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Resonant-continuum relativistic mean-field plus BCS in complex momentum representation
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To develop methods for open quantum systems is one of the most important tasks in theoretical studies. We
develop the resonant-continuum relativistic mean-field theory in complex momentum representation with the BCS
approximation for pairing correlations in weakly bound nuclei. The bound states and resonant states are treated
on the same footing and the physical resonant states are considered self-consistently in the present calculations.
The Zr isotopes are chosen as illustrative examples. The calculated binding energies, two-neutron separation
energies, and root-mean-square radii are in excellent agreement with the available data as well as the relativistic
Hartree-Bogoliubov calculations. Especially, several resonant states lying near the continuum threshold are found
to play important roles in the formation of exotic phenomena and support the prediction of giant halo in the Zr
isotopes.
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I. INTRODUCTION

The open quantum system is a quantum-mechanical system
that interacts with external quantum systems. In reality, no
quantum system is completely isolated from its surroundings.
One has to deal with the interactions between the system
and environment, especially for the weakly bound or un-
bound systems close to the threshold. Hence, the treatment
of open quantum systems is widely regarded in different fields
in physics, including quantum optics, quantum information
science, quantum thermodynamics, quantum cosmology, and
so on. In nuclear physics, the relevant open quantum systems
are mainly the weakly bound nuclei, in which the interplay
between the bound states, resonances, and scattering states
plays an important role in the formation of many exotic
phenomena, such as the emergence of halos, the change of
magic numbers, new excitation modes, and so on [1–3].

In the traditional shell-model calculations, the harmonic os-
cillator (HO) basis is usually adopted. Since the HO functions
fall off too fast to describe the exotic nuclear properties, such
as neutron halo phenomena, one employs the Berggren basis
to replace the HO basis, and has developed the Gamow shell
model (GSM) for the exotic nuclei [4]. As the Berggren basis
consists of the bound states, resonant states, and scattering
states [5], the GSM can well describe the weakly bound
nuclei bearing large spatial extensions [6–9]. Unfortunately,
the dimension of the Berggren basis increases quickly with
increasing number of valence particles, which limits the
applications of the GSM. For medium and heavy nuclei,
an appropriate method is Hartree-Fock-Bogoliubov (HFB)
theory. For describing the drip-line nuclei, the HFB equation
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is solved using the coordinate representation in a large enough
box [10], nevertheless, this calculation is time-consuming for
deformed nuclei [11]. In addition to the coordinate space,
the HFB formalism is also solved by basis expansion with a
transformed HO basis [12,13]. The transformed HO basis has
improved the falling behavior of the HO functions, but it still
declines exponentially with the radial coordinate r , which is
not appropriate for the broad resonances or scattering states. To
avoid these defects, the Berggren basis was introduced in the
Hartree-Fock-BCS/Bogoliubov calculations, the developed
Gamow-Hartree-Fock-BCS/Bogoliubov methods presented an
excellent description for the nucleilike neutron-rich Ni isotopes
close to the neutron drip-line [14]. Another theoretical method
developed in parallel with the HFB is the relativistic Hartree-
Bogoliubov (RHB) theory [15]. Based on the HO basis, the
RHB well described the properties of stable nuclei. For exotic
nuclei, the RHB was solved in the coordinate representation,
and the continuum RHB theory was established [16]. The
continuum RHB theory has explained successfully the exotic
halo phenomenon in 11Li [17], and predicted a novel giant
halo phenomenon in the Zr isotopes [18]. Similar to the
HFB, the extension of this method to deformed nuclei is also
very difficult. The RHB theory for deformed nuclei has been
developed by adopting the Dirac Woods-Saxon basis, which
has been successfully applied to describe the neutron halo in
deformed nuclei [19,20].

The relativistic mean-field (RMF) theory is successful in
describing various nuclear phenomena [1,3,21–24] and also
successfully applied to the astrophysical r-process simulations
[25–29], so it is interesting to develop the resonant-continuum
RMF theory for better describing the properties of exotic
nuclei. Based on the idea of Berggren basis, we have devel-
oped the method to solve the Dirac equation using complex
momentum representation for spherical and deformed nuclei,
and obtained a unified description for the bound, resonant,
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and scattering states [30–32]. For open-shell nuclei, the proper
treatment of pairing correlations is essential. Due to the
improper treatment of the continuous states, the conventional
BCS is not thought to be reliable for those nuclei near the drip
line [10,33]. However, if one can obtain the physical resonant
states instead of the nonphysical continuum, the BCS is valid.
The earliest work in this direction can be seen in Ref. [34],
where the BCS equations were extended to incorporate the
contribution of the resonant states through the generalized
level density, and the resonant continuum is shown to have
an important effect on the neutron-rich nuclei. Combined
with the Hartree-Fock, the resonant Hartree-Fock-BCS theory
was established in Ref. [35], where the widths of resonant
states are found to significantly influence the pairing properties
of nuclei close to the drip line. Further development of the
resonant Hartree-Fock-BCS theory was completed in Ref. [36],
where the resonances are introduced by complex scaling
method (CSM). In Ref. [37], the resonances were considered
based on the Berggren representation in the Hartree-Fock-BCS
calculations and neutron-rich nuclei 20−22O and 84Ni were
described well. The Berggren representation was also used to
explore the quasiparticle resonant states with BCS for pairing
in Ref. [38]. In Ref. [39], the generalized BCS was extended
to the relativistic framework, and the RMF-rBCS formalism
was developed with the resonances taken into account by the
scatter-phase shift method. In computation, it is more desirable
to explore the resonant states with a bound-state-like method,
especially in the self-consistent field calculations, such as
the established Hartree-Fock-BCS with CSM [36] and RMF-
ACCC-BCS method [40,41]. Compared the CSM and ACCC,
the complex momentum representation (CMR) holds many ad-
vantages, which have been explained in Refs. [30,31]. Hence,
it is interesting to develop the resonant-continuum RMF-BCS
theory in complex momentum representation, which will be
called the RMF-BCS-CMR for simplicity.

In this paper, we develop the RMF-BCS-CMR with the
resonant states obtained by the diagonalization of Dirac
Hamiltonian in the complex momentum space. The theoretical
formalism is expressed in Sec. II. In Sec. III, we present the
numerical details. With the Zr isotopes as illustrative examples,
we calculate the binding energies, two-neutron separation
energies, and root-mean-square (rms) radii, and compare them
with experimental data as well as those obtained by the RHB
calculations. A summary is given in Sec. IV.

II. FORMALISM

To develop the resonant-continuum RMF-BCS theory in
complex momentum representation, we first sketch the RMF
formalism [1]. The start point of the RMF theory is that
nucleons are described as the Dirac particle with interactions
via mesons and photon, the Lagrange density of model can be
written as

L = ψ̄(iγμ∂μ − M)ψ + 1
2∂μσ∂μσ − U (σ ) − 1

4�μν�
μν

+ 1
2m2

ωωμωμ − 1
4

�Rμν
�Rμν + 1

2m2
ρ �ρμ �ρμ − 1

4FμνF
μν

− ψ̄(gσσ + gωγμωμ + gργμ�τ �ρμ + eγμAμ)ψ, (1)

where M is the nucleon mass and ψ is the Dirac spinor. σ , ωμ,
and �ρμ are the isoscalar-scalar, isoscalar-vector, and isovector-
vector meson fields with the masses mσ , mω, and mρ , and
the coupling constants gσ , gω, and gρ , respectively. Aμ is the
photon field. The nonlinear couplings of σ meson read U (σ ) =
1
2m2

σ σ 2 + 1
3g2σ

3 + 1
4g3σ

4. The field tensors are defined as

�μν ≡ ∂μων − ∂νωμ,

�Rμν ≡ ∂μ �ρν − ∂ν �ρμ, (2)

Fμν ≡ ∂μAν − ∂νAμ.

From the Lagrange density, one can obtain the equations of
the RMF theory. The details can be referenced in literature
[1,15,21]. For a static nucleus, the equations of the RMF theory
are simplified to the Dirac equation,

[�α · �p + β(m + S) + V ]ψi = εiψi, (3)

for nucleons with the scalar and vector potentials

S(�r) = gσσ (�r),
(4)

V (�r) = gωω0(�r) + gρτ3ρ
0(�r) + eA0(�r),

and the Klein-Gordon equations,

−�2σ + U ′(σ ) = −gσρs,

−�2ω0 + m2
ωω0 = gωρv,

(5)−�2ρ0 + m2
ρρ

0 = gρρ3,

−�2A0 = eρc,

for mesons and photon with the densities

ρs =
A∑

i=1

ψ̄iψi , ρv =
A∑

i=1

ψ
†
i ψi,

ρ3 =
A∑

i=1

ψ
†
i τ3ψi , ρc =

Z∑
p=1

ψ†
pψp.

For spherical nuclei, the Dirac spinor can be written as

ψ(�r) =
(

f (r)φljmj
(�r )

g(r)φl̃jmj
(�r )

)
. (6)

The radial density distributions are obtained as

ρs(r) = 1

4π

A∑
i=1

[|fi(r)|2 − |gi(r)|2], (7)

ρv(r) = 1

4π

A∑
i=1

[|fi(r)|2 + |gi(r)|2]. (8)

The expressions ρ3 and ρc are the same as ρv except for the
differences in the sum over the levels considered. Equations
(3) and (5) are a set of coupled equations. They can be solved
by iteration in a given accuracy. Then, the total energy of the
system is obtained as

E =
A∑

i=1

εi − 1

2

∫
d3r

[
gσρsσ + 1

3
g2σ

3 + 1

2
g3σ

4

]

−1

2

∫
d3r[gωρvω

0 + gρρ3ρ
0 + eρcA

0]. (9)
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The center-of-mass correction is considered using [42]

− 3
4 × 41 × A−1/3. (10)

The above formalism is effective for stable nuclei. For exotic
nuclei, the Fermi surface is very close to the continuum
threshold; the contribution of the resonant states cannot be
ignored. To include the resonant states, the Dirac equation (3)
is transformed into momentum representation∫

d�k′〈�k|H |�k′〉ψ(�k′) = εψ(�k), (11)

where H = α · p + β(m + S(�r)) + V (�r). For spherical nuclei,
assuming

ψ(�k) =
(

f (k)φljmj
(�k)

g(k)φl̃jmj
(�k)

)
, (12)

the Dirac equation becomes

Mf (k) − kg(k) +
∫

k′2dk′V+(k,k′)f (k′) = εf (k),
(13)

−kf (k) − Mg(k) +
∫

k′2dk′V_(k,k′)g(k′) = εg(k),

with

V+(k,k′) = 2

π

∫
r2dr[V (r) + S(r)]jl(k

′r)jl(kr), (14)

V−(k,k′) = 2

π

∫
r2dr[V (r) − S(r)]jl̃(k

′r)jl̃(kr). (15)

The above equations are solved in complex momentum space
using the Berggren basis [5], and both the bound and resonant
states are obtained. The details can be seen in Ref. [30]. In order
to obtain the density distributions in the coordinate space, we
transform the wave functions into the coordinate representation
with the upper and lower components in Eq. (6) as

f (r) = il
√

2

π

∫
k2dkjl(kr)f (k),

(16)

g(r) = il̃
√

2

π

∫
k2dkjl̃(kr)g(k).

For open-shell nuclei, it is necessary to consider the con-
tribution of pairings. As the resonant states are separated
clearly from the continuum in the present calculations, the BCS
approximation is applicable and effective for the pairings. It
is assumed that the matrix element of the pairing interactions
is constant in the vicinity of the Fermi level [42]. When the
resonances are taken into account, the pairing correlations can
be dealt with the gap equation∑

b

�b√
(εb − λ)2 + �2

+
∑

r

�r

∫
gr (ε)√

(ε − λ)2 + �2
dε = 2

G
,

(17)
and the particle number equation

∑
b

�b

[
1 − εb − λ√

(εb − λ)2 + �2

]

+
∑

r

�r

∫
gr (ε)

[
1 − ε − λ√

(ε − λ)2 + �2

]
dε = N, (18)

where G is the pairing strength, N is the particle number, �σ =
jσ + 1

2 with σ = b for bound states and σ = r for resonant
states, and

gr (ε) = 1

π

�/2

(ε − εr )2 + �2/4
, (19)

with the real part of resonance energy εr and the width �.
The solutions of Eqs. (17) and (18) give us the occupation
probabilities for the bound and resonant levels. With the
occupations, the densities in Eqs. (7) and (8) are modified as

ρs(r) = 1

2π

∑
b

�bv
2
b[|fb(r)|2 − |gb(r)|2]

+ 1

2π

∑
r

�r

∫
gr (ε)v2

r [|fr (r)|2 − |gr (r)|2]dε,

(20)

ρv(r) = 1

2π

∑
b

�bv
2
b[|fb(r)|2 + |gb(r)|2]

+ 1

2π

∑
r

�r

∫
gr (ε)v2

r [|fr (r)|2 + |gr (r)|2]dε.

(21)

After these modifications, the total energy of the system
becomes

E = 2
∑

b

�bεbv
2
b + 2

∑
r

�r

∫
gr (ε)εv2

r dε

− 1

2

∫
d3r

[
gσρsσ + 1

3
g2σ

3 + 1

2
g3σ

4

]

− 1

2

∫
d3r[gωρvω

0 + gρρ3ρ
0 + eρcA

0]

−G

(∑
b

�bubvb +
∑

r

�r

∫
gr (ε)urvrdε

)2

− 3

4
× 41 × A−1/3. (22)

III. NUMERICAL DETAILS AND RESULTS

Based on the above formalism, we first outline the calcula-
tion steps of the RMF-BCS-CMR. Similar to the conventional
RMF, the RMF-BCS-CMR calculations are attributed to solv-
ing a set of coupled equations (3) and (5). The set of coupled
equations are complicated and can only be solved by iteration
from an initial guess for the potentials V and S. To acquire
both the bound and resonant states, Eq. (3) is transformed into
complex momentum representation in Eq. (13). Its solutions
give us the single-particle energies ε and the wave functions in
momentum representation f (k) and g(k).

With these single-particle levels for the bound and resonant
states, the pairings are treated with the BCS approximation
by solving Eqs. (17) and (18) with a given pairing strength
G or energy gap �. Therefore, all the bound states and
physical resonant states are considered in our calculations. For
convenience, an empirical formula � = 12/

√
A is adopted for
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FIG. 1. Neutron single-particle spectra for 124Zr in the complex
k plane. The red solid diamonds and black open circles represent the
resonances and the continuum, respectively.

the neutron and proton pairings [43]. The solutions of Eqs. (17)
and (18) give us the occupation probabilities v2 for the bound
and resonant levels. With the occupations, the densities ρs

and ρv are obtained by Eqs. (20) and (21), where the wave
functions in the coordinate space f (r) and g(r) are calculated
by Eqs. (16). Similarly, ρ3 and ρc are obtained. These densities
form the sources in Eqs. (5) for a calculation of the meson
fields and a new set of potentials (4). This cycle is repeated
until convergence is achieved.

In the actual calculations, the Dirac equation (13) is solved
in the complex momentum space with the momentum integra-
tion along an appropriate contour. The details can be found
in Ref. [30]. For the even-even neutron-rich Zr isotopes, only
the states close to the continuous threshold: ν1h11/2, ν1h9/2,
ν2f7/2, ν2f5/2, ν3p3/2, ν3p1/2, and ν1i13/2, as well as those
lower are considered in the RMF-BCS-CMR calculations, the
contour shown in Fig. 1 is large enough to expose all the reso-
nant states concerned. The other resonant states are neglected
because of the minor occupation. The proton single-particle
resonant states are not considered because their contributions
to the ground-state properties are negligible for neutron-rich
nuclei.

After clarifying the numerical details, we perform the
RMF-BCS-CMR calculations for the even-even neutron-rich
Zr isotopes. For comparing with the RMF-rBCS and RMF-
ACCC-BCS calculations, the effective interactions NLSH [44]
is adopted. The neutron single-particle energies are shown in
the top panel of Fig. 2 for those levels in the vicinity of the
continuum threshold. For all the Zr isotopes considered here,
the states 2f5/2, 1h9/2, and 1i13/2 always remain as resonant
states, and their energies change with the neutron number in
the same way as the energy of the bound state 1h11/2. The
states 3p1/2 and 2f7/2 are resonant states with A < 130, and
the state 3p3/2 is a resonant state with A < 128. As the mass
number A increases, these resonant states gradually become
loosely bound. These results are similar to those obtained in
the RMF-rBCS and RMF-ACCC-BCS calculations [39,40].

The available widths are shown in the bottom panel of
Fig. 2. Over the Zr isotopes considered, the narrow resonances
1h9/2 and 1i13/2 have rather small widths, which decline slowly
with the increasing neutron number. However, for the broad

FIG. 2. Neutron single-particle energies and widths for the states
close to the continuum threshold in the Zr isotopes. The states are
labeled as nlj with n, l, and j the radial, orbital, and total angular
momentum quantum numbers, respectively. The Fermi surface is
marked by the dashed line in the top panel.

resonances 3p1/2 and 3p3/2, their widths are considerably large
when the neutron number is not so large and become smaller
rapidly with the increasing neutron number. Although the
tendency of widths with the neutron number is consistent with
the RMF-rBCS and the RMF-ACCC-BCS calculations, there
are significant differences in the width values. The dramatic
change in the width of the state 3p1/2 in the RMF-rBCS calcula-
tions does not appear here. As the width, which plays important
role in the calculations of pairing correlations, is independent
of nonphysical parameters in the present calculations [30], it
is expected that our results are more reliable.

The two-neutron separation energy,

S2n(Z,N ) = B(Z,N ) − B(Z,N − 2), (23)

is an important observable reflecting nuclear binding and exotic
properties. In Fig. 3, we have shown the calculated S2n for
the even-even Zr isotopes. For comparison, the experimental
data [45] and the RHB results [18] are also displayed. Apart
from a bit of overestimation for the energy gap at N = 50
and the missing of the small energy gap at N = 56, both
the calculations agree with the experimental data well. Com-
pared with the RHB calculations, the RMF-BCS-CMR model
slightly weakens the energy gap at N = 50. From A = 126 to
A = 140, the two-neutron separation energies remain close
to zero, which hints at the possibility of the existence of
multiparticle giant halo for the Zr isotopes, which agrees with
the prediction in the RHB calculations.

The nuclear radius is another important observable reflect-
ing the nature of nuclei. In Fig. 4 we show the calculated neu-
tron rms radii for the even-even Zr isotopes. For comparison,
the RHB results are also exhibited. In the side with fewer neu-
trons, the RMF-BCS-CMR results follow very closely the RHB
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FIG. 3. Two-neutron separation energies of even-even Zr isotopes
as a function of the mass number A. The blue solid circles and red open
diamonds correspond to the RMF-BCS-CMR and RHB calculations,
respectively. The black open squares represent the experimental data.

values. Especially, there appears a sharp increase of the neutron
radii from A = 122 to A = 124. Compared with the RHB
calculations, the current calculations predict a faster increase
in radius for the neutron-rich nuclei. Further increasing the
neutron number, the increasing of radius becomes small. This
change in radius can be explained according to the occupation
of levels.

The occupation probabilities of single-particle levels are
plotted in Fig. 5 for the even-even Zr isotopes from A = 120
to A = 140. Starting from A = 124, the large occupation
probabilities for the levels 3p3/2 and 3p1/2 with the increasing
of mass number A. As the 3p3/2 and 3p1/2 levels are quasi-
bound or loosely bound for A � 124, they give the dominant
contributions to the extraordinary increase in radius. Although
the occupation probabilities of the 2f7/2 and 2f5/2 levels are
also large, the increasing radius is relatively small for the
large centrifugal barrier. The contribution of narrow resonances
1h9/2 and 1i13/2 to the radius is negligible. The slower increase
in radius observed in Fig. 4 is mainly attributed to the slower
increase in the occupations of the quasibound or loosely bound
states in Fig. 5. These indicate that the large neutron radius is
chiefly due to the existence of low-lying resonant states 3p3/2

FIG. 4. Neutron rms radii for the even-even Zr isotopes as a
function of the mass number A. The red solid circles and black open
squares correspond to the RMF-BCS-CMR and RHB calculations,
respectively.

FIG. 5. Occupation probabilities of neutron single-particle levels
as a function of the mass number A for the Zr isotopes. Labels are the
same as those in Fig. 2.

and 3p1/2 close to the threshold. In the RHB calculations,
the occupancy of the narrow resonances with high angular
momenta is larger than in the RMF-BCS-CMR calculations.
Hence, the RHB radii are relatively smaller than the RMF-
BCS-CMR calculations.

To find out the reason why the occupations of single-particle
levels, especially those for broad resonant or loosely bound
states, may cause the increase in radius, we calculate the
nucleon density of the single-particle levels for the bound
and resonant states. In Fig. 6, we display the ratio of the
neutron density of the single-particle levels to the total neutron
density for 124Zr. For all the bound states, the ratio rapidly
converges to zero with the increasing of r . However, for the
resonant states, the ratio does not decrease with r . The exotic
phenomena are mainly due to the contributions of the resonant

FIG. 6. Density distributions in 124Zr. The top panel displays the
ratio of the neutron density of the single-particle levels to the total
neutron density. The bottom panel displays the proton, neutron, and
total matter densities marked by the black solid, red dot, and blue
dashed lines, respectively.
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states, especially the broad resonances 3p3/2 and 3p1/2 with
low angular momentum, although the 2f7/2 and 2f5/2 have
also some contributions to the formation of exotic phenomena.
The 1h9/2 and 1i13/2 correspond to the narrow resonances with
high angular momentum, which are more localized around
the nucleus, their contributions to nuclear exotic phenomena
are not important. The effect of broad resonances on exotic
phenomena has also been pointed out in Refs. [18,39,40], but
there are differences in these calculations. In Ref. [39], the
density of 3p1/2 is much lower than that of 3p3/2, while they
are comparable in the present calculations.

The total proton, neutron, and matter densities are shown in
the bottom panel in Fig. 6 for 124Zr. As r increases, the total
proton density converges to zero. The long tail of matter density
comes mostly from the contribution of the neutron density,
which is due to the loosely bound or wider resonant states 3p3/2

and 3p1/2. This conclusion is consistent with that obtained in
the RMF-rBCS, RMF-ACCC-BCS, and RHB calculations.

IV. SUMMARY

We have developed the RMF-BCS-CMR with the theoret-
ical formalism presented. We have studied the ground-state
properties of the even-even Zr isotopes. Compared with the
RMF-rBCS and RMF-ACCC-BCS calculations, an agreement
has been obtained for the single-particle energies. For the

widths, our calculations are expected to be more accurate.
The calculated two-neutron separation energies agree with
the experimental data as well as the RHB calculations. The
two-neutron separation energies remain close to zero for the
neutron-rich Zr isotopes, and the neutron rms radii display
a sharp increase from A = 122 to A = 124, which hints at
the existence of giant halo for the Zr isotopes and supports
the prediction in the RHB calculations. The behavior of the
nuclear radius is well explained by the occupation probabilities
and the density distributions of single-particle levels in the
present calculations. The resonant states, especially the broad
resonances with low angular momenta, show a long tail of
density distributions, which lead to the formation of exotic
phenomena such as halos.

It should be mentioned that the present approach only
partially relies on the Berggren basis. An entire Gamow theory
for relativistic mean field is in progress.
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