimate such low-
energy contribution to the dipole strength more systematically
and on the basis of microscopic models, including continuum
temperature-dependent QRPA and beyond QRPA calculations.
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