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Multistrange Ca, Sn, and Pb hypernuclei with �� pairing interaction are investigated within the Hartree-Fock-
Bogoliubov approach. The unknown �� pairing strength is calibrated to match with the maximal value for the
prediction of the � pairing gap in uniform matter for densities and isospin asymmetries equivalent to those existing
in multi-� hypernuclei. In this way, we provide an upper bound for the prediction of the � pairing gap and its
effects in hypernuclei. The condensation energy is predicted to be about 3 MeV as a maximum value, yielding
small corrections on density distributions and shell structure. In addition, conditions on both Fermi energies and
orbital angular momenta are expected to quench the nucleon-� pairing for most of hypernuclei.
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I. INTRODUCTION

Since the discovery of the first hyperfragment in an emul-
sion exposed to cosmic rays [1] in 1952, hypernuclei have often
been considered as the best systems to investigate the nuclear
interaction in the baryon octet [2,3]. Despite the numerous
theoretical works about hypernuclei physics within various
frameworks, such as relativistic mean field (RMF) [4–7], G
matrix combined with Skyrme-Hartree-Fock (SHF) for finite-
nuclei [8–11], generalized liquid drop model [12], as well as
more recently quantum Monte Carlo approach [13,14], there
are still open questions concerning the understanding of multi-
strange nuclei and the hypernuclear equation of state possibly
running the properties of the inner core of neutron stars [15,16].
A very well-known issue is indeed the so-called hyperonization
puzzle in neutron stars [17]. It refers to the difficulty for many
approaches to reach the highest neutron stars masses observed,
of about 1.9–2.0M� [18,19] when considering the softening in-
duced by the onset of hyperons in the nuclear matter [16,17,20].
The possible solutions may be that the hyperon interaction
turns strongly repulsive in dense matter, counterbalancing the
softening of the phase transition [13,14,20], or that quarks ap-
pear before hyperons. Our present experimental investigation
could not yet resolve this question. In general the main diffi-
culties for theoretical approaches is the very scarce amount of
data. Not only there are few N� scattering data, but the number
of hypernuclei produced in laboratories is also very small. Due
to experimental limitations, most of the produced hypernuclei
are single-� ones, and there are only a few light double-�
and single-� hypernuclei which are known. Constraints on the
hyperon interactions are therefore still weak. As an example,
the NN� interaction is still subject of debate [13,14].

Most of the recent theoretical approaches predict binding
energies and single particle energies of single-� systems
such as 5

�He, 9
�Be, 13

� C, 209
� Pb in good agreement with the

experimental data [4,7]. In the present work, for instance,
we consider density functional approaches where the nucleon
sector is treated with Skyrme interaction and the N� channel
is based on G-matrix calculations starting from various bare
interactions such as NSC89, NSC97a–f (Nijmegen soft core
potentials) or ESC08 (extended soft core potentials) [9,11].
The oldest DF-NSC89 functional can reproduce with a good
accuracy the experimental single particle energies of � hy-
peron for light hypernuclei such as 5

�He or 13
� C, but for the

heavier hypernuclei like 41
� Ca or 209

� Pb, DF-NSC97a–f and DF-
ESC08 are better [9,11]. It should be noted that this problem
can be removed with adequate fitting such as adding new terms
in the energy functional for the single � hypernuclei [9].

There are still many open questions related to multistrange
systems. The first one is concerning the strength of the ��

force. In general, the experimental bond energy of multistrange
systems, such as 6

��He or 10
��Be, are not reproduced by

the usual density functionals [7]: the DF-NSC89 and DF-
NSC97f forces produce bond energies which goes from −0.34
MeV (10

��Be) to −0.12 MeV (210
��Pb) while the DF-NSC97a,

which has strong �� interaction, predicts bond energies
from 0.37 MeV (10

��Be) to 0.01 MeV (210
��Pb) [11]. It should

be noted that more recent density functionals, e.g., the one
derived from the ESC08 potential, are not better at reproducing
the bond energy (−0.57 MeV for ESC08 in 6

��He [9]). In
order to improve the present description of the �� force, an
empirical correction for DF-NSC89 and DF-NSC97a–f in the
�� channel has been proposed and fitted to the bond energies
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of 6
��He [21], which is ∼0.6–1 MeV [22–24]. Note that similar

issues exists with relativistic approaches for hypernuclei and it
was recently proposed than the fit of the bond energy shall enter
directly in the definition of the Lagrangian [25]. Therefore we
use DF-NSC89, DF-NSC97a, and DF-NSC97f potentials, due
to the compatible results of �� channel.

There is however a question which has not been addressed
yet and may modify our understanding of the �� channel in
finite hypernuclei: are � particles paired, and how much �

pairing impacts the ground state properties (density distribu-
tions, binding energies, etc.)? It should be noted that although
there is currently no microscopic calculation in hypernuclei
including � pairing, the pairing gap in hypernuclear matter
has been calculated within the BCS approximation [26–30].
The present work aims to provide a first investigation to the �

pairing in finite hypernuclei by considering a rather optimistic
scenario for the strength of �� pairing. We will show that
even under this optimistic case, �� pairing is still rather
weak.

Another question related to multistrange nuclei is concern-
ing the presence of other strange baryons than �, such as �,
�, or �. The � is the most crucial one because the � + � →
N + � decay channel—also called � instability—can make it
appear in the ground state of hypernuclei [21,31]. The attractive
nature of the � potential in nuclear matter (U� = −14 MeV)
[32] stabilizes � and both �0 and �− hyperons are predicted
in hypernuclei with a strangeness number −S � 20 − 30 [21].
Besides, � hyperons can also decay to �0, �+, and �−.
However, due to the high Qfree values of � hyperons—Qfree

� =
−80 MeV for � and Qfree

� = −26 MeV for � [21,31]—the
decay of � to �±,0 is not favored in finite hypernuclei. Since
the presence of � in the ground state is not expected to enhance
the � pairing, and since the pairing in the � channel is even less
known that one in the � channel, we focus our present study on
the pairing in � hypernuclei. We do not expect our conclusions
to be strongly modified by the presence of hyperons other than
� in finite nuclei.

In this work, ground state properties of single and multi-�
hypernuclei are investigated with Hartree-Fock-Bogoliubov
(HFB) formalism considering �� pairing interactions. On
this purpose we neglect the � spin-orbit interaction which is
estimated to be very small [33–35]. The three-body interac-
tions such as NN� [13,14] is effectively included from the
functional approach. We have considered a zero-range pairing
force in the �� channel, opening the possibility to calculate
accurately open-� shell nuclei. In addition, our calculation
are performed in spherical symmetry since deformation is
not expected to increase greatly pairing correlations. We
have considered hypernuclei with proton and neutron closed
shells, e.g., 40−S

−S� Ca, 132−S
−S� Sn, and 208−S

−S� Pb, since semimagicity
often guarantees that nuclei remain at, or close to, sphericity.
A future study evaluating the effect of deformation on the
pairing correlation for open shell � states would however be
interesting to confirm our conclusions.

The HFB equations for multi-strange hypernuclei are pre-
sented in Sec. II. The general features of shell evolution
for multistrange hypernuclei are discussed in Sec. III. The
possibility of N� pairing is discussed in Sec. IV, and, in
Sec. V results with and without pairing interaction are

discussed. Conclusions and outlooks are given in the last
Sec. VI.

II. THEORETICAL FRAMEWORK

Considering a nonrelativistic system composed of inter-
acting nucleons N = (p, n) and �’s, the total Hamiltonian
reads

Ĥ = T̂N + T̂� + ĤNN + ĤN� + Ĥ��, (1)

where T̂A are the kinetic energy operators and ĤAB are the
interaction operator terms acting between A and B species
(A,B = N,�).

A. Mean-field approximation

In the mean field approximation the ground state of the
system is the tensor product |�N 〉 ⊗ |��〉, where |�N 〉 (|��〉)
is a slater determinant of the nucleon (�) states. The total
Hamiltonian (1) can be turned into a density functional
ε(ρN, ρ�), function of the particle densities ρN and ρ�, as Ĥ =∫

ε(ρN, ρ�)d3r . The energy functional ε is often expressed
as [11,36]

ε(ρN, ρ�) = h̄

2mN

τN + h̄

2m�

τ� + εNN (ρN )

+ εN�(ρN, ρ�) + ε��(ρ�), (2)

where τN (τ�) is the nucleonic (�) kinetic energy density and
εij are the interaction terms of the energy density functional
describing the NN , N�, and �� channels. In the following,
the nucleonic terms will be deduced from the well-known SLy5
Skyrme interaction [37] widely used for the description of the
structure of finite nuclei, while the N� channel is given by a
density functional εN� adjusted to BHF predictions in uniform
matter [11,36],

εN�(ρN, ρ�) = −f1(ρN )ρNρ� + f2(ρN )ρNρ
5/3
� . (3)

Since the spin-orbit doublets are experimentally undistinguish-
able [33,34], the spin-orbit interaction among � particles is
neglected [38]. The following density functionals are consid-
ered for the N� channel: DF-NSC89 [36], DF-NSC97a [11],
DF-NSC97f [11]. In the �� channel ε�� is adjusted to the
experimental bond energy in 6

��He [21] from the so-called
Nagara event [24],

ε��(ρ�) = −f3(ρ�)ρ2
�. (4)

The corresponding empirical approach EmpC [21] for the ��

channel is considered in the present work.
The functions f1−3 in Eqs. (3),(4) are expressed as

f1(ρN ) = α1 − α2ρN + α3ρ
2
N, (5)

f2(ρN ) = α4 − α5ρN + α6ρ
2
N, (6)

f3(ρ�) = α7 − α8ρ� + α9ρ
2
�, (7)

where α1−7 are constants given in Table I. Note that α8 = α9 =
0 [21].
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TABLE I. Parameters of the functionals DF-NSC89, DF-
NSC97a, and DF-NSC97f considering EmpC prescription for α7 [21].

Functional α1 α2 α3 α4 α5 α6 α7

DF-NSC89 327 1159 1163 335 1102 1660 22.81+EmpC
DF-NSC97a 423 1899 3795 577 4017 11061 21.12+EmpC
DF-NSC97f 384 1473 1933 635 1829 4100 33.25+EmpC

In uniform nuclear matter the single particle energies read

εN (k) = h̄2k2

2m∗
N

+ vmatt.
NN and ε�(k) = h̄2k2

2m∗
�

+ vmatt.
� , (8)

where the vmatt.
� decomposes as

vmatt.
� = vmatt.

N� + vmatt.
�� . (9)

The potentials vmatt.
NN , vmatt.

N� , and vmatt.
�� derive from the energy

functionals. Namely,

vmatt.
NN (ρN, ρ�) = v

Skyrme
N + ∂εN�

∂ρN

, (10)

vmatt.
N� (ρ�) = ∂εN�

∂ρ�

, (11)

vmatt.
�� (ρ�) = ∂ε��

∂ρ�

. (12)

The nucleon effective mass is given from Skyrme interac-
tion [39] and the � effective mass is expressed as a polynomial
in the nucleonic density ρN as [36]

m∗
�(ρN )

m�

= μ1 − μ2ρN + μ3ρ
2
N − μ4ρ

3
N . (13)

The values for the parameters μ1−4 are given in Table II.
In hypernuclei, the potentials vN and v� are corrected by

the effective mass term as (see Ref. [21] and therein)

vnucl.
NN = vmatt.

NN − 3h̄2

10mN

ρ
5/3
N

(
6π2

gN

)2/3[
mN

m∗
N

− 1

]
, (14)

vnucl.
N� = vmatt.

N� − 3h̄2

10m�

ρ
5/3
�

(
6π2

g�

)2/3[
m�

m∗
�

− 1

]
, (15)

vnucl.
�� = vmatt.

�� . (16)

The present functional (SLy5 in the NN channel, DF-NSC
in the N� channel and EmpC in the �� channel) therefore
yields an optimal set to perform HF calculations in hypernuclei
(see [21] for details).

TABLE II. The parameters of the �-effective mass.

Force μ1 μ2 μ3 μ4

DF-NSC89 1.00 1.83 5.33 6.07
DF-NSC97a 0.98 1.72 3.18 0
DF-NSC97f 0.93 2.19 3.89 0

B. Mean field + pairing approximation

The HFB framework is well designed for the treatment of
pairing both for strongly and weakly bound systems. In this
work, we study hypernuclei which are magic in neutron and
proton and open shell in �. We thus consider the Hartree-Fock-
Bogoliubov (HFB) framework in the �� channel, and the
NN channel is treated within Hartree-Fock (HF). In addition,
because of their magic properties in the nucleon sector, which
still contains the majority of particles, we consider spherical
symmetry. In the HFB approach the mean field matrix that
characterizes the system is obtained from the particle and
pairing energy densities [40]. Particle and pairing densities
can be expressed as

ρ(rσq, r′σ ′q ′) = 〈ψ |a+
r′σ ′q ′arσq |ψ〉, (17)

ρ̃(rσq, r′σ ′q ′) = −2σ ′〈ψ |a+
r′−σ ′q ′arσq |ψ〉, (18)

where a+
r ′σ ′q ′ and arσq are creation and annihilation operators

which affect nucleon with σ = ±1/2 spin and q isospin from
nucleon to hyperon at point r . The mean field matrix elements
are obtained by variation of the expectation value of the energy
with respect to the particle and pairing densities:

h(rσ, r′σ ′) = δE

δρ(rσ, r′σ ′)
, (19)

h̃(rσ, r′σ ′) = δE

δρ̃(rσ, r′σ ′)
, (20)∫

d3r ′
(

h(rσ, r′σ ′) h̃(rσ, r′σ ′)
h̃(rσ, r′σ ′) −h(rσ, r′σ ′)

)(
ψ1(E, r′σ ′)
ψ2(E, r′σ ′)

)

=
(

E + ε 0
0 E − ε

)(
ψ1(E, r′σ ′)
ψ2(E, r′σ ′)

)
. (21)

In Eq. (19), the diagonal elements of the matrix in the
integral correspond to the particle-hole mean field while the
nondiagonal elements of the matrix correspond to contribu-
tions of the pairing to the mean field of the hypernucleus. To
calculate particle-hole channel, we use total energy functional
by summing up each interaction channel [Eqs. (14), (15),
and (16)] and generated particle energy densities with Eq. (19).

For the particle-particle channel, due to scarce available in-
formation, especially for the � pairing channel, it is convenient
to consider a volume type zero range pairing interaction in the
�� channel as

V�pair = V�0δ(r1 − r2), (22)

where V�0 is the � pairing strength. We use a 60 MeV
cutoff energy and 15h̄ cutoff total angular momentum for
quasiparticles, allowing for a large configuration space for all
hypernuclei under study.

We now discuss the strength V�0 of the � pairing inter-
action. At variance with the NN pairing interaction, there
are not enough experimental data to set the �� pairing
interaction. We therefore choose to calibrate the �� pairing
interaction to calculations of � pairing gaps in uniform matter,
see for instance the very recent work in Ref. [41]. There are
several predictions for the � pairing gap in uniform matter
which have been employed in cooling models for neutron
stars. These predictions are substantially different for several
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reasons: they were calibrated on either the old [26,27] or the
more recent [28,30] value for the Nagara event [24]; they
were considering nonrelativistic [26,27] or relativistic mean
field [28,30] approaches; as a consequence, they incorporate
different density dependencies of the nucleon and � effective
masses; they are based on various � interactions which are
weakly constrained. As a result, qualitatively different pre-
dictions have been performed in nuclear matter: the influence
of the nucleon density on the � pairing gap has been found
opposite between nonrelativistic approaches [26,27] and rela-
tivistic ones [28]. Despite these differences, the predictions of
the � pairing gap at saturation density and for kF�

≈ 0.8 fm−1

(corresponding to the average � density ρsat/5 in hypernuclei)
are rather consistent across the different predictions and reach
a maximum at about 0.5 MeV–0.8 MeV. For instance, under
these conditions the � pairing gap is predicted to be about
0.5 MeV for ρN = ρsat with HS-m2 parameters [28], and
0.5 (0.75) MeV for NL3 (TM1) parameters with ESC00 �

force sets [30]. These values are also consistent with the
extrapolations of earlier calculations [26,27] in hypernuclear
matter. Some interactions predict however lower values. In
the following, we will therefore calibrate our �� pairing
interaction on hypernuclear matter predictions of Ref. [28],
which represents an average prediction for the maximum
possible � pairing gap.

In addition to the �� pairing, let us mention the existence
of a prediction suggesting a strong N� pairing interaction in
nuclear matter [29]. In finite nuclei, large N� pairing gaps
may however be quenched by shell effects, due to large single
particle energy differences between the N and � states, or
mismatch of the associated single particle wave functions. This
will be discussed in more details in Sec. III B.

III. RESULTS

We present in this section the prediction for � pairing gap
and its effect in multi-� hypernuclei. We first discuss the rela-
tive gaps betweenN and � single particle energies predicted by
HF calculation without pairing to assert our calculation without
N� pairing. Then, we employ HFB framework with pairing in
the �� channel to study binding energies and density profiles
in multi-� hypernuclei.

A. Shell structure of hypernuclei without
�� pairing interaction

Let us first discuss the hypernuclei of interest in this
work, without �� pairing interaction. On this purpose, we
investigate closed shell hypernuclei such as 60

20�Ca, 172
40�Sn,

278
70�Pb shown in Fig. 1. These nuclei are triply magic. Due to the
absence of the spin-orbit term, the shell structure of hyperon
is also expected to be similar to that of the spherical harmonic
oscillator, with magic numbers 2, 8, 20, 40, 70, etc., and the
energy gaps are larger than in ordinary nuclei. While the central
potential is also expected to modify the details of the single
particle spectrum, the gross increase of the single particle gap
is mostly due to the absence of spin-orbit interaction. The new
magic number in the � channel is clearly caused by absence of
spin-orbit interaction, increasing the degeneracy of the states as
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FIG. 1. The � single particle spectrum 60
20�Ca (a), 172

40�Sn (b), and
278
70�Pb (c) hypernuclei, calculated with the HF approach.

well as the average energy gaps between single particle states.
In order to check this statement, we have calculated the single
particle spectrum for other Skyrme interactions, e.g., SGII,
SAMI, and SIII, and we found the same gross conclusions.
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TABLE III. Energy difference of each shell between DF-
NSC97a+EmpC and DF-NSC89+EmpC force sets. The detailed
spectra are shown in Fig. 1.

Shell Energy difference (MeV)

60
20�Ca 172

40�Sn 278
70�Pb

1s 6.00 7.50 8.50
1p 6.00 6.87 7.10
1d 3.32 5.80 6.36
2s 2.59 5.57 6.42
1f 4.81 6.30
2p 4.20 5.20

The average single particle gaps between two neighboring
orbitals can be estimated from Fig. 1, where the � spectrum
is shown for 60

20�Ca, 172
40�Sn, and 278

70�Pb hypernuclei and for
three different density functional in the � channel (the Skyrme
interaction SLy5 is fixed in the nucleon channel): the average
single-particle gap is found to be generally larger than 4 MeV,
except for the gap between the 2s-1d and 3s-2d states, where
it is between 1 and 3 MeV. These smaller energy gaps may be
related to the pseudospin symmetry [42,43], since the 2s-1d
and 3s-2d states are pseudospin partners. The small energy
gap between these states makes them good candidates for
pairing correlations: these states could largely mix against
pairing correlations when they are close to the Fermi level,
represented in dashed lines in Fig. 1. For the selected nuclei
in Fig. 1, the Fermi level is indeed close to either the 2s-1d
or the 3s-2d states in the cases of Ca and Pb hypernuclei,
respectively.

The energy spectra predicted by DF-NSC89+EmpC and
DF-NSC97f+EmpC are mainly identical, while the single
particle states predicted by DF-NSC97a+EmpC are system-
atically more bound, since the N� potential which is deeper
for DF-NSC97a+EmpC compared to the two others func-
tionals [21,38]. We give more quantitative estimation of the
single particle energy differences between the predictions of
DF-NSC97a+EmpC and DF-NSC89+EmpC in Table III. As
expected, the larger the number of hyperons, the larger the
differences. The larger the nucleon density, the larger the dif-
ferences as well, since the difference is larger for the deep
single particle states than for the weakly bound ones.

B. The N� and �� pairing channels

We now discuss the N� and �� pairing channels. These
two pairing channels are expected to compete: a � can be
paired either to a nucleon or to another �. Drawing an analogy
with T = 0 and T = 1 pairing channels in ordinary nuclei, the
pairing interaction between two different particles (T = 0) can
occur under the condition of a good matching between their
wave functions. It also requires a good matching between their
single particle energies. This is the main reason why T = 0
pairing is expected to appear mainly at (or close to) N = Z
nuclei [44,45].

Let us first focus on the N� pairing. A necessary condition
for this pairing to occur is that the neutron or proton Fermi
energy is close to the � one. The neutron, proton, and �

Fermi energies are displayed on Fig. 2 as function of the
strangeness number −S for the three representative nuclei:
40−S
−S� Ca, 132−S

−S� Sn, and 208−S
−S� Pb. The intersections of nucleons

and � Fermi energies occur at −S = 4 (neutrons) and 8 (pro-
tons) for 40−S

−S� Ca, −S = 10–16 (proton) and 20–32 (neutrons)
for 132−S

−S� Sn and for −S = 34–40 for both neutrons and protons
208−S
−S� Pb hypernuclei.

Let us now take typical examples of the nuclei which are
located at these crossings. 44

4�Ca and 48
8�Ca single-particle levels

are shown in Fig. 3 and the ones of 244
36�Pb is shown in Fig. 4.

The � Fermi level is mainly the 1p state in 44
4�Ca and 48

8�Ca,
and there are no p states in the neutron and proton spectrum
around the Fermi energy. The conditions for N� pairing are
therefore not satisfied for Ca isotopes.

A similar analysis can be made for the Sn isotopes. We also
calculated 142

10�Sn, 152
20�Sn, and 156

24�Sn hypernuclei for which the
proton or neutron and the � levels cross. The last occupied �

states is 1d for 142
10�Sn (respectively 2s for 152

20�Sn and 1f for
156
24�Sn) while the corresponding proton (neutron) state is 1g9/2

(1h11/2). Since the quantum orbital numbers does not coincide
between the nucleons and the � states in the cases where their
respective Fermi energies cross, the N� pairing is not favored
for these Ca and Sn nuclei.

The case of 208−S
−S� Pb hypernuclei is different. Figure 4

displays the single particle spectrum for 244
36�Pb hypernucleus,

since the crossing of the nucleon (neutrons and protons) and �

Fermi levels occurs at around S = −36 (Fig. 3). Figure 4 shows
that the last filled orbits are 3s1/2 for proton, 3p1/2 for neutron
and 2p for �. Since Pb is magic in the proton, only neutrons
and � may be paired. We therefore predict that n� pairing may
occur for 208−S

−S� Pb hypernuclei and for � between S = −34 and
S = −40. For lower or higher values of S, the mismatching of
the single particles orbitals does not favor n� pairing. Since the
level density increases with increasing masses, it is expected
the general trend that N� pairing may occur more frequently
as A increases.

208−S
−S� Pb is a typical case representing heavy hypernuclei.

Since the � instability is expected to occur around −S =
70 [21], we can infer that pairing may occur for about 10%
of 208−S

−S� Pb isotopes. This number may be considered as the
maximum percentage of heavy hypernuclei where N� pairing
may occur. The amount of hypernuclei where N� pairing is
possible is therefore predicted to be small. In the following,
we will avoid the cases where it may occur.

C. �� pairing and binding energies

We now focus on the �� pairing and consider the cases
of semimagical hypernuclei, such as 40−S

−S� Ca, 132−S
−S� Sn, and

208−S
−S� Pb. It should be noted that these nuclei are magic in
both proton and neutron numbers, which helps most of these
hypernuclei to resist against deformation, as in the case of
normal hypernuclei. They have however an open shell in the
� channels.

The � pairing strengths, mean gaps, and averaged mean
gaps of isotopic chains are displayed in Table IV. The fitting
procedure for the �� pairing is the following: we first remind
that the �� mean-field interaction is calibrated to the ��
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FIG. 2. Evolution of proton, neutron, and � Fermi energies function of strangeness number −S for 40−S
−S� Ca (a), 132−S

−S� Sn (b), and 208−S
−S� Pb

(c) hypernuclei with the HF approach.

bond energy in 6He (Nagara event). Then we consider open-
shell nuclei and calibrate the average �-pairing gap to its
expectation from uniform matter calculations. Densities are
averaged from r = 0.2 fm to 10 fm for each hypernucleus and
each force set using HF results. Fermi momenta corresponding
to these densities are calculated as kF�

= ( 3π2

2 ρ�)1/3. The
density profile of hypernuclear matter calculations [28] which
has corresponding Fermi momentum and density fraction
allows to extract �� pairing gap for each hypernuclei for each
force sets. For finding adequate � pairing strength [V�pair in
Eq. (22)], starting from −50 MeV fm3 to −300 MeV fm3, we
iterated and determined mean gap values for each hypernuclei
chain in HFB calculation. On each iteration, the mean gap
values are averaged over all isotopic chain until similar values
of pairing gaps of hypernuclear matter calculation are obtained.
Namely for the 40−S

−S� Ca isotopic chain, the average mean gap
was calculated by summing each mean gap of hypernucleus
starting from −S = 6 to −S = 20 and dividing by the total
isotope number. Similarly for the 132−S

−S� Sn (208−S
−S� Pb) isotopes,

the average man gap determined between −S = 18 (−S = 58)
to−S = 40 (−S = 70) region. The average mean gaps for each
isotopes with each force set is given in Table IV. A typical

0.5 MeV gap is obtained in all nuclei, leading to a pairing
effect independent of the number of � involved.

The effect of �� pairing on the binding energy can be
estimated from the condensation energy, defined as Econd =
EHF − EHFB. The condensation energy measures the impact
of the pairing effect on the binding energy. Figure 5 displays
the condensation energy for a set of 40−S

−S� Ca and 132−S
−S� Sn

semimagical hypernuclei. As in the case of normal nuclei,
the condensation energy evolves as arches, with zero values at
closed shells and maximum values for middle-open shells. The
condensation energy can reach about 3 MeV in midopen shell
hypernuclei for Ca and Sn isotopes. Since the �� interaction
considered here is calibrated on the maximum prediction
for the � gap in uniform matter with respect to � force
sets, the condensation energy represents the estimation of the
maximum value for the condensation energy generated by ��

interaction.
The � numbers at which condensation energy is zero signs

the occurrence of shell closure. It is therefore not surprising
to recover the magical numbers 8, 20, 40, as we previously
discussed. Strong subshell closure occurs for � = 34 in Sn
isotopes corresponding the filling of the 1f state.
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4�Ca (a) and 48
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(b) hypernuclei, calculated with the HF approach.

Investigating the effect of �� pairing on the single particle
energies, it turns out to be weak: states around the Fermi level
are shifted by about 100–200 keV at maximum. The impact of
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FIG. 4. A complete single particle spectrum of 244
36�Pb hypernu-

cleus with the HF approach.

� pairing on single particle energies remains therefore rather
small.

D. �� pairing and densities

We now discuss the effect of �� pairing on both normal
and pairing densities. Figure 6 shows normal density profiles
for 40−S

−S� Ca, 132−S
−S� Sn, and 208−S

−S� Pb series of hypernuclei. For
the 40−S

−S� Ca series we consider cases where the N� pairing
is not expected to occur. As mentioned above, the 1d and 2s
states are almost degenerate, and can largely mix due to pairing
correlations. Namely, before the 1d orbital is completely filled,
�hyperons start to fill the 2s state due to the pairing interaction,
resulting in a small increase at the center of the hypernucleus
which corresponds the effect of the s state. Similar results can
be seen on the density profile of 208−S

−S� Pb hypernucleus: before
the 2d state is completely filled, � hyperons start to fill the 3s
state due to the pairing interaction resulting from the almost
degeneracy of the 2d and 3s � states. In the case of 132−S

−S� Sn,
there is no major difference on density profiles: because of the
large gap between 1f and 2p states, the � pairing changes
only the total energy of the 132−S

−S� Sn isotopic chain in −S = 24

TABLE IV. Pairing strength, � density, and calculated, averaged mean gap, and hypernuclear pairing gap for each force sets.

Force set Pairing strength ρav Hypernucleus Calculated Average Pairing gap in
(MeV fm3) (fm−3) mean gap mean gap uniform matter [28]

(MeV) (MeV) (MeV)

DF-NSC89+EmpC −139 0.0264 46
6�Ca 0.82 0.59 0.42

DF-NSC97a+EmpC −148 0.0349 46
6�Ca 1.04 0.50 0.44

DF-NSC97f+EmpC −180 0.0241 46
6�Ca 0.98 0.49 0.43

DF-NSC89+EmpC −158 0.0421 160
28�Sn 0.84 0.46 0.43

DF-NSC97a+EmpC −145 0.0499 160
28�Sn 0.82 0.45 0.50

DF-NSC97f+EmpC −180 0.0382 160
28�Sn 0.82 0.46 0.45

DF-NSC89+EmpC −184 0.0400 272
64�Pb 0.69 0.44 0.47

DF-NSC97a+EmpC −180 0.0320 272
64�Pb 0.76 0.46 0.45

DF-NSC97f+EmpC −220 0.0270 272
64�Pb 0.71 0.44 0.40
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FIG. 5. Difference of binding energies between HF and HFB for
40−S
−S� Ca (a) and 132−S

−S� Sn (b) hypernuclei with DF-NSC89+EmpC, DF-
NSC97a+EmpC, and DF-NSC97f+EmpC force sets.

to −S = 30 zone but does not impact the occupation numbers
of 1f and 2p orbitals.

Figure 7 displays the � pairing density for 40−S
−S� Ca, 132−S

−S� Sn,
and 208−S

−S� Pb. As mentioned above, pairing interaction effects
result in the partial occupation of � hyperons in the s and d
states. The pairing density of 54

14�Ca hypernucleus peaks at 3 fm
due to half-filled 1d orbital. As strangeness number increases,
hyperons start to fill the 2s state and the contribution of the 1d
state decreases. For −S = 18, � hyperons starts to largely fill
the 2s state before the 1d state is completely full, resulting
in a pairing density having non-negligible contributions of
both s and d states. Similar result can be seen for the pairing
density of 208−S

−S� Pb hypernuclei which has 2d-3s coupling. At
−S = 64, pairing densities are mainly built from the 2d state
but as the strangeness number increases, the pairing of 2d
orbital decreases while pairing density at 3s state increases.
However for 132−S

−S� Sn hypernuclei, the situation is different.
Due to the large energy gap between 2s and 1f states, the
pairing interaction does not change the occupation of these
states. For this reason, the pairing density is only built from the
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FIG. 6. Normal density profiles with on/off pairing for 40−S
−S� Ca

(a), 132−S
−S� Sn (b), and 208−S

−S� Pb (c) hypernuclei, calculated with the HFB
approach.

1f orbital and its magnitude increases when the occupation of
the 1f orbital increases until it is half-filled. When the 1f state
is more than half-filled, the magnitude of the pairing density
starts to decrease. The spatial distribution of pairing effect in
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FIG. 7. � pairing densities for 40−S
−S� Ca (a), 132−S

−S� Sn (b), and
208−S
−S� Pb (c) hypernuclei, calculated with the HFB approach.

hypernuclei is therefore expected to exhibit strong variations
from one hypernucleus to another, because of the weak spin-
orbit effect, giving rise to well separated sets of states.

IV. CONCLUSIONS

In this work we have investigated the effect of � pairing on
the ground state properties of hypernuclei within the Hartree-
Fock-Bogoliubov formalism. The SLy5 Skyrme functional is
used in the NN channel, while for N� channel we employ
three functionals fitted from microscopic Brueckner-Hartree-
Fock calculations: DF-NSC89, DF-NSC97a, and DF-NSC97f.
These functionals reproduce the sequence of single-� experi-
mental binding energies from light to heavy hypernuclei. For
the �� channel, we used the empirical prescription EmpC
which is calibrated to 1 MeV which is the experimental bond
energy in 6He��. Based on these density-functional approach,
several nuclei have been studied with nucleon closed-shells
and � open shells. A �� pairing interaction is therefore
introduced, which magnitude is calibrated to be consistent
with the maximum BCS predictions for the � pairing gap in
hypernuclear matter.

Since the energy difference between the N and � Fermi
levels is usually large (more than 5 MeV) in the considered
nuclei, the N� pairing is quenched in most of the cases. The
impact of �� pairing on the binding energies, density profiles,
and single particle energies have been analyzed for 40−S

−S� Ca,
132−S
−S� Sn, and 208−S

−S� Pb chains. We have shown that the effects
of the �� pairing depends on hypernuclei. At maximum, the
condensation energy in these chains is about 3 MeV. Density
profiles reflect the occurrence of almost degenerate states in
the � single particle spectrum, such as for instance the almost
degeneracy between the 1d and 2s states in 40−S

−S� Ca hypernuclei
and 2d and 3s almost degeneracy in 276

68�Pb. The effects of the
� pairing also depend on the N� and �� force sets, but
we found only a small overall impact. Generally, we found
that �� pairing could be active if the energy gap between
orbitals is smaller than 3 MeV. Under this condition, � pairing
could impact densities and binding energies. Since only a weak
spin-orbit interaction is expected in the � channel, � states are
highly degenerated and usually distant by more than 3 MeV
in energy. In conclusion, the present microscopic approach
shows that the �-related pairing effect can usually be neglected
in most of hypernuclei, except for hypernuclei which have
a single particle gap lower than 3 MeV around the Fermi
level.
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