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Single- and two-nucleon momentum distributions for local chiral interactions
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We present quantum Monte Carlo calculations of the single- and two-nucleon momentum distributions in
selected nuclei for A � 16. We employ local chiral interactions at next-to-next-to-leading order. We find good
agreement at low momentum with the single-nucleon momentum distributions derived for phenomenological
potentials. The same agreement is found for the integrated two-nucleon momentum distributions at low relative
momentum q and low center-of-mass momentum Q. We provide results for the two-nucleon momentum
distributions as a function of both q and Q. The large ratio of pn to pp pairs around q = 2 fm−1 for back-to-back
(Q = 0) pairs is confirmed up to 16O, and results are compatible with those extracted from available experimental
data.
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I. INTRODUCTION

Quantum Monte Carlo (QMC) methods have been exten-
sively used in the past to derive properties of strongly correlated
systems, including nuclei, neutron drops, and neutron and
nuclear matter (see Ref. [1] for a recent review). Part of their
success relies on the possibility to tackle the nuclear many-
body problem in a nonperturbative fashion, by employing
accurate wave functions that include two- and three-body
correlations.

Momentum distributions of individual nucleons and nu-
cleon pairs strongly depend on such correlations, as they reflect
features of the short-range structure of nuclei. While these
momentum distributions are not directly observable, because
they are coupled with, e.g., electromagnetic current operators,
they do provide a strong influence on some observables such
as back-to-back nucleons measured in quasielastic scattering.
For instance, it was found that the strong spatial-spin-isospin
correlations induced by the tensor force lead to large differ-
ences in the pp and pn distributions at moderate values of
the relative momentum in the pair [2,3]. These differences
have been observed in (e, e′pN ) experiments on 12C at low
momentum [4] and on 4He at higher momentum [5] at Jefferson
Laboratory. The same conclusions have been found in heavier
systems, including 27Al, 56Fe, and 208Pb [6].

The variational Monte Carlo (VMC) method has been used
to calculate the momentum distributions in A � 12 nuclei
[2,7–11] by employing phenomenological nuclear interac-
tions, i.e., Argonne v18 (AV18) nucleon-nucleon (NN ) poten-
tial combined with Urbana models (UIX-UX) for the three-
nucleon (3N ) force [1]. The same family of potentials has been
employed in cluster expansion methods, including the cluster
VMC algorithm [12], to calculate the momentum distributions
of heavier systems, such as 16O and 40Ca [3,12–15].

In this work, we present QMC calculations of single-
and two-nucleon momentum distributions in 4He, 12C, and

16O employing the local chiral effective field theory (EFT)
interactions at next-to-next-to leading order (N2LO) developed
in Refs. [16–20].

II. HAMILTONIAN AND WAVE FUNCTION

Nuclei are described as a collection of pointlike particles
of mass m interacting via two- and three-body potentials
according to the nonrelativistic Hamiltonian

H = − h̄2

2m

∑
i

∇2
i +

∑
i<j

vij +
∑

i<j<k

Vijk. (1)

In this work we consider the local chiral interactions at N2LO
of Refs. [16–19].

The long-range part of the NN potential is given by
pion-exchange contributions that are determined by the chi-
ral symmetry of quantum chromodynamics and low-energy
pion-nucleon scattering data. The short-range terms are given
by contact interactions, described by low-energy constants
(LECs) that are fit to nucleon-nucleon scattering data [17].
At N2LO, the two-body local chiral potential is written
as a sum of radial functions multiplying spin and isospin
operators, which correspond to the first seven terms of the
AV18 potential, i.e., Op=1,7

ij = [1, τ i · τ j , σ i · σ j , σ i · σ j τ i ·
τ j , Sij , Sij τ i · τ j , L · S], where Sij is the tensor operator, and
L and S are the relative angular momentum and the total spin
of the nucleon pair ij , respectively.

The 3N local chiral interaction at N2LO is written as a sum
of two-pion exchange (TPE) contributions plus shorter-range
terms, VD and VE . The LECs of the TPE terms are the same
as those of the two-body sector, while the additional LECs
for the shorter-range terms are fit to few-body observables.
In more detail, cD and cE are fit to the binding energy of
4He and n-α scattering P -wave phase shifts, providing a

2469-9985/2018/98(1)/014322(9) 014322-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.98.014322&domain=pdf&date_stamp=2018-07-19
https://doi.org/10.1103/PhysRevC.98.014322


D. LONARDONI, S. GANDOLFI, X. B. WANG, AND J. CARLSON PHYSICAL REVIEW C 98, 014322 (2018)

probe to the properties of light nuclei, spin-orbit splitting, and
T = 3/2 physics [19]. According to the Fierz-rearrangement
freedom, different equivalent operator structures are possible
for locally regularized three-body contact operators at N2LO
[21]. We employ here the Eτ and E1 parametrizations for VE ,
corresponding to the choice of the τ i · τ j isospin operator and
the identity operator 1, respectively. We use the coordinate-
space cutoffs R0 = 1.0 fm and R0 = 1.2 fm, which correspond
roughly to cutoffs in momentum space of 500 and 400 MeV
[22,23], respectively. As shown in Refs. [20,22,24], the use of
different three-body operator structures and coordinate-space
cutoffs leads to very similar ground-state properties in light-
and medium-mass nuclei.

We perform QMC calculations of the single- and two-
nucleon momentum distributions by employing the trial
wave function used in auxiliary field diffusion Monte Carlo
(AFDMC) calculations of light- and medium-mass nuclei
[20,24]. Such a wave function takes the form

〈RS|�〉 = 〈RS|
∏
i<j

f 1
ij

∏
i<j<k

f 3c
ijk

×
⎡
⎣1 +

∑
i<j

6∑
p=2

f
p
ij Op

ij f
3p
ij +

∑
i<j<k

Uijk

⎤
⎦|�〉Jπ ,T ,

(2)

where |RS〉 are the 3A spatial coordinates and 4A spin/isospin
amplitudes for each nucleon. The pair correlation functions f

p
ij

are obtained as the solution of Schrödinger-like equations in the
relative distance between two particles, as explained in Ref. [1].
f 3c

ijk andf
3p
ij are spin/isospin-independent functions introduced

to reduce the strength of the spin/isospin-dependent correla-
tions when other particles are nearby [25]. Uijk are three-body
spin/isospin-dependent correlations, whose operator structure
resembles that of the 3N potential Vijk . The term |�〉 represents
the mean-field part of the wave function. It consists of a sum
of Slater determinants D constructed using shell-model-like
single-particle orbitals

〈RS|�〉Jπ ,T =
∑

n

cn

[∑
CJM D{φα (ri , si )}J,M

]
Jπ ,T

,

(3)

where ri are the spatial coordinates of the nucleons, and si rep-
resent their spinors. The Clebsch-Gordan coefficients CJM are
chosen to reproduce the experimental total angular momentum,
total isospin, and parity (Jπ , T ) of the nucleus, while the cn

are variational parameters multiplying different wave-function
components having the same quantum numbers. Each single-
particle orbital φα consists of a radial function, bound-state
solution of a Woods-Saxon wine-bottle potential, multiplied
by the proper spherical harmonic and the spin/isospin state. For
closed-shell systems, such as 4He and 16O, the mean-field wave
function of Eq. (3) is given by a single Slater determinant. In
12C, 119 determinants constructed with p-shell single-particle
orbitals need to be coupled in order to obtain a (0+, 0) state
with good binding energy [20]. However, observables like the
charge radius are well determined by using a reduced subset
of Slater determinants. A trial wave function including only

TABLE I. VMC charge radii (in fm) for the optimized wave
function of Eq. (2) and different N2LO local chiral potentials.
Experimental results are also shown.

Nucleus VE, R0 (fm) VMC Expt.

4He (0+, 0) Eτ, 1.0 1.67(1) 1.680(4) [26]
E1, 1.2 1.64(1)

12C (0+, 0) Eτ, 1.0 2.48(2) 2.471(6) [27]
16O (0+, 0) Eτ, 1.0 2.77(3) 2.730(25) [28]

E1, 1.2 2.57(3)

13 Slater determinants provides a (0+, 0) state with the same
charge radius as the full p-shell wave function, even though
the total VMC energy is reduced by ≈3 MeV. Such a simplified
wave function has been used in this work for the VMC estimate
of single- and two-nucleon momentum distributions in 12C,
a calculation otherwise computationally prohibitive. Details
on the construction of the wave functions can be found in
Ref. [20].

According to the VMC method, given the trial wave func-
tion �T = 〈RS|�〉Jπ ,T , the expectation value of the Hamilto-
nian is given by

EV = 〈H 〉 = 〈�T |H |�T 〉
〈�T |�T 〉 � E0, (4)

where E0 is the energy of the true ground state with the same
quantum numbers as �T . The equality in the above equation
is only valid if the wave function is the exact ground-state
wave function �0; i.e., the variational energy is always an
upper bound to the true ground-state energy. EV depends in
general on the employed wave function. By minimizing the
energy expectation value of Eq. (4) with respect to changes in
the variational parameters of �T , one obtains an optimized
wave function, i.e., the best approximation of �0, which
can be used to calculate other quantities of interest, such
as the momentum distributions. We optimize our trial wave
functions for local chiral interactions at N2LO. During the
optimization a constraint is used in order to approximatively
obtain the experimental charge radii, which are reported in
Table I. Note that these are VMC results only, while the charge
radii of Ref. [20] correspond to the extrapolated results from
mixed estimates: 2 〈rAFDMC

ch 〉 − 〈rVMC
ch 〉. Differences between

extrapolated and VMC results are, however, within statistical
uncertainties. The true ground state of the system can finally
be obtained by using the AFDMC method. The imaginary time
propagation is used to project out the lowest-energy state with
the symmetry of the trial wave function �T :

�0 = lim
τ→∞ e−(H−ET )τ �T , (5)

where ET is a parameter that controls the normalization
(see Ref. [20] for more details). Although the imaginary
time propagation allows one to access properties of the true
ground state of the system, the AFDMC calculation of two-
nucleon momentum distributions is at present computationally
prohibitive. For this reason, in this work we present VMC
results only, providing an example of the AFDMC calculation
for single-nucleon momentum distribution in Sec. IV.
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III. SINGLE- AND TWO-NUCLEON MOMENTUM
DISTRIBUTIONS

The probability of finding a nucleon with momentum k in
a given isospin state is proportional to the density

ρN (k) = 1

A

∑
i

∫
dr1 · · · dr′

idri · · · drA

×�†(dr1, . . . , dr′
i , . . . , drA)e−ik·(ri−r′

i )

×PN (i)�(dr1, . . . , dri , . . . , drA), (6)

where

PN (i) = 1 ± τ z
i

2
(7)

is the isospin projection operator for the nucleon i, and � is
the optimized wave function of Eq. (2). The normalization is

NN =
∫

dk
(2π )3

ρN (k), (8)

where NN is the number of protons or neutrons.
The Fourier transform of Eq. (6) can be computed by

following a Metropolis Monte Carlo walk in the dr1 · · · drA

space and one extra Gaussian integration over dr′
i at each

Monte Carlo configuration, as done in early VMC calculations
of few-nucleon momentum distributions [7]. It is however
convenient to rewrite Eq. (6) as

ρN (k) = 1

A

∑
i

∫
dr1 · · · dri · · · drA

∫
d�x

∫ xmax

0
x2dx

×�†
(

r1, . . . , ri + x
2
, . . . , rA

)
e−ik·x

×PN (i)�
(

r1, . . . , ri − x
2
, . . . , rA

)
. (9)

In the above equation, the position ri is symmetrically shifted
by x/2 in both left- and right-hand wave functions, instead of
simply moving the position r′

i in the left-hand wave function
with respect to a fixed position ri in the right-hand wave
function. A Gaussian integration is performed over x by
choosing a grid of Gauss-Legendre points xi and sampling the
polar angle d�x , with a randomly chosen direction for each
particle in each Monte Carlo configuration. This procedure has
the advantage of drastically reducing the large statistical errors
originating from the rapidly oscillating nature of the integrand
for large values of k [9]. For the systems considered in this
work, we obtain good statistics up to k = 10 fm−1 integrating
to xmax = 12 fm using 120 Gauss-Legendre points.

Note that the procedure described above cannot be applied
in AFDMC calculations, where left- and right-hand wave
functions are different (see Ref. [20] for details). In this
case, Eq. (6) must be used, and a significant computational
effort is needed to achieve statistical errors comparable to the
corresponding VMC calculation. An example of an AFDMC
calculation of single-nucleon momentum distribution is shown
in Fig. 5.

The probability of finding two nucleons in a nucleus with
relative momentum q = (k1 − k2)/2 and total center-of-mass

momentum Q = k1 + k2 in a given isospin state is given by

ρNN (q, Q) = 2

A(A − 1)

∑
ij

∫
dr1· · · dr′

idridr′
j drj · · · drA

×�†(dr1, . . . , dr′
i , dr′

j , . . . , drA)

× e−iq·(rij −r′
ij )e−iQ·(Rij −R′

ij )

×PNN (ij )�(dr1, . . . , dri , drj , . . . , drA),

(10)

where rij = ri − rj , Rij = (ri + rj )/2, and PNN (ij ) is the
isospin projector operator for the nucleon pair ij :

PNN (ij ) = 1 ± τ z
i

2

1 ± τ z
j

2
. (11)

The normalization is

NNN =
∫

dq
(2π )3

dQ
(2π )3

ρNN (q, Q), (12)

where NNN is the number of pp, pn, or nn nucleon pairs. Note
that integrating ρNN (q, Q) over Q only gives the probability
of finding two nucleons with relative momentum q regardless
their center-of-mass momentum Q, and vice versa.

The integral of Eq. (10) can be evaluated in a similar fashion
to that of Eq. (9):

ρNN (q, Q) = 2

A(A − 1)

∑
ij

∫
dr1 · · · dridrj · · · drA

×
∫

d�x

∫ xmax

0
x2dx

∫
d�X

∫ Xmax

0
X2dX

×�†
(

r1, . . . , rij + x
2
, Rij + X

2
, . . . , rA

)

× e−iq·xe−iQ·X PNN (ij )

×�

(
r1, . . . , rij − x

2
, Rij − X

2
, . . . , rA

)
,

(13)

where now a double Gauss-Legendre integration for each
nucleon pair in each Monte Carlo configuration must be
evaluated. This makes the two-nucleon momentum distribution
much more computationally expensive than the single-nucleon
momentum distribution. For the nuclei considered in this work
we obtain good statistics up to q = 5 fm−1 and Q = 3 fm−1,
integrating x to xmax = 12 fm using 120 Gauss-Legendre
points, and X to Xmax = 8 fm using 80 Gauss-Legendre
points. Note that, because the employed wave functions are
eigenstates of the total isospin T , small effects due to isospin-
symmetry-breaking interactions are ignored. T = 0 in all
nuclei considered in this work, so it follows that, for a given
system, pp, nn, and T = 1 pn momentum distributions are
identical.

IV. RESULTS: SINGLE-NUCLEON MOMENTUM
DISTRIBUTIONS

The proton momentum distributions ρp(k) normalized to
the proton number Z for the N2LO Eτ potential with cutoff
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FIG. 1. Proton momentum distribution in 4He, 12C, and 16O. Solid
symbols are the results for the N2LO Eτ potential with cutoff R0 =
1.0 fm. Discontinuous lines are the VMC results for 4He and 12C [9,10]
and cluster VMC results for 16O [12] employing the AV18 + UIX
potential. Dashed brown (solid black) line is the deuteron result for
AV18 [9,10] (N2LO with cutoff R0 = 1.0 fm [22]).

R0 = 1.0 fm are reported in Fig. 1. The VMC and cluster VMC
results for the AV18 + UIX potential of Refs. [9,10,12] are
also shown for comparison. Up to ≈1.0–1.5 fm−1, local chiral
interactions and phenomenological potentials provide a similar
description of the proton momentum distributions. Differences
appear at higher momentum, as one would expect being the
chiral potentials derived from a low-energy EFT of the nuclear
force. This is also evident by looking at Fig. 2, where the
integrated strength of the proton momentum distribution is
shown as a function of k. At low momentum, chiral and
phenomenological results are similar for all nuclei. At 2 fm−1,
most of the strength for chiral interactions is already accounted
for: 95.1(1)% in 4He, 96.3(4)% in 12C, and 97.0(4)% in
16O. At ≈3.5 fm−1 all the strength for chiral interactions is
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FIG. 2. Integrated strength of the proton momentum distributions
of Fig. 1 (the same legend is used). The vertical line indicates the Fermi
momentum kF .
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FIG. 3. Proton momentum distribution in 16O. |�〉 is the result
for the mean-field wave function of Eq. (3). |�〉c, |�〉2b, and |�〉2b+3b

are the results for the correlated wave function of Eq. (2) employing
spin/isospin-independent two-body, full two-body, and two- plus
three-body correlations, respectively.

saturated, while phenomenological potentials still contribute
until ≈4.5–5.0 fm−1, as indicated by the higher tail of ρN (k)
at high momentum (Fig. 1). The kinetic energy derived from
the single-nucleon momentum distribution,

KN = − h̄2

2m

∫
dk

(2π )3
k2 ρN (k), (14)

in general saturates at higher momentum. For both local chiral
interactions and phenomenological potentials,KN is consistent
with the direct VMC calculation for k � 6 fm−1. Local chiral
interactions result however in ≈20% to ≈35% less kinetic
energy than the phenomenological counterparts.

It is interesting to observe that at high momentum the tail
of the momentum distribution manifests the expected universal
behavior, i.e., the independence of the high-momentum com-
ponent of ρN (k) upon the specific nucleus. Such universality
has been discussed at length in a number of works (see, for
instance, Refs. [14,15,29,30]). We show here (see Fig. 1)
that, depending on the choice of the potential, the universal
behavior itself is different. This is a consequence of the
nature of the high-momentum components of the momentum
distribution, which are determined by short-range correlations,
i.e., by the short-range structure of the employed Hamiltonian.
Local chiral interactions and phenomenological potentials
are characterized by different short-range physics, which are
reflected in different tails of the momentum distribution.

We show in Fig. 3 the effect of correlations to the proton
momentum distribution in 16O. Blue down triangles refer to
the calculation employing the mean-field wave function of
Eq. (3). Brown up triangles, red circles, and green diamonds
are results for the correlated wave function of Eq. (2) including
spin/isospin-independent two-body, full two-body, and two-
plus three-body correlations, respectively. Results have been
obtained by optimizing the different wave functions so as
to obtain the same charge radius reported in Table I. Simi-
larly to the case of phenomenological potentials [13,31], the
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FIG. 4. Proton momentum distribution in 4He and 16O. Solid
symbols are the results for the N2LO Eτ potential with cutoff
R0 = 1.0 fm. Empty symbols are the results for the N2LOE1 potential
with cutoff R0 = 1.2 fm.

mean-field part of the wave function dominates the momentum
distribution for k � 1.3 fm−1 ≈ kF . Correlations are funda-
mental for the construction of higher-momentum components
of ρN (k), dominated, in particular, by two-body spin/isospin
correlations. Three-body correlations have a small effect on
the momentum distribution for chiral interactions, enhancing
ρN (k) around 2 fm−1 and at higher momentum, k > 4 fm−1.

Ground-state properties of light- and medium-mass nuclei,
such as binding energies, charge radii, and charge form factors,
are independent of the choice of the coordinate-space cutoff
for the employed local chiral interactions [20,22,24]. However,
the effect of using softer potentials (larger coordinate-space
cutoff) is visible in the momentum distributions, as shown in
Fig. 4. For a given system, different interactions provide a
similar description of the mean-field part of the momentum dis-
tribution (k � kF ). Higher momentum components of ρN (k)
are instead reduced for softer potentials. However, as already
discussed above, for a given interaction the universality of the
high-momentum components of ρN (k) is preserved.

In 4He both parametrizations of the three-body force (Eτ
and E1) for a given cutoff provide consistent results for the
single-nucleon momentum distribution. The same observation
applies to 16O, for which, however, the Eτ parametrization
with cutoff R0 = 1.2 fm has not been considered in this work
due to the large overbinding predicted by such a potential
[20,24]. Calculations for 12C have been performed for the
Eτ R0 = 1.0 fm potential only due to the large computational
cost.

Figure 5 shows the VMC and AFDMC results for the
proton momentum distribution in 16O, where the latter are
extrapolated from mixed estimates (see Ref. [20] for details).
The AFDMC results are expected to be more accurate, as they
evaluate the expectation values obtained through imaginary
time propagation to the ground state. However, the AFDMC
calculation for A = 16 required ≈105 more computing time
than that of the VMC, due to the different scaling of the two
Monte Carlo algorithms with the number of particles and the
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FIG. 5. VMC and AFDMC proton momentum distributions in 16O.

additional statistics required to obtain comparable statistical
errors. In 16O, the AFDMC results are ≈35% higher than the
VMC in the high-momentum region (k � 2 fm−1). Similar
results are found for 4He. Improved trial wave functions, such
as those described in Ref. [20], could, in principle, bring
the VMC results in closer agreement to those of AFDMC.
However, the additional required computing time could be
prohibitive for larger systems, already at the VMC level.
Studies in this direction are in progress.

V. RESULTS: TWO-NUCLEON MOMENTUM
DISTRIBUTIONS

We present in Fig. 6 the two-nucleon momentum distribu-
tions as a function of the relative momentum q (the center-
of-mass momentum Q is integrated over). Solid symbols are
the results for the N2LO Eτ interaction with cutoff R0 =
1.0 fm. Dotted and dashed lines refer to results employing phe-
nomenological potentials, where available [9,11]. In Fig. 6(a)
[Fig. 6(b)] the momentum distributions for pn (pp) pairs are
shown. As for the single-nucleon momentum distributions, up
to k � kF there is little difference in the physical description of
ρNN (q ) provided by chiral and phenomenological interactions.
Higher momentum components of ρNN (q ) are instead reduced
for local chiral forces, in particular in heavier systems. At
q = 2 fm−1 97.3(2)% [98.6(1)%] of the 4 pn (1 pp) pairs
are accounted for in 4He. These percentages are 98.8(7)%
[99.1(3)%] for the 36 pn (15 pp) pairs in 12C and 99.1(8)%
[99.4(4)%] for the 64 pn (28 pp) pairs in 16O.

An alternative way to look at two-nucleon momentum
distributions is to integrate Eq. (10) over all q, leaving a
function ρNN (Q) of the center-of-mass momentum Q only.
In Fig. 7 we show ρNN (Q) results for the N2LO Eτ potential
with cutoff R0 = 1.0 fm (solid symbols) compared to available
results for phenomenological potentials (dotted and dashed
lines) [9,11]. As in Fig. 6, Fig. 7(a) [Fig. 7(b)] reports pn
(pp) momentum distributions. As already observed in Ref. [9]
for lighter nuclei and phenomenological potentials, ρNN (Q)
for a given system has a smaller falloff at large momentum
compared to ρNN (q ). The ratio of pn to pp pair is also
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FIG. 6. Two-nucleon momentum distributions integrated over Q: (a) pn pairs and (b) pp pairs. Solid symbols are the results for the
N2LO Eτ potential with cutoff R0 = 1.0 fm. Lines are VMC results for the AV18 + UX potential [9,11].

subject to a smaller variation over the range of Q. The same
conclusions hold for local chiral interactions up to 16O, the
results of which are similar to those of phenomenological
potentials up to Q ≈ 2 fm−1.

The two-nucleon momentum distributions ρNN (q,Q) at
Q = 0 (back-to-back pairs) in 4He, 12C, and 16O are shown
in Figs. 8–10, respectively. Solid symbols are the results
for the N2LO Eτ potential with cutoff R0 = 1.0 fm. Empty
symbols are those for the N2LO E1 potential with cutoff R0 =
1.2 fm. Blue triangles (red circles) indicate pn (pp) pairs.
For A = 4 the VMC results employing phenomenological
potentials [9,11] are also reported for comparison. For 12C,
results are available for the harder interaction only. In all
systems ρNN (q,Q = 0) is larger for pn pairs compared to
pp pairs, in particular for relative momentum in the range
q ≈ 1.5–2.5 fm−1. The pp distributions present a node in
this region, the position of which sits around 2 fm−1 for all
the nuclei considered in this work. pn pairs show instead
a deuteronlike distribution, with a change of slope around

q = 1.5 fm−1, as for phenomenological potentials [9,11]. The
ratio of pn to pp pairs in the region q ≈ 1.5–2.5 fm−1 is
�20 in 4He and �10 in 12C and 16O. The same conclusion
holds for both harder and softer potentials. Although there are
differences in the description of the two-nucleon momentum
distributions, the pn to pp ratio in the region q ≈ 1.5–2.5 fm−1

is nearly independent of the employed local chiral interactions.
In Fig. 11 we report the ratio between pp and pn pairs

as a function of q for back-to-back pairs. The N2LO Eτ
potential with cutoff R0 = 1.0 fm is used. Results for 4He
employing phenomenological potentials [11] are shown for
comparison (solid line). Empty symbols are extracted from
experimental data: circles for 4He from Ref. [5], squares for
12C from Ref. [4], and diamonds for 27Al, 56Fe, and 208Pb
from Ref. [6]. For the employed local chiral interactions all
nuclei are consistent with high-momentum data extracted from
experiments.

Note that the wave function of Eq. (2) only includes
linear spin/isospin-dependent two-body correlations; i.e., only

 10-3

 10-2

 10-1

 100

 101

 102

 103

0 1 2 3 4 5

(a)

ρ p
n(

Q
) 

(f
m

3 )

Q (fm-1)

4He     
12C    
16O    

 10-3

 10-2

 10-1

 100

 101

 102

 103

0 1 2 3 4 5
 10-3

 10-2

 10-1

 100

 101

 102

 103

0 1 2 3 4 5

(b)

ρ p
p(

Q
) 

(f
m

3 )

Q (fm-1)

4He     
12C    
16O    

 10-3

 10-2

 10-1

 100

 101

 102

 103

0 1 2 3 4 5

FIG. 7. Two-nucleon momentum distributions integrated over q: (a) pn pairs and (b) pp pairs. Solid symbols are the results for the N2LO Eτ

potential with cutoff R0 = 1.0 fm. Lines are VMC results for the AV18 + UX potential [9,11].

014322-6



SINGLE- AND TWO-NUCLEON MOMENTUM … PHYSICAL REVIEW C 98, 014322 (2018)

 10-3

 10-2

 10-1

 100

 101

 102

 103

 104

 105

 106

0 1 2 3 4 5

4He

ρ p
N
(q

,Q
=

0)
 (

fm
3 )

q (fm-1)

pn: Eτ R0=1.0fm

pp: Eτ R0=1.0fm

pn: E1 R0=1.2fm

pp: E1 R0=1.2fm

 10-3

 10-2

 10-1

 100

 101

 102

 103

 104

 105

 106

0 1 2 3 4 5

FIG. 8. Two-nucleon momentum distributions as a function of q

for Q = 0 in 4He. Solid symbols are the results for the N2LO Eτ

potential with cutoff R0 = 1.0 fm. Empty symbols are the results for
the N2LO E1 potential with cutoff R0 = 1.2 fm. Lines with error
bands are VMC results for the AV18 + UX potential [9,11].

one nucleon pair is correlated at a time. Improved two-body
correlations (see Ref. [20] for details) are under study, but the
increased computing time requested to evaluate the full wave
function will make the calculation of two-body momentum
distributions for medium-mass nuclei computationally chal-
lenging. However, preliminary tests in 4He show an ≈8–18%
variation of the pp to pn ratio in the range q ≈ 2.5–4.0 fm−1,
result still compatible with the available data extracted from
experiments.

The electron scattering experiments necessarily involve
two-nucleon currents, which are not included in this work.
Here we provide comparisons to other calculations of single-
and two-nucleon momentum distributions [9,12,14,15]. These
currents provide a 30–40% constructive interference in the
inclusive transverse quasielastic electron scattering [32] and
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FIG. 9. Two-nucleon momentum distributions as a function of q

for Q = 0 in 12C. The N2LO Eτ potential with cutoff R0 = 1.0 fm
is used.
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FIG. 10. Same as Fig. 9 but for 16O.

in the axial response relevant to neutrino scattering [33]. It
remains to be investigated how they impact the back-to-back
exclusive measurements.

Finally, the evolution of the two-nucleon momentum distri-
bution as a function of Q is shown in Figs. 12–14 for 4He, 12C,
and 16O, respectively. As in the previous plots, blue triangles
(red circles) are the results for pn (pp) pairs employing the
N2LO Eτ potential with cutoff R0 = 1.0 fm. The description
of ρpn(q,Q) and ρpp(q,Q) in 4He as Q increases is analogous
to that provided by phenomenological potentials [9,11]. The
node in the pp distribution gradually disappears, while the
deuteronlike distribution of pn pairs is maintained up to large
Q. The same physical picture holds for larger nuclei up to
A = 16. For Q � 1.5 fm−1 the node in the pp momentum
distributions is completely filled in, and the pn to pp ratio is
largely reduced.
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FIG. 11. pp pairs to pn pairs ratio as a function of q for Q = 0.
The N2LO Eτ potential with cutoff R0 = 1.0 fm is used. The solid
curve was extracted from the two-body momentum distributions in
4He for phenomenological potentials [11]. Black empty symbols and
gray bands were extracted from experimental data: 4He from Ref. [5],
12C from Ref. [4], and 27Al, 56Fe, and 208Pb from Ref. [6].
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FIG. 12. Two-nucleon momentum distributions in 4He for the
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The tables of single- and two-nucleon momentum distri-
butions in 4He, 12C, and 16O for local chiral potentials are
available as Supplemental Material [34] and as part of the on-
line quantum Monte Carlo momentum distribution collection
[10,11].

VI. SUMMARY

We presented VMC calculations of the single- and two-
nucleon momentum distributions in 4He, 12C, and 16O employ-
ing local chiral interactions at N2LO. The description of the
momentum distributions at low and moderate momenta up to
≈2kF is similar to that provided by phenomenological poten-
tials at low momentum, while higher-momentum components
are typically reduced, consistent with the lower-energy regime
of chiral EFT interactions.

The effect of short-range correlations on the high-
momentum components of the single-nucleon momentum dis-
tribution is found to be large and dominant also for local chiral
interactions. The universality of the tail of the momentum
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FIG. 13. Same as Fig. 12 but for 12C.
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FIG. 14. Same as Fig. 12 but for 16O.

distribution is confirmed, but only within the same family of
interactions.

The two-nucleon momentum distributions as a function of
the relative momentum q of the nucleon pair, of the center-
of-mass momentum Q of the pair, and of both q and Q are
shown. The results for back-to-back pairs confirm the large pn
to pp pairs ratio in the regime q ≈ 1.5–2.5 fm−1 up to 16O,
which appears to be independent of the employed interaction
scheme. The pp to pn ratio for local chiral interactions is
compatible with available experimental data extracted from
electron scattering experiments in the range q ≈ 2.5–4.0 fm−1

up to A = 16.
It will be interesting to analyze the results of this work

using factorized asymptotic wave functions and the short-
range correlations as done in Ref. [35] for phenomenological
potentials. This will provide information about how sensitive
are the contacts and ratios of contacts to the scale and scheme
of the calculations, opening the possibility of relating a very
large class of observables to ground-state calculations.
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