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Semiclassical description of chiral geometry in triaxial nuclei
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A triaxial particle-rotor Hamiltonian for three mutually perpendicular angular momentum vectors, correspond-
ing to two high-j quasiparticles and the rotation of a triaxial collective core, is treated within a time-dependent
variational principle. The resulting classical energy function is used to investigate the rotational dynamics of the
system. It is found that the classical energy function exhibits two minima starting from a critical angular momentum
value which depends on the single-particle configuration and the asymmetry measure γ . The emergence of the
two minima is attributed to the breaking of the chiral symmetry. Quantizing the energy function for a given angular
momentum, one obtains a Schrödinger equation with a coordinate dependent mass term for a symmetrical potential
which changes from a single to a double well shape as the angular momentum passes the critical value. The
energies of the chiral partner bands for a given angular momentum are then given by the lowest two eigenvalues.
The procedure is exemplified for maximal triaxiality and two h11/2 quasiparticles, with the results used for the
description of the chiral doublet bands in 134Pr.
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I. INTRODUCTION

The concept of chirality or handedness is a common
occurrence in biology, chemistry, optics, and particle physics.
In nuclear physics, chirality is associated with the geometry
of three mutually perpendicular angular momenta. It was
originally suggested by Frauendorf and Meng [1] for a system
composed of a triaxial core coupled to a set of high-j valence
particles and holes. The rationale for this particular ensemble
[1,2] is that the triaxial core tends to rotate around the axis
with the largest moment of inertia (MOI), which implies
an intermediate density distribution, while the motions of
particles and holes prefer ellipsoidal orbits around the other two
principal axes following respectively, minimal and maximal
density distributions. The three mutually perpendicular angular
momenta form a screw with respect to the total angular
momentum vector and therefore can be arranged to form
two systems with opposite intrinsic chirality. As the broken
chiral symmetry should be restored in the laboratory frame
of reference, one expects to observe two nearly degenerate
�I = 1 bands with the same parity. This particular signature,
i.e., the so-called chiral doublet bands, was first observed
in a few N = 75 odd-odd isotones [3]. The experimental
confirmation of chiral symmetry breaking was followed by
an extensive search for other candidate nuclei. As a result,
presently chiral bands are reported in over 30 nuclei clustered
in “islands” of chirality around mass numbers 80, 100, 130,
and 190, where the chiral geometry is generated by specific
quasiparticle configurations [4,5].
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The original interpretation of chirality [1] was based on
both the particle-rotor model (PRM) [6] and the tilted axis
cranking (TAC) models [7]. Alternative descriptions of the
chiral bands include presently boson expansion approaches
[8–11] and shell model based formalisms [12,13]. However,
being a fully quantum model, and therefore capable of treating
the tunneling between the two chiral solutions, PRM remained
the standard for theoretical studies of chirality [14–23]. Al-
though the semiclassical nature of the cranking mean field
approaches is not able to describe the quantum interaction
between the chiral bands, it has the advantage of providing
a relation between the density distribution and the direction of
the total angular momentum vector [24–30]. Moreover it can
be easily extrapolated to multi-quasiparticle configurations,
whereas the PRM advances in this direction are incipient
[31–33]. The need to go beyond the mean field approximation
produced successful extensions of the TAC formalism such
as the TAC plus random phase approximation [34,35] and
the collective Hamiltonian approach [36,37]. The latter takes
advantage of the information on classical rotational dynamics
obtained from TAC calculations to construct a quantum col-
lective Hamiltonian, whose solutions were shown to be close
to the fully quantum and exact PRM calculations.

In this paper, I will take the opposite approach in combining
the advantages of the classical and quantum pictures by treating
semiclassically a particle-rotor type Hamiltonian. The semi-
classical procedure amounts to ascribing a time-dependent
variational principle to the quantum Hamiltonian, which is
consequently dequantized into a classical energy function. A
similar procedure was already successfully applied for the
description of wobbling excitations in odd-mass nuclei [38,39].
By choosing an appropriate variational function one can select
a limited set of degrees of freedom relevant for the studied
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phenomenon instead of treating the full space. The information
on the rotational dynamics of the system is then extracted
from the evolution of the classical energy function as well as
other observables expressed in terms of the azimuthal and polar
angles with the variation of the total angular momentum, which
retains its quality of good quantum number. The emergence of
chiral solutions at a certain spin is discussed from the classical
point of view. For the description of the chiral partner bands,
the classical energy function is quantized with respect to a
chiral variable. The similarities and the differences between
the resulting Schrödinger equation and the chiral collective
Hamiltonian of Refs. [36,37] are pointed out. The formalism
is applied to the description of the chiral bands in 134Pr.

II. SEMICLASSICAL APPROACH

The extension of the particle-rotor Hamiltonian [6],

H = HR + Hsp + H ′
sp, (2.1)

is employed for the description of the interaction between two
single-particle angular momenta and a collective one. HR =∑

k=1,2,3 Ak(Îk − ĵk − ĵ ′
k)2 is the triaxial rotor Hamiltonian

associated with the core angular momentum �R = �I − �j − �j ′
and defined by the inertial parameters Ak = 1/(2Jk), where
Jk are the MOI along the principal axes of the intrinsic frame
of reference considered in the hydrodynamic estimation [6]:

Jk = 4
3J0 sin2

(
γ − 2

3kπ
)
. (2.2)

�j and �j ′ are single-particle generated spins, i.e., they can be
the total angular momentum of a single quasiparticle orbital
or a resultant spin of few quasiparticles. The single-particle
contribution to the total Hamiltonian coming from single-
particle spin �j is

Hsp = V

j (j + 1)

{[
3ĵ 2

3 − j (j + 1)
]

cos γ

−
√

3
(
ĵ 2

1 − ĵ 2
2

)
sin γ

}
, (2.3)

where γ is the asymmetry parameter, which also defines the
ratios between MOI.

Suppose that each of the single-particle angular momenta
is aligned to a principal axis of the intrinsic frame of reference.
Although the angular momentum of a triaxial rotor is actually
distributed on all three axes, the core will rotate around the axis
with the highest MOI, which is then chosen as a quantization
axis. As the absolute value of the rotor spin increases, the
contributions from the other two axes become smaller [40]
and can be quantized for example into wobbling excitations
[6]. If this rotation axis is perpendicular to the plane of the
two single-particle spins, then one will have a trihedral vector
configuration as in Fig. 1. In order to have the highest MOI
along the third intrinsic axis, γ must be within the interval
(60◦,120◦). In this γ interval, the ellipsoid’s semiaxes

Rk = R0

[
1 +

√
5

4π
β cos

(
γ − 2π

3
k

)]
(2.4)

are arranged as R2 < R3 < R1. In order to keep track of the
direction of the total angular momentum vector relative to the
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FIG. 1. Schematic representation of the chiral geometry.

density distribution, the axes 1, 2, and 3 are also referred to as
the long (l), short (s), and medium (i).

Choosing the single-particle alignment to be rigid along the
axes 1 and 2, i.e., ĵ1 ≈ j ≡ const and ĵ ′

2 ≈ j ′ ≡ const, the
Hamiltonian relevant for the system’s dynamics can be limited
to

H = A1(Î1 − j )2 + A2(Î2 − j ′)2 + A3Î
2
3 + const. (2.5)

Thus, the Hamiltonian to be treated is

Hchiral = A1Î
2
1 + A2Î

2
2 + A3Î

2
3 − 2A1j Î1 − 2A2j

′Î2. (2.6)

For the purpose of investigating the rotational motion
described by the quantum Hamiltonian (2.6), I consider the
variational principle

δ

∫ t

0
〈ψ(z)|Hchiral − ∂

∂t ′
|ψ(z)〉dt ′ = 0. (2.7)

The variational state is chosen in the form

|ψ(z)〉 =
I∑

K=−I

√
(2I )!

(I − K)!(I + K)!

zI+K

(1 + |z|2)I
|IMK〉

= 1

(1 + |z|2)I
ezÎ− |IMI 〉. (2.8)

This is a spin coherent state with z being a complex time-
dependent variable, |IMK〉 are the eigenstates of the intrinsic
angular momentum operators Î 2 and Î3 and their counterparts
in the laboratory frame of reference, while Î− is a ladder
operator. The averages on the variational state of the terms
involved in the variation (2.7) are calculated using the results
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of Refs. [41–43] and have the following expressions:

〈Hchiral〉 = I

2
(A1 + A2) + A3I

2 + I (2I − 1)

2(1 + zz∗)2

× [A1(z + z∗)2 − A2(z − z∗)2 − 4A3zz
∗]

− 2A1jI (z + z∗)

1 + zz∗ + i
2A2j

′I (z − z∗)

1 + zz∗ , (2.9)〈
∂

∂t

〉
= I (żz∗ − zż∗)

1 + zz∗ . (2.10)

z and its complex conjugate counterpart are considered as in-
dependent variables. The time-dependent variational Eq. (2.7)
offers the following equations of motion for the complex
variables z and z∗:

∂H
∂z

= − 2iI ż∗

(1 + zz∗)2
,

∂H
∂z∗ = 2iI ż

(1 + zz∗)2
, (2.11)

where H(z,z∗) = 〈Hchiral〉 plays now the role of a classical
energy function which is also a constant of motion. For
simplicity, the complex variable is written in a stereographic
representation [41],

z = tan
θ

2
eiϕ, 0 � θ < π, 0 � ϕ < 2π. (2.12)

Within this parametrization, the angular momentum carried by
the coherent state is oriented in the direction specified by the
two angles of rotation θ and ϕ [42] as in Fig. 1. The equations
of motion for the new variables are given as

∂H
∂θ

= −I sin θϕ̇,
∂H
∂ϕ

= I sin θ θ̇ . (2.13)

The full structure of the classical Hamiltonian system is
reproduced if the variables are canonical. This is achieved by
the change of variable

r = 2I cos2 θ

2
, 0 < r � 2I. (2.14)

Note that this is not a unique choice, because r is defined up
to a constant. For example, the obvious change of variable
r = I cos θ leads to the same canonical Hamilton form for the
equations of motion:

∂H
∂r

= ϕ̇,
∂H
∂ϕ

= −ṙ . (2.15)

These equations identify ϕ as the generalized coordinate, while
r as the generalized momentum. The two canonical variables
are then related by the Poisson bracket

{ϕ,r} = 1. (2.16)

Within this notation, the equations of motion can be written as

{r,H} = ṙ , {ϕ,H} = ϕ̇. (2.17)

The classical energy function has the following expression
in terms of the canonical variables:

H(r,ϕ) = I

2
(A1 + A2) + A3I

2 + (2I − 1)r(2I − r)

2I

× (A1 cos2 ϕ + A2 sin2 ϕ − A3)

− 2A1j
√

r(2I − r) cos ϕ−2A2j
′√r(2I−r) sin ϕ.

(2.18)

The conservation of the total angular momentum

I 2 = I 2
1 + I 2

2 + I 2
3 (2.19)

is guaranteed by the classical expressions of the angular
momentum components as functions of the canonical variables
[43,44]:

I1 =
√

r(2I − r) cos ϕ,

I2 =
√

r(2I − r) sin ϕ, (2.20)

I3 = r − I.

In what follows, the ϕ angle will be restricted to the interval
(0,90◦), which corresponds to a situation when the total an-
gular momentum and the single-particle spins share an octant
of the three-dimensional space. This implies cos ϕ > 0 and
sin ϕ > 0.

II. ROTATIONAL DYNAMICS

The minimum points of the constant energy surface
H(r,ϕ) = const correspond to stable dynamical configura-
tions. These are determined from(

∂H
∂r

)
r0,ϕ0

= 0,

(
∂H
∂ϕ

)
r0,ϕ0

= 0,

(3.1)

Det

[(
∂2H

∂qi∂qj

)
r0,ϕ0

]
> 0,

where i(j ) = 1,2 with q1 = r and q2 = ϕ.
At this point it is worthwhile to recount that there are a few

possibilities concerning the distribution of the total angular
momentum on the principal axes of the intrinsic frame of
reference [1]. When the total angular momentum lies within
a principal plane, the situation is called planar, while an
aplanar configuration designates a total angular momentum
with nonvanishing projections on all principal axes. Solving
thus the system of Eqs. (3.1), one obtains a critical point (rp,ϕp)
corresponding to a planar case, with rp = I and ϕp given as a
solution of the equation

(2I − 1)

2
(A2 − A1) cos ϕp sin ϕp

= A2j
′ cos ϕp − A1j sin ϕp. (3.2)

The planar nature of this critical point results from a vanishing
third component of the total angular momentum for rp = I .
From the above equation one can see that ϕp depends on I ,
except when γ = 90◦ because then A1 = A2. In this particular
case one has just tan ϕp = j ′/j .

Equations (3.1) also provide an aplanar stationary point
specified by

sin ϕa = A2j
′(A1 − A3)√

A2
1j

2(A2 − A3)2 + A2
2j

′2(A1 − A3)2
, (3.3)

cos ϕa = A1j (A2 − A3)√
A2

1j
2(A2 − A3)2 + A2

2j
′2(A1 − A3)2

, (3.4)

√
ra(2I − ra) = I sin θI

a , (3.5)
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where I used the following notation:

sin θI
a =

2
√

A2
1j

2(A2 − A3)2 + A2
2j

′2(A1 − A3)2

(2I − 1)(A1 − A3)(A2 − A3)
. (3.6)

The two solutions for ra will then be

rR = I
(
1 + cos θI

a

)
, (3.7)

rL = I
(
1 − cos θI

a

)
. (3.8)

Note that angle θI
a is spin dependent, while ϕa is not. The

indexes R and L denote respectively the right-handed and the
left-handed total angular momentum orientations with respect
to the intrinsic frame of reference. The right-handedness of a
configuration is associated with the case in which one can count
in the mathematically positive direction the principal axes as
1, 2, and 3 when looking from the tip of the total angular
momentum vector. This assignment of the two solutions is
more obvious when the averages of the total angular mo-
mentum components are considered for this aplanar stationary
point:

I a
1 = I sin θI

a cos ϕa, (3.9)

I a
2 = I sin θI

a sin ϕa, (3.10)

I a
3 = ±I cos θI

a . (3.11)

This is just a representation of a vector of magnitude I in
spherical coordinates (see Fig. 1). The minimum condition
for the aplanar solutions implies that the rational functions
(3.3), (3.4), and (3.6) have values under unity. This is obvious
for the first two, from their analytical expression. The latter,
however, is more difficult to judge, but can be inferred from the
successive changes of variables leading to the expression (3.6).
Nevertheless, the condition 0 < sin θI

a < 1 provides some
additional restrictions on the relative distribution of the Ak

parameters, which are also angular momentum dependent. As
a matter of fact, the condition sin θI

a = 1 serves as a separatrix
which marks the border between the planar and aplanar
solutions corresponding to two distinct rotational phases. This
separatrix provides a critical angular momentum value at
which the transition between the two phases commences from
the planar phase to the aplanar one, as is shown in Fig. 2.
The critical angular momentum depends on the triaxiality
measure γ as well as the single-particle spins. Its evolution
as a function of γ is depicted in Fig. 3 for a few simple one-
particle–one-hole configurations commonly known to generate
chiral symmetry breaking. The critical angular momentum
value tends to infinity when the density distribution is axially
symmetric, and has its minimum value at maximal triaxiality
γ = 90◦. The minimum values for the considered quasiparticle
configurations are listed in Table I.

From Fig. 2 one observes that, in the planar phase, the
classical energy function has a single minimum at rp = I
and ϕp, which becomes a saddle point after crossing the
separatrix. In turn, the saddle point marks the apparition
of the two chiral minima at (rR,ϕa) and (rL,ϕa). Although
using different variables, the energy surfaces of Fig. 2 are
similar to the total Routhian surface calculations made in

FIG. 2. Classical energy surfaces as a function of the generalized
coordinate ϕ and momentum r for γ = 80◦ and γ = 90◦ and selected
values of the total angular momentum. The single or double minima
are indicated with crosses, while the difference between two consec-
utive contours is 10 arbitrary units. The increase goes from dark to
light.

[36] considering a single orientation angle, especially when
γ �= 90◦. The connection to azimuthal and polar angles can be
easily made; however, I maintained the (r,ϕ) space because the
two variables are canonical conjugate. The major difference
arises for the maximal triaxiality case (γ = 90◦), where the
classical energy function is doubly symmetric with respect to
ϕ = 45◦ and r = I (I3 = 0) lines. This twofold symmetry is,
however, recovered when the total Routhian is considered in
the full space of the two orientation angles [37].
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FIG. 3. The evolution as a function of triaxiality γ of the sep-
aratrix represented by the critical angular momentum Ic for a few
quasiparticle configurations expected to break the chiral symmetry.

At this point, one can analyze the dynamical evolution, i.e.,
as a function of total angular momentum modulus, of the tilting
angles defining the average geometrical direction of the total
angular momentum vector. This is best presented graphically
in Fig. 4, where I plotted the polar and azimuthal angles as
function of the total angular momentum for few asymmetrical
values of γ . In consensus with the previous observations, the
starting value of the polar angle θ is 90◦. This value persists
throughout the entire planar phase up to the critical value Ic,
where it bifurcates into the two chiral branches with θ = θI

a and
θ = π − θI

a . The existence of the planar phase at small angular
momentum values is due to the sizable components of the core
angular momentum on the principal axes 1 and 2 [40], which
add up to the single-particle contributions. The planar average
direction of the total spin is, however, soft against out-of-plane
fluctuations, as can be attested by the pronounced shallowness
of the planar minima. Concerning the azimuthal angle ϕ, it has
an invariant value of 45◦ for maximal triaxiality γ = 90◦, while
for γ �= 90◦ it just starts from this value and is continuously
decreasing up to the critical point, keeping the corresponding
tilting constant through the evolution in the aplanar phase. The
correspondence between the constant value of the azimuthal

TABLE I. Minimal classical value of the critical angular momen-
tum where the classical energy function starts to allow stable chiral
solutions, for a few one-particle–one-hole quasiparticle configura-
tions known to generate chiral doublet bands.

Mass region Configuration j j ′ Imin
c

A ∼ 80 πg 9
2

⊗ νg−1
9
2

9
2

9
2 8.99

A ∼ 100 πg−1
9
2

⊗ νh 11
2

11
2

9
2 9.98

A ∼ 130 πh 11
2

⊗ νh−1
11
2

11
2

11
2 10.87

A ∼ 190 πh 9
2

⊗ νi−1
13
2

13
2

9
2 11.04

(a)

(b)

FIG. 4. Evolution of the spherical angles as a function of angular
momentum for different degrees of triaxiality: (a) γ = 80◦ and (b)
γ = 90◦.

angle acquired at the critical point and the triaxiality degree is
visualized in Fig. 5.

IV. EMERGENCE OF CHIRAL BANDS

As the energy function has always a single minimum only in
the ϕ variable, I choose to expand it around the corresponding

60 65 70 75 80 85 90
0

10

20

30

40

γ deg

a
de
g

FIG. 5. The correspondence between the triaxiality measure γ

and the final value of the azimuthal angle ϕa , which remains invariant
with total angular momentum.
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minimum points for fixed values of r:

H̃(r,ϕ) ≈ H(r,ϕ0(r)) + 1

2

(
∂2H
∂ϕ2

)
ϕ0(r)

ϕ̃2, (4.1)

where ϕ̃ = ϕ − ϕ0(r) with ϕ0(r) being the value which min-
imizes the energy function for a fixed r . ϕ0(r) is therefore
defined as the solution of the following equation:

(2I − 1)r(2I − r)(A2 − A1) cos ϕ0 sin ϕ0

= 2I
√

r(2I − r)(A2j
′ cos ϕ0 − A1j sin ϕ0). (4.2)

Lacking an analytical expression for the general solution of
the above equation, I will further pursue only the special case
of γ = 90◦, for which A1 = A2 and ϕ0 = 45◦ = const. The
general case for γ �= 90◦ implies a numerical part and will be
presented elsewhere.

In order to have a better view of the chiral dynamics, a
new chiral variable is introduced, namely r̃ = r − I . This
quantity is just the classical third component of the total angular
momentum (2.20), and varies between −I and I . The pair of
variables r̃ and ϕ̃ are also canonical conjugate, i.e., {ϕ̃,r̃} = 1.
Symmetrizing the products of r̃ and ϕ̃ functions, I proceed to
the quantization of the approximate classical energy function
(4.1) by making the substitutions

r̃ = x, ϕ̃ = i
d

dx
, (4.3)

rather than quantizing the classical trajectories by means
of a Wentzel-Kramers-Brillouin–like approximation as was
performed in Ref. [45]. This differential representation of the
conjugate canonical coordinates is equivalent to working in the
momentum space represented by the generalized momentum
variable r̃ . After the quantization procedure, one arrives at a
quantum Hamiltonian expressed as the differential operator

Ĥc = − 1

2B(x)

d2

dx2
+ B ′(x)

2[B(x)]2

d

dx
+ H(x,ϕ0)

+ B ′′(x)

4[B(x)]2
− [B ′(x)]2

2[B(x)]3
, (4.4)

where

B(x) =
[
∂2H(x,ϕ)

∂ϕ2

]−1

ϕ0

. (4.5)

Suppose now that the wave function corresponding to above
quantum Hamiltonian is F (x) and is normalized to unity. Then
making the change of function f (x) = [B(x)]−1/4F (x), one
can write the final Hamiltonian for f (x) in the form

Ĥc = −1

2

1√
B(x)

d

dx

1√
B(x)

d

dx
+ V (x), (4.6)

where B(x) plays the role of an one dimensional mass which
depends on x, while the corresponding potential is given as

V (x) = H(x,ϕ0) + B ′′(x)

8[B(x)]2
− 9[B ′(x)]2

32[B(x)]3
. (4.7)

The identification of B(x) as the mass of the system is
confirmed also by the normalization condition for the function

8
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1/
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FIG. 6. Chiral potential (a) and mass (b) as function of the chiral
variable x for a few values of total angular momentum.

f (x), which reads as∫
f (x)f ∗(x)

√
B(x)dx = 1. (4.8)

It can be easily checked that both mass function and the po-
tential are invariant under the parity transformation x → −x.
All these ingredients are reminiscent of the one-dimensional
collective Hamiltonian obtained in [36]. The difference here
is that both the mass term and potential are products of the
original quantum Hamiltonian, and are determined solely on
the basis of the rotational geometry, in comparison to the
approach of Ref. [36] where the kinetic and potential terms
are obtained in separate ways. Moreover, due to the canonical
conjugate character of the two semiclassical coordinates r
and ϕ, there is an additional relation between the polar and
azimuthal angles. Thus, although the chiral Hamiltonian is
one-dimensional, the quantum fluctuations of both directional
angles are included. From the graphical representation of the
chiral potential and mass term shown in Fig. 6, one can see
that while the emergence of the double minimum profile for
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the chiral potential is similar to that of Ref. [36], the dynamical
evolution of the mass is quite different. Indeed, the mass term
determined in Ref. [36] starts by being shallow at low rotational
frequencies, then acquires a more localized minimum as the
frequency is increased. In the present case, the evolution is
opposite, as can be seen from Fig. 6(b). This distinction comes
from the fact that in the present case the mass is defined in the
momentum space. Otherwise the picture is consistent with the
formalism of Ref. [36].

The states of the two chiral partner bands are then defined by
the first two eigensolutions of the differential operator (4.4).
Although the associated mass term and the chiral potential
have analytical expressions, the corresponding Schrödinger
equation cannot be exactly solved. Consequently, the energies
are determined through a diagonalization in a suitable basis.
In order to avoid large-dimension diagonalizations, it is cus-
tomary to use different basis states for even and odd parity
solutions when symmetric potentials are involved. Choosing
particle in the box eigenstates as basis functions, one assigns
for even parity the basis states

g1
n(x) = 1√

I
cos

[
(2n − 1)πx

2I

]
, n = 1,2, . . . , (4.9)

while for the odd parity the following basis states are used:

g−1
n (x) = 1√

I
sin

[
2nπx

2I

]
, n = 1,2, . . . . (4.10)

These functions, like the exact eigenfunctions, satisfy the
Dirichlet boundary condition

gp
n (I ) = gp

n (−I ) = 0, (4.11)

and were shown to be very performant as basis states in sym-
metrical multiple minima problems [46,47]. The eigenvalues
of Eq. (4.4) are then obtained by diagonalization in the above
defined basis space, which is truncated to accommodate a
satisfactory convergence of the results. The same procedure
will give the coefficients an of the basis expansion

Fp(x) =
N∑

n=1

ap
n gp

n (x), p = −1,1, (4.12)

where N denotes the dimension of the truncated space.
The splitting between energies of the two chiral solutions

is shown in Fig. 7 relative to the barrier hight and the
depth of the minimum for a series of integer values of total
angular momentum. The splitting persists along many angular
momentum states, vanishing only when the two energy states
become considerably lower than the barrier peak; that is,
around I = 15. The results are consistent with the well known
behavior of the spectra for double well potentials [48].

V. TOTAL WAVE FUNCTIONS AND ELECTROMAGNETIC
TRANSITIONS

Expressing the original complex variable in terms of the
chiral one as

z =
√

I − x

I + x
eiϕ, (5.1)

FIG. 7. The lowest two eigenvalues of the chiral potential for I =
8–16 are visualized relative to the potential profile. The lowest energy
state corresponds to the symmetric wave function (p = 1).

one can write down the coherent state (2.8) as

|ψ(x,φ)〉 =
I∑

K=−I

1

(2I )I

√
(2I )!

(I − K)!(I + K)!

× (I + x)
I−K

2 (I − x)
I+K

2 eiϕ(I+K)|IMK〉. (5.2)

In order to couple the rotational motion described by the above
state with the information regarding the chiral vibration, I will
weight the coherent state in ϕ = ϕ0 = 45◦ with the density
probability for the oscillating chiral variable:

ρI
p(x) = ∣∣F I

p (x)
∣∣2

, p = −1,1. (5.3)

The evolution of this quantity with total angular momentum
can be tracked in Fig. 8, where I plotted the interpolated density
probability as function of x and I .

The wave functions with restored chiral symmetry can be
then expressed as

|IMp〉 = NIp

I∑
K=−I

SIKpeiϕ0(I+K)|IMK〉, (5.4)

where

SIKp = 1

(2I )I

√
(2I )!

(I − K)!(I + K)!
(5.5)

×
∫ I

−I

ρI
p(x)(I + x)

I−K
2 (I − x)

I+K
2 dx,

while NIp is a redefined normalization constant. Using these
wave functions, one can now proceed to the calculation of
the quadrupole transition probabilities using the following
transition operator:

M(E2,μ) =
√

5

16π

[
Q′

0D
2
μ0 + Q′

2√
2

(
D2

μ2 + D2
μ−2

)]
. (5.6)

Q′
0 and Q′

2 are intrinsic quadrupole moments for a reference
frame where the MOI on the third principal axis is maximal.
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FIG. 8. Density probability distribution as function of total an-
gular momentum and the chiral variable x = K for ground (a)
and first excited (b) states corresponding to p = 1 and p = −1
respectively. Consecutive contours denote a variation of probability
of 0.01 arbitrary units. The increase goes from dark to light.

They can be related to the commonly used components
Q0 = Q cos γ and Q2 = Q sin γ /

√
2 defined in a system of

reference with the maximal MOI along the first axis, by

Q′
0 = −1

2
Q0 +

√
3

2
Q2 = −Q cos

(
γ + π

3

)
, (5.7)

Q′
2 = −1

2

(√
3

2
Q0 + Q2

)
= −Q

sin
(
γ + π

3

)
√

2
, (5.8)

where Q = 3√
5π

R2
0Zβ with β being the axial deformation, Z

is the charge number, while R0 is the nuclear radius.
The reduced transition probability is determined with

B(E2,Ip → I ′p′) = |〈Ip||M(E2)||I ′p′〉|2. (5.9)

The expression for the involved reduced matrix element of the
quadrupole transition operator in the considered particular case
of γ = 90◦ and ϕ0 = 45◦ can be readily deduced:

〈Ip||M(E2)||I ′p′〉 = Q

8

√
15

π

Î ′

Î
ei π

4 (I ′−I )

×
I∑

K=−I

SIKpSI ′Kp′CI ′ 2 I
K 0 K. (5.10)

The simple form is obtained by dismissing the nondiagonal
quadrupole components, which cancel each other when the
summation is performed on positive and negative projections.

Another observable related to chiral partner bands is the
magnetic dipole transition probability [15,20,49–52]. It is,
however, predominantly given by the single-particle degrees
of freedom, which are neglected in the present study.

VI. COMPARISON WITH EXPERIMENT

The formalism is applied to the chiral bands of 134Pr, which
are among the most extended in regard to the number of
observed different spin states. For the calculation of the energy
levels corresponding to the two partner bands the following
formula is used:

EIp = E0 + Ec
Ip, (6.1)

where E0 is an energy reference, while Ec
Ip is the eigenvalue

of the chiral quantum Hamiltonian, obtained from the diag-
onalization procedure. The dimension of the diagonalization
basis is truncated at 50 states, assuring thus a convergence
of the energies up to spin I = 21. As the asymmetry of
the triaxial core γ is considered fixed at 90◦, the only free
parameters remaining are the reference energy E0 and the
inertial constant J0. Fitting the experimental data against
the two parameters, one obtains the values E0 = 2.746 MeV,
J0 = 33.196 MeV−1, which correspond to an rms energy of
59.28 keV. The exceptionally good reproduction of data can
be better seen in Fig. 9, where all aspects of the data evolution,
such as the general rotational behavior of the two bands, energy
splitting between bands, as well as the angular momentum of
critical point for the transition between chiral vibration and
static chirality, are well reproduced.

For the calculation of E2 transition probabilities, the value
Q = 3.5 e b is considered as in Refs.[18,20,52]. The theoret-
ical results are compared to experimentally available data on
134Pr in Fig. 10. The agreement with experiment is satisfactory,
with a better reproduction of the data for intraband transitions.
Especially well reproduced is the descending trend of intraband
transitions for I = 15–17. The evolution of theoretical results
with angular momentum is similar for both intra- and interband
transitions. In both cases, the transitions from yrast states are,
with few exceptions, greater than those from the non-yrast
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FIG. 9. Comparison of yrast and non-yrast energy levels between
theoretical results and experimental data [51] for 134Pr.

states up to I = 16. The same is true for the measured values.
For I � 17, the two transition probabilities become equal
due to the stabilization of the static chirality. The difference
between B(E2) from yrast and those from non-yrast states
is almost constant up to I = 13. Starting form this angular
momentum value, all transition rates undergo a kind of second-
order phase transition to lower values [53]. The difference
becomes first larger and then smaller for the intraband tran-
sitions, while the interband ones become continuously closer,
intersecting each other between I = 15 and I = 16.

The transitional region I = 14–16 coincides with the angu-
lar momentum interval where the density probability of the
vibrational states is most extended. Indeed, although from
the semiclassical analysis the critical angular momentum
where chiral minima appear in the classical energy function
is I = 11 (Table I), from a quantum point of view the two
chiral solutions become distinguishable only around I = 16,
where the quantum tunneling subsides. Figure 10 shows that
transition probabilities involving the state I = 14 act as critical
points for the change from high to low B(E2) values. Coming
back to the density probability distribution depicted in Fig. 8,
one can see that the density probability for I = 14 in the ground
state covers both chiral minima with undistinguishable peaks,
while for the excited state the height of the two vibrational
peaks is minimal. In the first case there exists a coexistence
between the two chiral solutions. As a matter of fact the
broadening of the probability density distribution attributed to
coexistence phenomena has immediate repercussions on the
electromagnetic properties [54–56].

The good agreement with experimental energy levels, and
electromagnetic transitions at least for a small interval of
angular momentum states, indicates that chiral geometry is
a viable hypothesis with regard to the interpretation of the
doublet bands observed in increasingly more nuclei. There are,
however, alternative interpretations of the fingerprints usually
attributed to nuclear chirality [2]. For example, the interacting
boson-fermion-fermion model analysis made on partner bands
of 134Pr point to the domination of shape fluctuations over the

(a)

(b)

FIG. 10. Theoretical values of B(E2) are compared to the exper-
imental data measured for 134Pr for intraband (a) and interband (b)
transitions involving yrast (Y) and non-yrast (NY) states.

chiral geometry [50,51]. Among the alternative mechanisms
of the doublet bands generation in 134Pr, I must mention also
the shape coexisting scenario [49] where the two bands are
considered to have different quadrupole moments. Therefore
the chiral symmetry breaking cannot be considered the unique
or the sole mechanism responsible for the experimentally
observed doublet bands.

VII. CONCLUSIONS

Through a time-dependent variational principle I associated
a classical energy function to a system of three mutually
perpendicular spins corresponding to a triaxial core and two
single-particle configurations of valence nucleons. A coherent
state for the angular momentum operators is used as a vari-
ational state, whose stereographic parametrization, gives the
dependence of the classical energy function on azimuthal angle
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ϕ and a canonical conjugate coordinate r related to the polar
angle θ . Maintaining the rigid trihedral configuration of the
three spins, it is found that the classical energy function goes
from a single minimum to a double minima surface in the space
of canonical variables (ϕ,r) as the total angular momentum is
increased. The analytical expression for these critical points
identifies the solution with a single minimum as planar, while
the double minimum solution is associated twith an aplanar
case. The two degenerated minima in the latter case describe
distinct chiral configurations of the three spin vectors involved
in the dynamics of the total system.

The single minimum and double minima conditions define
two distinct rotational phases which are delimited by a sepa-
ratrix represented by a critical angular momentum value. The
dependence of the critical spin on traiaxiality γ for different
single-particle configurations revealed that its minimum lies at
maximum triaxiality γ = 90◦. By studying the evolution with
total angular momentum of the spherical angles associated with
energy minima, a distinct dynamical behavior was observed
for γ = 90◦. Speculating about the symmetry of the classical
energy function for this particular case, I quantized the energy
function by replacing some redefined canonical conjugate
coordinates with their corresponding differential operators
after performing a harmonic approximation against one of
the original coordinates. The resulting differential operator is
written in terms of a new variable, which is just the total angular
momentum projection on the quantization axis. It was shown
that the differential equation can be brought to a Schrödinger
form containing a kinetic operator with a variable-dependent
mass term and an effective symmetrical potential which can
have a single or double degenerated minima, depending on the
total angular momentum.

The energy states of the chiral partner bands for a given
angular momentum are obtained through diagonalization of the
quantum Hamiltonian in a trigonometric basis with symmetric
and antisymmetric basis states. The solutions are then used
to calculate B(E2) transition probabilities with a redefined
total wave function having an incorporated coupling between
the rotational motion and chiral vibration. The model was
applied to the description of the chiral bands of 134Pr. The
agreement with experiment is very good with regard to the
energy levels, considering that the triaxiality is a priori fixed
to γ = 90◦. Although the single-particle degrees of freedom
are ignored because I considered rigid alignments of the single-
particle spins, the agreement between theoretical calculations
for the transition probabilities and experimental data is quite
satisfactory. Especially good closeness to data is obtained
for the transitional interval of angular momenta defining the
change from chiral vibration to static chirality.

Although the considered system is drastically restrained, it
provides a good reference picture for how the chiral symmetry
breaking occurs and how it affects the system’s rotation. The
rotational aspect is mainly given by the classical analysis which
sorts the relevant degrees of freedom further used to quantize
the fluctuations around or between stable rotational configura-
tions. Therefore, the proposed semiclassical approach is able
to describe consistently the complex dynamics of a nucleus
undergoing a transition from chiral vibration to static chirality.
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