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Elimination of degeneracy in the γ -unstable Bohr Hamiltonian in the presence
of an extended sextic potential
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In this paper, the γ -unstable Bohr Hamiltonian is studied in the presence of an extended sextic potential. It is
expected that in this situation, we reach some degenerate levels in the energy spectrum, but we are interested in a
case in which there is no degeneracy between those levels. This goal can be achieved by including the effects of an
interaction made by the Casimir operator of SO(3). When this term is involved in the γ -unstable Bohr Hamiltonian,
the degeneracy will be removed. According to the new scheme of energy levels, after the elimination of degeneracy,
some low-lying excited levels are introduced. Then we examine the results by reproducing the experimental data
of some isotopes for energy levels and E2 electromagnetic transitions.
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I. INTRODUCTION

Describing the critical point symmetries in atomic nuclides
and the shape transition of the interacting Boson model can
be investigated by exact or approximate analytical solutions
of the equation of the Bohr Hamiltonian with some physical
potential models [1–4]. The critical point symmetries have
been confirmed experimentally and they include X(5) [5–10]
and E(5) [11–15]. The first order phase transition between
spherical and prolate deformed nuclei [7] is related to X(5)
symmetry, while E(5) symmetry corresponds to the second
order phase transition between spherical and γ -unstable nuclei.
However, in E(5) symmetry the potential model is totally
independent of the collective γ variable, whereas the potential
model in X(5) symmetry can be separated into two linearly
independent terms, where the γ part is a harmonic oscillator
centered around γ = 0 which corresponds to prolate deformed
nuclei and β is the degree of freedom corresponding to
the magnitude of the deformation [4,7,16]. However, E(5)
symmetry can be viewed as a transition from vibrational U(5)
to γ -unstable nuclei O(6) symmetry, while X(5) symmetry
corresponds to the transition from the vibrational spherical
shape U(5) to the prolate deformed nuclei SU(3) [4,7,16].

In the case of E(5) symmetry, there are some degeneracies
between the levels with a specific quantum number (which is
called seniority). The degeneracy can be removed if we include
the Casimir operator of SO(3) as an interaction. In this paper,
we want to consider an extended sextic potential [17] instead
of the infinite square well in the Bohr Hamiltonian and we
consider the Casimir operator of SO(3) as an interaction as
well. According to this goal, we study the analytical solution
of the Bohr Hamiltonian and discuss the results. Therefore,
we have organized the paper as follows: In Sec. II, we
study a generalized form of the γ -unstable form of the Bohr
Hamiltonian. Then, the analytical solution for the β part of
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the Hamiltonian is derived in detail. Section III includes the
numerical results for the considered system, such as the study
of the energy scheme, staggering in the γ band, and the E2
electromagnetic transition. In the last section of this paper, we
collect the conclusions.

II. GENERALIZED γ -UNSTABLE VERSION
OF THE BOHR HAMILTONIAN

To describe the structure of even-even nuclei around the
critical point of transition between the spherical and deformed
γ -soft structure, we can use the Bohr Hamiltonian, which is
written in terms of the collective variables as [1,2]

H = − h̄2

2B

[
1

β4

∂

∂β
β4 ∂

∂β
+ 1

β2 sin (3γ )

∂

∂γ
sin (3γ )

∂
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− 1

4β2

3∑
k=1

Q2
k

sin2
(
γ − 2

3πk
)
]

+ V (β,γ ), (1)

in which the deformation coordinate measuring the departure
from the spherical shape is shown by β, γ represents the angle
measuring the departure from axial symmetry, Qk(k = 1,2,3)
stands for the operators of the total angular momentum projec-
tions in the intrinsic reference, and we have the mass parameter
B. In the γ -unstable Bohr Hamiltonian, it is supposed that the
potential appearing in the original Bohr Hamiltonian depends
only on the variable β. We are interested in considering an
extended sextic potential, introduced in Ref. [17]. It can be
checked from the previous papers in this literature that, in
this case, there are degeneracies between some levels but if
we include the Casimir operator of SO(3), L.L [18], in the
interaction, the degeneracy can be removed. It means that the
final form of the potential is

v(β,L)= 2B

h̄2 V (β,L)=g(β)L.L+ κ4

β2
+ aβ2 + bβ4 + cβ6,

(2)
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FIG. 1. The upper plot of this figure shows Eq. (22) when κ = 1 and η = 0.0. In this case, there is degeneracy between some levels: those
have the same seniority number. The lower plot shows Eq. (22) when κ = 1 and η = 0.5. In this case, the degeneracy has been removed. There
are three boxes in the lower plot. These boxes show how we should recognize the ground, γ and β bands in the considered model. The values
are normalized to the first excited level of the ground band.

where v(β,L) is called the reduced potential, and g(β) is a
general function of β that controls the effects of the Casimir
operator of SO(3), which leaves the values of L(L + 1) and the
free parameters κ , a, b, and c. Considering the wave function
in the separable form of �(β,γ,ϑ) = f (β)ψ(γ,ϑ), where ϑ
stands for the Euler angles, we can derive following differential
equations [8,9]:

[
− 1

sin(3γ )

∂

∂γ
sin(3γ )

∂

∂γ
+ 1

4

3∑
k=1

Q2
k

sin2
(
γ − 2

3πk
)
]
ψ(γ,ϑ)

= �ψ(γ,ϑ), (3)[
− 1

β4

∂

∂β
β4 ∂

∂β
+ �

β2
+ v(β,L)

]
f (β) = εf (β), (4)

where the reduced energy is ε = 2BE

h̄2 . The solutions of the
angular part can be constructed as

ψτ,ν̃�,L,ML
(γ,ϑ) =

L∑
K = 0
even

�τ,ν̃�,L,K (γ )φL
ML,K (ϑ), (5)

φL
ML,K (ϑ) =

√
2L + 1

16π2(1 + δK )

[
D

(L)
MK (ϑ) + (−)LD

(L)
M−K (ϑ)

]
,

(6)

where D(ϑ) is the Wigner function and �(γ ) are polynomials
containing trigonometric functions ofγ . In the equation involv-
ing the angles, the eigenvalues of the second order Casimir
operator of SO(5) occur, having the form � = τ (τ + 3),

014312-2



ELIMINATION OF DEGENERACY IN THE γ - … PHYSICAL REVIEW C 98, 014312 (2018)

TABLE I. List of quantum numbers for the ground, the first γ ,
and β bands.

Lband 0g 2g 4g 6g 8g 10g 2γ 3γ 4γ 5γ 6γ 7γ 8γ 0β 2β 4β

n 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
τ 0 1 2 3 4 5 2 3 3 4 4 5 5 0 1 2

where τ = 0,1, . . . is the quantum number characterizing the
irreducible representations of SO(5), called the seniority.

The radial equation (4) possesses analytic solutions (or
dynamical symmetries). For our study, we would like to
consider g(β) = η/β2 with a real free parameter η in the
potential term. Using an auxiliary function f (β) = u(β)/β2,
we have

d2u(β)

dβ2
+

[
ε − z(τ,L)

β2
− aβ2 − bβ4 − cβ6

]
u(β) = 0, (7)

z(τ,L) = τ (τ + 3) + ηL(L + 1) + κ4 + 2. (8)

Using a new variable y = β2, Eq. (7) should be rewritten in
order to find its solutions. So we have

d2u(y)

dy2
+

1
2

y

du(y)

dy
+

[
−z(τ,L)

4y2
+ ε

4y
−a

4
−b

4
y− c

4
y2

]
u(y) = 0.

(9)

The next step is using another auxiliary function which can
remove the first derivative term in Eq. (9). Introducing u(y) =
Y (y)

4√y
, we derive a new differential equation as

d2Y (y)

dy2
+

[
−

z(τ,L)
4 − 3

16

y2
+ ε

4y
− a

4
− b

4
y − c

4
y2

]
Y (y) = 0.

(10)

We can reach the bi-confluent Heun differential equation using

Y (y) = yA exp [y(B + Dy)]h(y), (11)

A = 1

2
+ 1

2

√
z(τ,L) + 1

4
, (12)

B = −b

8
, (13)

D = −
√

c

4
. (14)

Substituting Eq. (11) into Eq. (10) and setting c = 4, we can
derive the bi-confluent Heun differential equation

h′′(y) +
(

2A

y
+ 2B − 2y

)
h′(y) +

(
2AB + ε

4

y
+ B2 − a

4

+ 2D(1 + 2A)

)
h(y) = 0, (15)

where the prime means derivative with respect to y. The
solutions of this differential equation can be written in terms
of bi-confluent Heun functions [19], Hb:

h(y) = Hb(α′,β ′,γ ′,δ′; y), (16)

α′ =
√

9

4
+ τ (τ + 3) + ηL(L + 1) + κ4, (17)

β ′ = b

4
, (18)

γ ′ = 1

4

(
b2

16
− a

)
, (19)

δ′ = −ε

2
. (20)

Now, we can write the final form of the β-part wave function
in the form of

f (β) = Ncβ
√

κ4+ηL(L+1)+τ (τ+3)+ 9
4 − 3

2 exp

[
−β2

(
β2

2
+ b

8

)]

× Hb(α′,β ′,γ ′,δ′; β2), (21)
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FIG. 2. Behavior of 4g

2g
as a function of the free parameters κ for different values of η.
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TABLE II. List of free parameters for each isotope determined in
the fitting process. The last column is the deviation of the theoretical
prediction determined in the fitting process.

Isotope κ η σ

118Xe 2.01 0.30 0.541
120Xe 2.18 0.38 0.506
122Xe 2.35 0.19 0.251
124Xe 2.19 0.31 0.262
126Xe 2.06 0.32 0.238
128Xe 1.70 0.18 0.138

where the normalization constant is shown by Nc. To derive
the energy spectrum of the considered system, we should use
the expansion for the differential equation as described in
Ref. [20]. We find the energy spectrum along with a constraint
as

ε = b

2

(
2n+ 5 +

√
9

4
+ τ (τ + 3) + ηL(L + 1) + κ4

)
, (22)

a = b2

16
− 4

(
2n+ 4 +

√
9

4
+ τ (τ + 3) + ηL(L + 1) + κ4

)
,

(23)

where Eq. (23) is needed to determine the wave function
through Eq. (19). Having the wave function and energy
spectrum, we are in a position to examine the results in the
next section.

III. NUMERICAL RESULTS

In this section, special attention will be paid to the energy
spectra and E2 electromagnetic transition rates of the system
discussed in the previous section. As we implied before,
including the effects of the Casimir operator of SO(3) in the
potential led to an eigenvalue equation in which there was an
angular momentum dependent term. Having a term depending
on the angular quantum numbers removes the degeneracy in the
energy scheme. This point is shown in Fig. 1. In this figure, we
compare the results of the two cases of presence and absence
of degeneracy in the energy scheme. In the upper plot of Fig. 1,
we have used Eq. (22). Actually, the values are normalized to
the first excited levels using

Lband = ε(n,τ,L) − ε(0,0,0)

ε(0,1,2) − ε(0,0,0)
. (24)

In the upper plot, we set κ = 1 and η = 0. This consideration
leads to the degenerate case of the γ -unstable Bohr Hamilto-
nian results. However, in the lower plot of Fig. 1, we set κ = 1
and η = 0.5. It is seen that in this case there is no degeneracy
like the upper plot. After elimination of degeneracy of the
excited levels, we want to classify them into the well-known
bands of ground, γ , and β. There are three boxes in the lower
plot of Fig. 1. The first box from the left can be considered the
ground band. In this band, we have the lowest energy level and
its excited levels are constructed by adding two units of angular
momentum. The middle box represents the first γ band. In this
band, as we know, the angular momentum of each excited level
can be constructed by adding one unit of angular momentum.
In these bands the quantum number of the β variable, n in

118Xe

Ground band γ1 band β1 band

Theo. Exp. Theo. Exp. Theo. Exp.
0+ 0 0
2+ 1 1

4+ 2.503 2.402
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2+
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8+ 7.404
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0+ 3.188
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3.641

4+ 5.692
5.130

FIG. 3. Energy scheme of 118Xe. In the fitting process, we used the levels which are connected to their corresponding experimental values.
Experimental data for the energy levels were taken from Ref. [21]. The values have been normalized to the first excited levels of the ground
band.
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120Xe

Ground band γ1 band β1 band

Theo. Exp. Theo. Exp. Theo. Exp.
0+ 0 0
2+ 1 1

4+ 2.574 2.468

6+ 4.514 4.331

8+ 6.680 6.507

10+ 8.986 8.905

2+ 1.865 2.716
3+

3.197

3.9424+ 3.562

4.3445+
5.098

5.632
6+ 5.568

6.155
7+

7.226
7.628

8+ 7.767
8.226

0+ 3.364
2.817

2+ 4.364
3.950

4+ 5.938
5.306

FIG. 4. Energy scheme of 120Xe. In the fitting process, we used the levels which are connected to their corresponding experimental values.
Experimental data for the energy levels were taken from Ref. [21]. The values have been normalized to the first excited levels of the ground
band.

Eq. (12), has values of zero, and other quantum numbers such
as the seniority and angular momentum can be determined by
using the lower plot of Fig. 1. We know that each value of the

seniority can correspond to some angular momentum. Thus we
have connected these levels using a dotted line. The third box
in the figure belongs to the first β band because in this band

122Xe

Ground band γ1 band β1 band

Theo. Exp. Theo. Exp. Theo. Exp.
0+ 0 0
2+ 1 1

4+ 2.542 2.501

6+ 4.485 4.428

8+ 6.712 6.694

10+ 9.139 9.176

2+ 2.085 2.545

3+
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5+
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5.356
6+ 5.934 6.208

7+
7.878 7.423

8+ 8.259 8.437

0+ 4.622
2+ 5.622

4+ 7.164

FIG. 5. Energy scheme of 122Xe. In the fitting process, we used the levels which are connected to their corresponding experimental values.
Experimental data for the energy levels were taken from Ref. [21]. The values have been normalized to the first excited levels of the ground
band.
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124Xe

Ground band γ1 band β1 band

Theo. Exp. Theo. Exp. Theo. Exp.
0+ 0 0
2+ 1 1

4+ 2.557 2.483

6+ 4.481 4.374

8+ 6.637 6.584

10+ 8.943 8.958

2+ 1.930 2.391

3+
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4+ 3.632
4.062

5+
5.218

5.1896+ 5.637
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7+
7.353

7.272
8+ 7.840

8.226

0+ 3.619 3.584
2+ 4.619 4.600

4+ 6.179
5.691

FIG. 6. Energy scheme of 124Xe. In the fitting process, we used the levels which are connected to their corresponding experimental values.
Experimental data for the energy levels were taken from Ref. [21]. The values have been normalized to the first excited levels of the ground
band.

the quantum numbers for the β variable increase by one unit
and the algorithm of its excited levels is the same as for the
ground band. One can see that some other levels remain. It can
be easily checked that other excited bands such as second or
third bands of γ and β can be shown by considering higher

values of the seniority. We list the quantum numbers of each
level in Table I.

Now, we are ready to present the numerical results accord-
ing to the classifications of different bands. We used the least
root mean square (rms) method to fit the theoretical predictions

126Xe

Ground band γ1 band β1 band

Theo. Exp. Theo. Exp. Theo. Exp.
0+ 0 0
2+ 1 1

4+ 2.524 2.424

6+ 4.369 4.207

8+ 6.405 6.267

10+ 8.560 8.645

2+ 1.903
2.264

3+
3.229 3.391

4+ 3.544
3.830

5+
5.045

4.898
6+ 5.449 5.698

7+
7.052

6.848
8+ 7.515

7.878

0+ 3.249 3.381
2+ 4.249 4.319

4+ 5.773
5.255

FIG. 7. Energy scheme of 126Xe. In the fitting process, we used the levels which are connected to their corresponding experimental values.
Experimental data for the energy levels were taken from Ref. [21]. The values have been normalized to the first excited levels of the ground
band.
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128Xe

Ground band γ1 band β1 band

Theo. Exp. Theo. Exp. Theo. Exp.
0+ 0 0
2+ 1 1

4+ 2.363 2.333

6+ 3.917 3.922

8+ 5.575 5.674

10+ 7.294 7.218

2+ 1.989
2.189

3+ 3.253 3.228
4+ 3.436 3.620

5+ 4.797 4.508
6+ 5.026 5.150

0+ 2.841
2+ 3.841

4+ 5.204

FIG. 8. Energy scheme of 128Xe. In the fitting process, we used the levels which are connected to their corresponding experimental values.
Experimental data for the energy levels were taken from Ref. [21]. The values have been normalized to the first excited levels of the ground
band.

for the energy spectra of the ground, γ , and β bands on the
experimental data. In this method, we should find the least
deviation

σ =
√√√√ 1

N − 1

N∑
i=1

(
E

expt
i

E
expt
2+

− Etheor
i

Etheor
2+

)2

, (25)

where N stands for the number of states, and E
expt
i and Etheor

i

represent experimental and theoretical energies of the ith level,
respectively. During the derivation of the energy eigenvalue
relation, in addition to the energy eigenvalue relation, we
derived a constraint on the potential constants relating two of
them together. It is important to note the constant “a” is not
redundant. However, we cannot find the numerical values of
the constants in one step. Actually, the real free parameters
in our paper are κ , η, and b. These constants are determined
in the numerical procedure of fitting. The constraint on the
potential constant made a a function of b. It can be seen that
since b is a scaling coefficient for Eq. (23), it can be canceled
out without being determined. Therefore, in the first step, we
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η = 8

FIG. 9. S(4) as a function of the free parameters κ and η.

are able to determine only the numerical values of η and κ for
the energy schemes using the rms method for each isotope.
But we still calculate B(E2) transitions rates. As is clear, the
wave function depends on the free parameters a and b which
are in the bi-confluent Heun function parameters. Equation
(23) shows that if we determine b then a will be determined.
Then we should use another fitting procedure for the B(E2)
transition rate to obtain the numerical value of b for each
isotope. In other words, to determine the free parameters for
each isotope, we need a two-step fitting process. The first step
is finding η and κ using the energy scheme for each isotope.
The second step is finding the least deviation for the B(E2)
transition rates for finding the numerical value of b for each
isotope.

Before reproducing some experimental data, we want to
check the asymptotic behavior of our considered model. The
key signature is the ratio of 4g

2g
. In Fig. 2, we plotted the ratio

4 5 6 7 8
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0.8
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J

S
(J

)

118Xe

Theoretical
Experimental

FIG. 10. Comparison between the theoretical prediction and ex-
perimental staggering for 118Xe.
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FIG. 11. Comparison between the theoretical prediction and ex-
perimental staggering for 120Xe.

of 4g

2g
using Eq. (24) as a function of κ for different values

of η. It is seen that the ratio of 4g

2g
reaches a maximum value

after certain values of κ and η. At first glance, we can find out
that this model can recover the vibrator up to γ -soft nuclei.
This figure shows that, considering large enough values of κ
and η, we can approach the realm of the axially symmetric
rotor where 4g

2g
= 3.3 but it will be seen that there is another

quantity that does not allow the model. We selected some xenon
isotopes (118,120,122,124,126,128Xe). All experimental values were
taken from Ref. [21]. In the fitting process, we found the best
values for the free parameters that yielded the most minimal
deviation. These values are listed in Table II for each isotope.
We plotted the energy scheme of these isotopes in Figs. 3–8. In
these figured, we separated the energy scheme of each isotope.
We connected the corresponding levels between theoretical
and experimental prediction by a dotted line. These levels have
been contributed to the fitting process.

There is a useful quantity that is often known experimentally
or is easy to measure in new nuclei to distinguish between axial
symmetry and deviations from axial symmetry empirically. It
is known as the energy staggering in the γ bands. It is a very
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0.8

1
1.2
1.4
1.6

J

S
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)
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FIG. 12. Comparison between the theoretical prediction and
experimental staggering for 122Xe.
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0.6
0.8

1
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S
(J

)
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FIG. 13. Comparison between the theoretical prediction and ex-
perimental staggering for 124Xe.

sensitive measure of the energy spacing. It is known that such
an effect may appear due to mixing between the ground and
γ -band levels with even angular momenta [22]. Staggering in
γ bands is studied using the quantity [23,24]

S(J ) = (E(J+
γ )−E(J − 1)+γ )−(E(J − 1)+γ − E(J − 2)+γ )

E(2+
g )

,

(26)

which measures the displacement of the (J − 1)+γ level relative
to the average of its neighbors, J+

γ and (J − 2)+γ , normalized
to the energy of the first excited state of the ground band, 2+

g . It
is instructive if we study the asymptotic behavior of S(4) using
Eq. (23). It was shown in Fig. 2 that, for enough large values
of κ and η, approaching the axially symmetric rotor realm can
be possible but Fig. 9 make this point impossible. The S(4)
value for an axially symmetric rotor is 0.33 but at the upper
limit of our considered model, at most, we can reach 0.2, which
makes this point impossible. Looking more closely at Fig. 9, it
is seen that for η < 3, the treatment of S(4) tends to a minimum
value, but for η > 3, this quantity tends to a maximum
value.

4 5 6 7 8

−1.2
−1

−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1
1.2
1.4

J

S
(J

)

126Xe

Theoretical
Experimental

FIG. 14. Comparison between the theoretical prediction and
experimental staggering for 126Xe.
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FIG. 15. Comparison between the theoretical prediction and
experimental staggering for 128Xe.

The staggering has long been considered as theoretical
staggering of different isotopes have been calculated and the
results are shown in Figs. 10–15. For the cases of 118,120Xe we
can see a good theoretical prediction of staggering, but for
the others, the agreement between theory and experiment
become poor while we have found a good deviation for the
energy level scheme for them. The reason is the contributing
ground and β bands in addition to the contribution of the γ
band to the fitting process. From Figs. 2 and 9, it would be
good if one could find η ≈ 0.5 for 122,124,126,128Xe but in this
case we could not find a good deviation.

Here we want to study the E2 electromagnetic transitions
of the isotopes. The quadrupole transition operator can be
expressed by [8,9]

T (E2)
μ = tβQμ,

Qμ = D2
μ0(ϑ) cos(γ ) + 1√

2

(
D2

μ2(ϑ) + D2
μ−2(ϑ)

)
sin(γ ),

(27)

with the scaling factor t . Transition strengths are related to the
reduced matrix elements by [25]

B(E2; nτL → n′τ ′L′)

= 1√
2L + 1

|〈n′τ ′L′|T (E2)|nτL〉|2,

= [t(τ ′,L′; 1,2||τ,L)A(τ,τ ′)I (nτL; n′τ ′L′)]2, (28)

TABLE III. List of the numerical values for the free parameter b,
evaluated by the fitting of theoretical predictions of E2 electromag-
netic transition rates on the experimental values.

Isotope b σB(E2)

118Xe −300 0.912
120Xe −300 0.402
122Xe −300 0.460
124Xe −300 0.578
128Xe −98 0.511

118Xe

Ground band γ1 band β1 band

0 0+

1 2+

2.503 4+

4.309 6+

6.292 8+

8.385 10+

1.926
1.820

1.668
0.881

1.429
1.108

11

1.916 2+

3.234
3+

3.531 4+

5.014
5+

5.393 6+

6.970
7+

7.404 8+

0.579

0.794

1.429

0.476

0.430

3.188 0+

4.188 2+

5.692 4+

1.430
1.001

5.001

1.000

2.573

1.429

FIG. 16. E2 electromagnetic transition rate scheme of 118Xe,
shown by purple arrows which are normalized to B(E2; 4g → 2g).

A(τ,τ ′) =
√

τ

2τ + 3
δτ,τ ′+1 +

√
τ + 3

2τ + 3
δτ,τ ′−1, (29)

I (nτL; n′τ ′L′) =
∫ ∞

0
fnτL(β)βfn′τ ′L′(β)β4dβ, (30)

where (τ ′,L′; 1,2||τ,L) stands for the SO(5) Clebsch-Gordan
coefficient dictating the angular momentum selection rules.

120Xe

Ground band γ1 band β1 band

0 0+

1 2+

2.574 4+

4.514 6+

6.680 8+

8.986 10+

1.926
1.820

1.668
1.168

1.429
1.158

11

1.865 2+

3.197
3+

3.562 4+

5.098
5+

5.568 6+

7.226
7+

7.767 8+

0.579

0.794

1.429

0.476

0.430

3.364 0+

4.364 2+

5.938 4+

1.430
1.001

5.001

1.000

2.
57

3

1.429

FIG. 17. E2 electromagnetic transition rate scheme of 120Xe,
shown by purple arrows which are normalized to B(E2; 4g → 2g).
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122Xe

Ground band γ1 band β1 band

0 0+

1 2+

2.542 4+

4.485 6+

6.712 8+

9.139 10+

1.925
1.538

1.819
1.026

1.667
1.410

1.429
1.462

11

2.085 2+

3.604
3+3.843 4+

5.613
5+

5.934 6+

7.878
7+

8.259 8+

0.579

0.794

1.429

0.476

0.430

4.622 0+

5.622 2+

7.164 4+

1.430
1.001

5.001

1.000

2.
57

2

1.
42

9

FIG. 18. E2 electromagnetic transition rate scheme of 122Xe,
shown by purple arrows which are normalized to B(E2; 4g → 2g).

Using Eq. (28), and Table II, we can calculate the E2 elec-
tromagnetic transition rates of each isotope. As we mentioned
before, to calculate the E2 electromagnetic transition rates of
each isotope, we need to evaluate the numerical value of b
because it exists in a one-parameter bi-confluent Heun function
[see Eqs. (18) and (19)]. We should use another fitting process
to evaluate the numerical value of b resulting in finding the

124Xe

Ground band γ1 band β1 band

0 0+

1 2+

2.557 4+

4.481 6+

6.637 8+

8.943 10+

1.926
1.820

1.668
1.429
1.170

11

1.930 2+

3.308
3+

3.632 4+

5.218
5+

5.637 6+

7.353
7+

7.840 8+

0.579

0.794

0.588

1.429

0.554

0.476

0.430

3.619 0+

4.619 2+

6.176 4+

1.430
1.001

5.001

1.000

2.573

1.4
29

FIG. 19. E2 electromagnetic transition rate scheme of 124Xe,
shown by purple arrows which are normalized to B(E2; 4g → 2g).

128Xe

Ground band γ1 band β1 band

0 0+

1 2+

2.363 4+

3.917 6+

5.575 8+

7.294 10+

1.947
1.834
1.979

1.676
1.271

1.432
1.292

11

1.989 2+

3.253
3+3.436 4+

4.797
5+5.026 6+

0.584

0.798

1.432

1.188

0.479
1.500

0.434

2.841 0+

3.841 2+

5.204 4+

1.441
1.006

5.011

0.998

2.585
1.435

FIG. 20. E2 electromagnetic transition rate scheme of 128Xe,
shown by purple arrows which are normalized to B(E2; 4g → 2g).

numerical value of a. Using some experimental values for the
E2 electromagnetic transition rates of considered isotopes, we
find the numerical value of b for each isotope. The results are
listed in Table III. Since there were not enough experimental
data of E2 electromagnetic transitions for 126Xe, we could
not find the proper numerical value of b for these isotopes.
Figures 16, 17, 18, 19, and 20 show the results of theoretical
predictions for E2 electromagnetic transitions. The values
mentioned in Fig. 20 have been normalized to B(E2; 4g →
2g). An important result of this figure is that in the absence
of η, B(E2; 4g → 2g) and B(E2; 2γ → 2g) have the same
value, but when we consider a nonzero value for η, it makes a
difference between these E2 electromagnetic transition rates.
As we mentioned before, the second step of fitting has taken
place here. According to Table III, the best fit has been done
for 120Xe. Actually, this isotope can be considered the best
candidate for the model considered in this paper.

As we claimed, the existence of η makes a difference in
the values of the E2 electromagnetic transition rates. The
reason for this difference is the angular dependence in the wave
function. Although the Clebsch-Gordan coefficients follow
the angular momentum selection rules, the existence of η
in the wave function affects the overlap between the levels.
The theoretical predictions for E2 electromagnetic transition
rates are shown by purple arrows which are normalized to
B(E2; 4g → 2g) in Fig. 20. These values are obtained by using
Eqs. (21) and (28) and Tables II and III. The blue numbers are
experimental values reported in Ref. [21].

IV. CONCLUSION

In this paper, we studied a general form of the γ -unstable
Bohr Hamiltonian in the presence of a sextic potential. A
general form means that in the considered system we in-
cluded the effect of the Casimir operator of SO(3), which
could eliminate the degeneracy of the degenerate levels. The
wave function and energy eigenvalues were derived using
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bi-confluent Heun functions. Then, to examine the results, we
first discussed how we can characterize the ground, γ , and
β bands; then we used some isotopes of xenon to reproduce
their experimental data for energy and E2 electromagnetic
transitions. The numerical results were evaluated after two
fitting processes because two of the free parameters were
determined in the fitting of energy levels and the last one was

determined in the E2 electromagnetic transition. The results
showed a good agreement with the experimental data.
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