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Localization of pairing correlations in nuclei within relativistic mean field models
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We analyze the localization properties of two-body correlations induced by pairing in the framework of
relativistic mean field (RMF) models. The spatial properties of two-body correlations are studied for the pairing
tensor in coordinate space and for the Cooper pair wave function. The calculations are performed both with
relativistic Hartree-Bogoliubov (RHB) and RMF + projected-BCS (PBCS) models and taking as examples the
nuclei 66Ni, 124Sn, and 200Pb. It is shown that the coherence length has the same pattern as in previous nonrelativistic
HFB calculations, i.e., it is maximum in the interior of the nucleus and drops to a minimum in the surface region.
In the framework of RMF+PBCS we have also analyzed, for the particular case of 120Sn, the dependence of the
coherence length on the intensity of the pairing force. This analysis shows that (a) pairing is reducing the coherent
length by about 25–30% compared to the RMF limit and (b) after the onset of pairing correlations, the coherent
length depends only weakly on the strength of the pairing force.
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I. INTRODUCTION

Pairing properties of Fermi systems are commonly de-
scribed in BCS-type approximations. In this framework the
pairing correlations are characterized by global quantities such
as pairing gap and pairing energy. In finite systems such as
atomic nuclei the pairing properties are strongly influenced by
the density of levels close to the chemical potential, which
depends significantly on the number of nucleons and the
spin-orbit interaction. A peculiarity of finite systems is that the
pairing correlations have a nonuniform spatial distribution.
The latter is usually described by the pairing tensor in co-
ordinate space. For atomic nuclei the localization properties
of the pairing tensor have been studied in the nonrelativistic
Hartree-Fock Bogoliubov (HFB) approach [1–5]. As expected,
the HFB calculations have shown that in nuclei the spatial
distribution of pairing correlations depends strongly on the lo-
calization properties of single-particle states from the vicinity
of the Fermi level. Less expected, however, was the behavior
of the coherence length which has emerged from the HFB
calculations. It was found that in nuclei the coherence length
has a generic pattern: it is maximum close to the center of the
nucleus and drops to a minimum of 2–3 fm far out in the surface
region. Similar short range two-body correlations have been
noticed also in semi-infinite neutron matter [6], in nuclei with
two neutrons beyond a closed core [7,8], and in two-neutron
halo systems such as 11Li [9].

The scope of this paper is to study how the localization
properties of pairing correlations mentioned above are affected
by (1) the level density and the spin-orbit interaction associated
with a relativistic mean field (RMF) and (2) the restoration of
the particle number conservation. These two issues will be
discussed in the framework of relativistic Hartree-Bogoliubov
(RHB) and RMF + projected-BCS (PBCS) models.

In BCS-type models the active fermions participating in
pairing correlations are described by antisymmetrized products
of two-body functions, the Cooper pairs, which are the same
for any pair of fermions. This is the basic assumption of BCS-
type models from which the superfluid and superconducting
properties are emerging. The size of the Cooper pairs is
essential for characterizing the pairing regime of the system.
Thus, if the dimension of the Cooper pairs is larger or smaller
than the mean distance between the fermions, the system is,
respectively, in the BCS or Bose-Einstein condensation (BEC)
regime. According to our knowledge, there are no systematic
studies on the localization properties of Cooper pairs in nuclei.
Thus, another scope of this paper is to present such a study in
the framework of the two approximations mentioned above,
RHB and RMF+PBCS.

II. FORMALISM AND CALCULATION SCHEME

The two-body correlations of superfluid type in many-body
systems are commonly expressed by the reduced two-body
density [10]. Of interest here is the diagonal part of the two-
body density in coordinate space. Its expression for one type
of fermions, e.g., neutrons or protons, is given by

ρ(2)(x1,x2) = 〈�| ψ̂†(x1)ψ̂†(x2)ψ̂(x2)ψ̂(x1) |�〉 , (1)

where |�〉 is the ground state of the system and ψ̂†(x) is the op-
erator which creates a nucleon with the space-spin coordinates
x ≡ (r,σ ). The two-body density (1) gives the probability
to find in the system two nucleons with the coordinates x1

and x2.
The two-body correlations induced by pairing are usually

studied in the BCS-like models in which the ground state is

2469-9985/2018/98(1)/014310(7) 014310-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.98.014310&domain=pdf&date_stamp=2018-07-06
https://doi.org/10.1103/PhysRevC.98.014310


R.-D. LASSERI, J.-P. EBRAN, E. KHAN, AND N. SANDULESCU PHYSICAL REVIEW C 98, 014310 (2018)

approximated by

|BCS〉 =
∏
k

(
uk + vka

†
ka

†
k̄

) |0〉 ∝
∑

n

(�+)n

n!
, (2)

where a
†
k creates a particle in the single-particle state k and

uk and vk are the standard variational parameters of the BCS
theory. The operator �+ ≡ ∑

k
vk

uk
a
†
ka

†
k̄

creates a collective
Cooper pair by scattering two nucleons in time reversed states
(k,k̄).

In the BCS approximation the two-body density matrix has
the expression

ρ
(2)
BCS(x1,x2) = ρ(1)(x1)ρ(1)(x2) + |κ(x1,x2)|2, (3)

where ρ(1) and κ are the one-body density and the pairing tensor
in the coordinate representation defined by

ρ(1)(x) ≡ 〈BCS| ψ̂†(x)ψ̂(x) |BCS〉 , (4)

κ(x1,x2) ≡ 〈BCS| ψ̂(x2)ψ̂(x1) |BCS〉 . (5)

In a single-particle basis the pairing tensor can be written as

κ(x1,x2) =
∑

k

ukvkfk(x1)fk̄(x2), (6)

where fk(x) are the single-particle wave functions. This ex-
pression is formally the same for the pairing models based on
a general Bogoliubov transformation, such as HFB and RHB
models. In this case the parameters uk and vk and the single-
particle wave functions fk(x) correspond to the canonical basis
(e.g., see [11]).

According to Eq. (3), the quantity |κ(x1,x2)|2 accounts
for the genuine two-body correlations in spin and spatial
coordinates which are not included in the first mean-field term.
Since, by definition, κ(x1,x2) is related to the two-particle
transfer amplitude, the corresponding two-body correlations
can be probed by two-particle transfer reactions.

For the study of two-body pairing correlations, of special
interest is the quantity κ(r1,σ ; r2,−σ ). This quantity gives
the probability of finding in the system two nucleons with
opposite spins and located at r1 and r2. The spatial correlations
are usually expressed by κ(R,r) ≡ κ(R,r; σ,−σ ), where r =
r1 − r2 is the relative distance between the correlated nucleons
and R = (r1 + r2)/2 is the center-of-mass coordinate. The
function κ(R,r) calculated at r = 0 is, up to normalization,
the microscopic counterpart of the Ginzburg-Landau order
parameter. This is one of the reasons why the pairing tensor
in coordinate representation is sometimes called the wave
function of the condensate. It is, however, worth mentioning
that the pairing tensor in coordinate space is not the standard
wave function of two nucleons in the nucleus, normalized to
unity. In fact, the norm Nκ = ∫ |κ(R,r)|2d Rd r has a well-
defined meaning, i.e., it provides the probability of finding in
the system two nucleons with opposite spins, irrespective to
their spatial localization.

In infinite uniform systems the spatial range of pairing
correlations is characterized by the coherence length. In nuclei

this quantity is usually defined by (e.g., see [2])

ξ (R) =
( ∫

r2|κ(R,r)|2d r
)1/2

( ∫ |κ(R,r)|2d r
)1/2 . (7)

According to its definition, this quantity measures the relative
distance between the correlated nucleons when their center
of mass is located at R. When in Eq. (7) the integrals are
performed also over R, one obtains the average coherence
length, which is the root mean square (rms) radius of the pairing
tensor κ(R,r). In Eq. (7) the denominator was introduced in
analogy to the definition of rms radius of a standard two-body
wave function.

The BCS state (2) is a superposition of pair condensates
with various pair numbers and, as such, does not conserve the
particle number. An alternative approach, which conserves the
particle number, is the particle-number projected-BCS (PBCS)
model based on the trial state

|PBCS(N )〉 = (�+)N/2|0〉, (8)

where �+ = ∑
k yka

+
k a+

k̄
. In the simplest approximation,

called projection after variation method, the pair operator
�+ is calculated with the mixing amplitudes extracted from
BCS calculations, that is yk = vk/uk . In the variation after the
projection method, employed in this study, the amplitudes yk

are determined from the minimization of 〈PBCS|H |PBCS〉 and
imposing the normalization condition for the PBCS state.

In the PBCS approximation the quantity which plays the
role of the pairing tensor is

κ(x1,x2) ≡ 〈PBCS(N )| ψ̂(x2)ψ̂(x1) |PBCS(N − 2)〉 . (9)

The localization properties of the pairing tensor in the PBCS
approximation, discussed in the next section, will allow us to
estimate how much are affected the two-body correlations by
the particle number fluctuation.

In the coordinate representation the PBCS state can be
written as

�(x1,x2, . . . ,xN ) = A{φ(x1,x2)φ(x3,x4) · · · φ(xN−1,xN )},
(10)

where φ(x,x ′) is the two-body wave function corresponding to
the Cooper pair operator �+, which is defined by

φ(x,x ′) =
∑

k

ykfk(x)fk̄(x ′). (11)

The BCS state can be written as a superposition of functions
(10) with various numbers of pairs. In this case the two-body
wave function φ(x,x ′) has the expression

φ(x,x ′) =
∑

k

vk

uk

fk(x)fk̄(x ′) (12)

where vk and uk are the variational parameters of the BCS state.
In analogy to Eq. (7), we associate to the wave functions

(11) and (12) a coherence length defined by

ξC(R) =
( ∫

r2|φ(R,r)|2d r
)1/2

( ∫ |φ(R,r)|2d r
)1/2 . (13)

The rms radius of the wave function φ is denoted by 〈ξC〉.
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TABLE I. Ground state energies (E), neutron rms radii (rn) and pairing energies (Epair ) calculated in RHB and RMF+PBCS approximations.
The experimental ground state energies [17] are given in the column “Expt.”

Nuclei E (MeV) rn (fm) Epair (MeV)

RHB RMF+PBCS Expt. RHB RMF+PBCS RHB RMF+PBCS

66Ni 575.6 576.9 576.81 3.92 3.89 5.14 6.21
124Sn 1048.7 1050.2 1049.96 4.81 4.77 8.9 11.5
200Pb 1574.7 1578.2 1576.37 5.56 5.42 13.4 15.7

The two-body function φ(x,x ′) is called below the wave
function of the Cooper pair. Its physical meaning is different
from the two-body correlation function κ(x,x ′). As mentioned
above, the latter is related to the amplitude for two-particle
transfer and therefore can be eventually probed in two-nucleon
transfer reactions. On the other hand, the Cooper pair wave
function cannot be probed directly. However, its localization
properties are fundamental because they determine in what
coupling regime is a many-body system. Thus, if the size of
the Cooper pair is larger than the average distance between the
particles, the system is in the weak coupling BCS regime. On
the other extreme, if the size of the Cooper pair is smaller than
the mean distance between the particles the system is in the
Bose-Einstein condensation (BEC) regime. It should be noted
that, in the BEC limit, the Cooper pair wave function and the
pairing tensor in coordinate space become similar [12].

In this study the localization properties of the pairing tensor
and the Cooper pair wave function are calculated with a
mean field described in the RMF approximation. In RMF the
nucleons are represented by Dirac spinors and interact through
the meson fields σ , ρ, and ω. The nucleons and the mesons are
described by the Lagrangian

L = ψ̄

[
iγ μ∂μ − M − gσσ − gωγμωμ − gργμ �ρ · �τμ

− fπ

mπ

γ5γμ∂μ �π · �τ − eγμAμ

(
1 − τ3

2

)]
ψ + Lk,

(14)

where ψ stands for the Dirac spinor describing the nucleon, �τ
denotes the Pauli matrices, π is the pion field, and Aμ repre-
sents the electromagnetic field. The Hamiltonian of the system
is obtained from (14) through a Legendre transformation and
treated in the Hartree approximation (e.g., see [13] and the
references quoted therein). For the coupling constants which
define the relativistic mean field we employed the DD-ME2
parametrization [14].

The pairing correlations are described in the RHB and
RMF+PBCS approximations while as pairing force we em-
ploy the Gogny interaction D1S [15]. In the RHB calculations
the pairing force is treated within the general Bogoliubov
approach. After the convergence of RHB calculations we de-
termine the canonical basis, in which the Bogoliubov equations
take the BCS form. Then, with the occupation probabilities and
single-particle wave functions corresponding to the canonical
basis we compute the pairing tensor (6) and the Cooper
pair wave function (12). Finally, the two-body correlations
functions are expressed in the relative and the center-of-mass

coordinates using the Brody-Moshinsky transformation (see
Ref. [2] for more details). In the RMF+PBCS calculations the
PBCS equitations are solved in the variation after projection
approach using the recurrence relation method [16]. Both the
RMF+PBCS and RHB calculations are performed in an axially
deformed oscillator basis composed of 12 shells.

III. RESULTS

To illustrate the localization properties of pairing correla-
tions we present the results for three open shell nuclei, namely
66Ni, 124Sn, and 200Pb. The binding energies, the rms neutron
radii, and the neutron pairing energies provided by RHB and
RMF+PBCS calculations are displayed in Table I. One can
observe that, compared to RHB, the RMF+PBCS calculations
give larger pairing and binding energies and smaller neutron
radii. Since the scope of this paper is not to analyze these global
quantities, we just point to the fact that the binding energies
are rather close to the experimental values. This shows that the
relativistic models employed in this paper are realistic enough
for the study of the two-body correlations discussed below.

We start by presenting the global properties of the two-body
correlations functions introduced in the previous section. In
Table II are given the average coherence lengths associated to
the pairing tensor and the Cooper pair wave function calculated
in RHB and RMF+PBCS approximations. In the same table
is also given the mean distance 〈dn〉 between two neutrons,
estimated from the neutron density, i.e., 〈dn〉 = 1/ρ

1/3
n , where

ρn = N
4
3 πr3

n

and rn are the rms radii displayed in Table I. It

is interesting to observe that, contrary to the general belief,
the average coherence lengths are smaller than the size (i.e.,
the diameter) of the nucleus. On the other hand, the average
coherence lengths are larger than the mean distance 〈dn〉
between the nucleons, which is consistent with the fact that
in nuclei the pairing correlations are in the BCS regime.

TABLE II. The average coherence lengths corresponding to pair-
ing tensor and Cooper pair wave function. 〈dn〉 is the mean distance
between two neutrons.

Nuclei 〈ξ〉 〈ξC〉 〈dn〉
RHB RMF+PBCS RHB RMF+PBCS

66Ni 4.05 4.49 3.90 4.35 1.86
124Sn 4.85 5.69 4.48 5.16 1.84
200Pb 6.81 7.31 6.33 6.83 1.82
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FIG. 1. Two-body correlations function |κ(R,r)|2 provided by
RHB (a,b,c) and RMF+PBCS (a′,b′,c′) calculations. The results
correspond to 66Ni (a and a′), 124Sn (b and b′) and 200Pb (c and c′).

The spatial localization of |κ(R,r)|2 is shown in Fig. 1.
One can observe that in RHB the two-body correlations are
concentrated mainly at small relative distances between the
nucleons, a result similar to the previous HFB studies. It is
also worth noticing that, compared to RHB, in the RMF+PBCS
calculations the localization is enhanced in the center of the nu-
cleus. More details about the localization properties of the
pairing tensor are presented in Fig. 2. The latter displays the

FIG. 2. The dependence of |κ(R,r)|2 on relative distance r shown
for Rcm = 1.0 fm (left), Rcm = rn (middle), and Rcm = Rmin(κ)(right).
The results correspond to 66Ni (a), 124Sn (b) and 200Pb (c), calculated
with RHB (line with diamonds) and RMF+PBCS (line with dots).

FIG. 3. The coherence length corresponding to the pairing tensor
[Eq. (7)] provided by RHB (upper panel) and RMF+PBCS (lower
panel) calculations for 66Ni (line with diamonds), 124Sn (line with
dots), and 200Pb (line with squares). The numerators and denominators
of Eq. (7) are plotted on the right-hand side.

radial dependence of |κ(R,r)|2 for various values of the center
of mass, namely Rcm = 1.0 fm, Rcm = rn, and Rcm = Rmin(κ)

(the value of the center of mass for which the coherence length
has a minimum; see Fig. 3). One can see that in the interior of
the nucleus |κ(R,r)|2 has an oscillating behavior in the relative
coordinate, which is due to the superposition of single-particle
states with various numbers of nodes. Far out in the surface
region, at Rcm = Rmin(κ), the function |κ(R,r)|2 has no more
oscillations and is vanishing for r > 4 fm. From Fig. 2 one can
see also that for 124Sn and 200Pb the two-body correlations at
small distances are significantly larger in RMF+PBCS com-
pared to RHB. This is related to the fact that in PBCS the occu-
pation probability of the states closer to the Fermi level, in this
case the states 1h11/2 and 1i13/2, is increased compared to BCS
[18]. Since these states have no nodes in the radial variable,
they confine more strongly the nucleons at smaller distances.

We now analyze the coherence length ξ (R) defined by
Eq. (7). The results obtained in RHB and RMF+PBCS cal-
culations are displayed in Fig. 3. In the same figure are also
shown the results for the numerators and the denominators
of Eq. (7). One can notice that for all nuclei the coherence
length is of the order of 2 × rn in the interior of the nucleus,
then decreases quite fast and reaches a minimum far out in
the nuclear surface. As seen from Fig. 3, the minima appear
due to the different slopes of the nominator and denominator,
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FIG. 4. The ratio (7) between the coherence length and the local
distance between the neutrons for 66Ni, calculated with RHB (line
with diamonds) and RMF+PBCS (line with dots). The vertical line
corresponds to the neutron rms radius rn.

the latter decreasing faster at distances larger than the neutron
radius.

For all nuclei the coherence length is larger than the
local distance between the neutrons. This fact is illustrated
in Fig. 4 which shows, for 66Ni, the ratio X = ξ (R)

dn(R) , where

dn(R) = ρ
−1/3
n (R) is the local distance between two neutrons

evaluated at the neutron density ρn(R). One can observe that
at R = rn the coherence length is larger than the local distance
between the nucleons. One can also notice that at its minimum
value the coherence length is comparable to the local distance
between the nucleons. Hence, at the minimum value of the
coherence length the two-body correlations induced by pairing
are negligible. This fact can be also seen from the numerator of
Eq. (7) which, as shown in Fig. 3, is very small at the minimum
value of ξ (R).

The coherence lengths shown in Fig. 3 have a pattern similar
to the ones provided by the HFB approach [2]. At a closer
inspection one can notice that there are quantitative differences
between the predictions of RHB and HFB but, in general,
these differences are rather small, as seen, for example, for
the nucleus 66Ni. The largest differences are expected for the
nuclei in which RHB and HFB predicts very different mean
fields and spin-orbit splittings. These are the nuclei close to the
neutron drip line, especially the ones with a state of low angular
momentum in the vicinity of the Fermi level. An example of
such a nucleus, considered in Ref. [2], is 84Ni. In the HFB
approach the coherence length of this nucleus is much larger
than for 66Ni (see Fig. 5 of Ref. [2]). We have found that this is
not the case in the RHB calculations. The main reason is related
to the confinement of the state 3s1/2. Thus, in HFB this state is
very little bound and therefore its large spatial extension affects
significantly the neutron skin and the coherence length. This is
not happening in the RHB calculations because the relativistic
mean field is deeper and therefore the state 3s1/2 is much more
bound than in HFB.

In what follows we analyze the dependence of the coherence
length on the intensity of the pairing force. This issue was

FIG. 5. The coherence length for 120Sn calculated in the
RMF+PBCS approach for various intensities of the pairing force,
scaled by the factors α. The pairing energy is shown for each scaling
factor.

discussed in Ref. [2] in the framework of HFB for the particular
case of the nucleus 120Sn. Here we perform a similar study in
the RMF model and treating the pairing force in the PBCS
approach. The advantage of this approach is that one can
progressively reduce the pairing correlations until they are
vanishing, reaching the mean-field limit. It should be remem-
bered that in the BCS-like calculations the pairing correlations
in nuclei are found only above a critical value of the pairing
strength. The coherence length predicted by RMF+PBCS for
120Sn is shown in Fig. 5. The results obtained by reducing the
intensity of the pairing force with various scaling factors are
shown, in order to see the dependence of the coherence length
on pairing correlations. These results are obtained by solving
the PBCS equations with the single-particle states of the major
shell provided by the relativistic mean field, which is kept
fixed during the calculations. One can notice that the coherence
length is not changing much for a quite strong reduction of the
pairing strength, as found also in the HFB calculations [3,5].
However, at a certain point, when the interaction is becoming
much weaker, the coherence length starts increasing until it
reaches the RMF limit.

To understand these results, we analyze how the states
of the major shell contribute to the coherence length. The
contribution of a state i to the the coherence length depends
on ki = 〈PBCS(N − 2)|cicī |PBCS(N )〉. In order to simplify
the analysis, we approximate this quantity by ki = uivi , where
v2

i is the occupation probability of the state i provided by the
PBCS calculations and u2

i = 1 − v2
i . In the BCS approach ki

represents the pairing tensor in the configuration representa-
tion. The dependence of ki on the pairing strength is shown in
Fig. 6. From this figure one can see that in the RMF limit the
coherence length is built on the orbital 2d3/2. Since this state
is fully occupied in the RMF limit, the coherence length in
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FIG. 6. The quantity ki = uivi for the single-particle states of
120Sn from the major shell. The results correspond to the RMF+PBCS
calculations done with the same intensities of the pairing force used
in Fig. 5.

this limit represents in fact the spatial correlations induced by
the localization properties of the single-particle wave function
2d3/2, and not by pairing.

The effect of pairing on coherence length is produced
through the mixing of various single-particle states, each of
them coming with their intrinsic localization properties and
contributing according to their pairing tensor ki . Regarding
the localization properties of single-particle states of the major
shell, in Ref. [3] it was shown that their intrinsic coherence
length, calculated by applying Eq. (7) for two nucleons coupled
to J = 0 and sitting in a given orbital, has on average a
similar shape (see Fig. 17 of [3]). The coherence length for
the 3s1/2 state has a rather different shape. This state, having
a small degeneracy, will have a small contribution to the total
coherence length when the mixing with the other states of the
major shell, of higher degeneracy, is significant. From Fig. 6
one can observe that when the pairing strength is switched on,
the first levels which mix up are the states 2d3/2 and 3s1/2.
This mixing has a significant effect on the total coherence
length because these states have quite different localization
properties and because their ki values are changing differently
with the strength of the force, as seen in Fig. 6. When the
strength of the force is increasing enough, the contributions of
the other three states of the major shell come into play. Since
the degeneracy of these states is high, their contributions to
the coherence length become quickly dominant. As seen in
Fig. 5, once the effect of these states is taken into account, a
further increase of the pairing strength does not affect much
the coherence length. The main reason is that the ki values of
these three states are increasing proportionally to each other
and therefore, due to the denominator of Eq. (7), this increase is

FIG. 7. The coherence length corresponding to the Cooper pair
wave function [Eq. (13)] provided by RHB (upper panel) and
RMF+PBCS (lower panel) calculations for 66Ni (line with diamonds),
124Sn (line with dots), and 200Pb (line with squares). The numerators
and denominators of Eq. (13) are plotted on the right-hand side.

largely canceled out. Moreover, since these states have similar
localization properties, a redistribution of their contribution in
Eq. (7), due to the increase of pairing, is not expected to affect
much the total coherence length.

How important the pairing correlations are for the coherence
length can be appreciated by comparing the result for the
physical value of the pairing force with the result for the RMF
limit. One can thus observe that the pairing correlations have
a significant contribution to the coherence length, both in the
bulk and in the region of the minimum. Indeed, due to pairing,
the coherence length is decreasing in the bulk from about
6.5 to 4.5 fm while the minimum of the coherence length is
shifted down from about 3.3 to 2.6 fm. Finally on this issue
we would like to emphasize that the weak dependence of the
coherence length on the intensity of pairing force, especially in
the minimum region, observed in Refs. [3,5] and in the present
study, is the consequence of the cancellations discussed above
and therefore should be not interpreted as an indication that in
nuclei the coherence length is ruled just by finite-size effects.

Figure 7 shows the coherence length associated with the
Cooper pair wave function, defined by Eq. (13). One can
observe that the coherence lengths associated with the Cooper
pair and the pairing tensor have a similar behavior, especially
in the RMF+BCS case. The reason for this similarity comes
from the fact that both quantities measure the spin correlations
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between two nucleons. However, the physical meaning of the
two quantities is different because the pairing tensor is referring
to the correlations of two generic neutrons in the nucleus while
|φ(R,r)|2 is related to the correlations of the neutrons inside
the Cooper pair. This difference should be kept in mind when
conclusions are drawn from the results presented in Fig. 7.
Thus, from Fig. 7 one cannot draw the conclusion that in the
nucleus there are Cooper pairs of small size in the surface
and Cooper pairs of large size in the interior of the nucleus.
This is because in BCS-type models, as seen in Eq. (10), there
is only one Cooper pair wave function, identical for all the
paired nucleons, which is defined globally by all values of the
center-of-mass and relative coordinates.

IV. SUMMARY

In this study we have investigated the properties of the
coherence length associated to the pairing tensor in the
framework of RHB and RMF+PBCS models. Thus, taking
as examples the nuclei 66Ni, 124Sn, and 200Pb, we have shown
that the coherence length predicted by the relativistic models
has a pattern that is similar to what was found earlier in the HFB
calculations: it is maximum in the bulk and then is decreasing
to a minimum of the order of 2.5–3 fm out in the surface.

In the RMF+PBCS approach we have also analyzed, for
the nucleus 120Sn, the dependence of the coherence length on

the intensity of the pairing force. This analysis shows that the
pairing correlation is reducing the coherence length, compared
to the RMF results, by 25–30%, both in the bulk and in the
region of the minimum. It is also shown that once the pairing
correlations are set in, the coherence length depends only
weakly on the strength of the pairing interaction. This fact is
related to the cancellation of the effects of the pairing force by
the normalization employed in the definition of the coherence
length.

Finally we have studied the coherence length associated
with the Cooper pair wave function and we have shown that it
has a similar shape as the coherence length corresponding to the
pairing tensor. In both RHB and RMF+PBCS calculations the
size of the Cooper pair is much larger than the mean distance
between the nucleons, a fact consistent with the BCS regime
of pairing correlations in nuclei.
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