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Three-nucleon force in chiral effective field theory with explicit �(1232) degrees of freedom:
Longest-range contributions at fourth order
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We analyze the longest-range two-pion exchange contributions to the three-nucleon force at leading-loop
order in the framework of heavy-baryon chiral effective field theory with explicit �(1232) degrees of freedom.
All relevant low-energy constants which appear in the calculation are determined from pion-nucleon scattering.
Comparing our results with the ones obtained in the �-less theory at next-to-next-to-next-to-next-to leading
order (N4LO), we find effects of the � isobar for this particular topology to be rather well represented in terms
of resonance saturation of various low-energy constants in the �-less approach.
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I. INTRODUCTION

Three-nucleon forces (3NF) and their impact on nuclear
structure and reactions have become an important frontier in
nuclear physics; see Refs. [1–25] for a selection of recent stud-
ies along these lines and Refs. [26,27] for review articles. Chiral
effective field theory (EFT) provides a model-independent and
systematically improvable theoretical framework to describe
nuclear forces and low-energy nuclear structure and dynamics
in harmony with the symmetries of QCD [28,29]. Nucleon-
nucleon (NN) scattering has been extensively studied in chiral
EFT in the past two decades following the pioneering work
by Weinberg [30] and Ordonez et al. [31]. In particular,
NN potentials at next-to-next-to-next-to-leading order (N3LO)
in the chiral expansion have been available for about 15
years [32,33] and served as a basis for numerous ab ini-
tio calculations of nuclear structure and reactions. Recently,
accurate and precise chiral EFT potentials up to fifth order
in the chiral expansion, i.e., N4LO, have been developed
[34–37]. In particular, the semilocal N4LO+ potentials of
Ref. [37] provide a description of the 2013 Granada database
of neutron-proton and proton-proton scattering data below
Elab = 300 MeV, which is comparable to or even better than
that based on the available high-precision phenomenological
potentials.

The chiral expansion of the 3NF at one-loop level, i.e.,
up to and including next-to-next-to-next-to-next-to-leading-
order (N4LO) contributions, can be described in terms of
six topologies depicted in Fig. 1. The first nonvanishing
contributions emerge at next-to-next-to leading order (N2LO)
from tree-level diagrams of types shown in Figs. 1(a), 1(d) and
1(f) [38,39]. The resulting 3NF at N2LO has been intensively
explored in three- and four-nucleon scattering calculations
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as well as in nuclear structure calculations; see Refs. [1–
11,13,17–24] for some recent examples and the review articles
[26,27] and references therein. The first corrections to the 3NF
emerge at N3LO from all possible one-loop diagrams of types
shown in Figs. 1(a)–1(e) constructed from the lowest-order
vertices. The resulting parameter-free expressions have been
worked out in Refs. [40,41]; see also Ref. [42]. An interesting
feature of the N3LO 3NF contributions is their rather rich
isospin-spin-momentum structure emerging primarily from the
ring topology [Fig. 1(c)]. This is in contrast with the quite
restricted operator structure of the N2LO 3NF. Numerical
implementation of the N3LO 3NF corrections requires their
partial wave decomposition [15,43] and a consistent imple-
mentation of the regulator. This work is currently in progress;
see Refs. [4,12,14,44] for some preliminary results. We further
emphasize that four-nucleon forces also start to contribute at
N3LO and have been worked out in Refs. [45,46]. Pioneering
applications of the chiral four-nucleon forces to the α-particle
binding energy [47,48] and neutron matter [11,22,49] indicate
that their effects in these systems are fairly small.

While the impact of the first corrections to the chiral 3NF on
few- and many-nucleon observables is yet to be investigated,
one may ask whether the chiral expansion of the 3NF at
subleading order, i.e., at N3LO, provides a reasonable approx-
imation to the converged result. To clarify this issue, we have
worked out the next-to-next-to-next-to-next-to-leading-order
(N4LO) contributions to the long-range [50] and intermediate-
range [51] 3NF corresponding to Fig. 1(a) on one hand and
Figs. 1(b) and 1(c) on the other hand. The corresponding po-
tentials at large distance emerge as parameter-free predictions
as they are completely determined by the chiral symmetry of
QCD and experimental information on pion-nucleon scattering
needed to fix the relevant low-energy constants (LECs). More
precisely, for the two-pion-exchange topology, the N4LO 3NF
contributions depend on some of the LECs ci , d̄i , and ēi from
the order-Q2, Q3, and Q4 effective pion-nucleon Lagrangians,
which have been extracted from the available πN partial
wave analyses. The resulting longest-range 3NF was shown to
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FIG. 1. Various topologies contributing to the 3NF up to and including N4LO: two-pion (2π ) exchange (a), two-pion–one-pion (2π -1π )
exchange (b), ring (c), one-pion exchange contact (d), two-pion exchange contact (e) and purely contact (f) diagrams. Solid and dashed lines
represent nucleons and pions, respectively. Shaded blobs represent the corresponding amplitudes.

converge reasonably fast [50]. The situation appears to be very
different for the two-pion–one-pion (2π -1π ) exchange and
ring 3NF topologies corresponding to Figs. 1(b) and 1(c): The
formally leading contributions emerging at N3LO turn out to be
rather small in magnitude while the first corrections at N4LO
are considerably larger [51]. The origin of such an unnatural
convergence pattern can be understood if one assumes the in-
termediate �(1232) excitation as a dominant 3NF mechanism,
which is well in line with various phenomenological studies
[52–54]. In the standard formulation of chiral EFT based on
pions and nucleons as the only explicit degrees of freedom
and used, in particular, in Refs. [50,51], all effects of the �
(and heavier resonances as well as heavy mesons) are taken
into account implicitly through (some of the) LECs starting
from the subleading effective Lagrangian, i.e., ci, d̄i , ēi , . . ..
In particular, the values of the LECs c3,4, which contribute to
the two-pion exchange 3NF at N2LO, are known to receive
large contributions from the �. Thus, for this longest-range
3NF topology, effects of the � are already, to a large extent,
accounted for at the lowest order (N2LO). The first corrections
at N3LO emerge from one-loop diagrams constructed from the
leading-order pion-nucleon vertices, which are not affected
by the �, and the corresponding potentials appear to be
fairly small in magnitude. This explains the observed good
convergence pattern of the chiral expansion for the two-pion
exchange 3NF. On the other hand, for the intermediate-range
topologies, the expansion starts at N3LO while the first effects
of the � appear at N4LO and lead to large corrections.
Moreover, since the N4LO contributions to the 2π -1π and
ring 3NFs are proportional to ci , only effects due to single-�
excitations are implicitly taken into account at that order.
This raises the question of whether the double- and triple-�
excitations, which in the standard �-less formulation of chiral
EFT are taken into account at even higher orders, might lead
to sizable 3NF contributions. While this question could, at
least in principle, be clarified by extending the calculations
to even higher orders in the chiral expansion, this would
require calculation of two–loop diagrams and also dealing
with a large number of new LECs, which makes this strategy
hardly feasible. Instead, we follow a different approach and
use chiral EFT with explicit � degrees of freedom, which
offers a more efficient way to resum the contributions due
to intermediate � excitations. To be specific, we employ a
formulation in which the �-nucleon mass splitting is treated
on the same footing as the pion mass, which is known as the
small-scale expansion (SSE) [55]. Following the pioneering

calculations in Refs. [56,57], we have already worked out the
contributions of the � to the two- and three-nucleon forces up
to N2LO in the SSE [58,59] and also looked at isospin-breaking
corrections to the NN potential [60]. These calculations con-
firmed a better convergence of the �-full EFT formulation
compared to its standard, �-less version. Interestingly, for
the 3NF, the only nonvanishing � contribution up to N2LO
is the two-pion exchange diagram with an intermediate �
resonance, commonly called the Fujita-Miyazawa force. This
term is shifted in the �-full theory to next-to leading order
(NLO).

In this paper, for the first time, we extend the SSE for
the nuclear forces to N3LO and concentrate on the longest-
range contribution to the 3NF corresponding to Fig. 1(a).
This topology is particularly challenging due to (i) the need
to carry out a nontrivial renormalization program as will be
explained later and (ii) the need to reconsider pion-nucleon
scattering in order to determine the relevant LECs; see Ref. [50]
where this program was carried out in the standard, �-
less version of chiral EFT. We will also discuss in detail
renormalization within the �-full framework and work out
the � contributions to the relevant low-energy constants
in the effective Lagrangian. Although we do not expect to
see large benefits from the explicit treatment of the � for
the 2π -exchange 3NF, where the standard chiral expansion
already shows a good convergence [40,50], this calculation
is a necessary prerequisite for analyzing the � contribu-
tions to the more problematic intermediate-range diagrams.
This work is in progress and will be reported in a separate
publication.

Our paper is organized as follows. In Sec. II, we describe
the framework and specify all terms in the effective Lagrangian
that are needed in the calculation. Renormalization of the
lowest-order effective Lagrangian to leading loop order is car-
ried out in Sec. III. In Sec. IV, we provide analytic expressions
for the contribution of the � to the relevant LECs ci , d̄i , and
ēi and determine the numerical values of these LECs from
pion-nucleon scattering. � contributions to the 2π -exchange
3NF at N3LO are worked out in Sec. V. In particular, we
provide here parameter-free expressions both in momentum
and coordinate spaces. A comparison of our findings with the
ones of Refs. [40,50] is given in Sec. VI. Finally, the main
results of our work are briefly summarized in Sec. VII. The
appendices contain the unitary transformations of the nuclear
Hamiltonian and the � contributions up to N3LO to the πN
invariant amplitudes.
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II. THE FRAMEWORK

In the following, we briefly describe the formalism we
employ in our analysis, namely the heavy-baryon formulation
of chiral EFT with explicit �(1232) degrees of freedom [55].
In this framework, the soft scales are given by small external
momenta Q, pion mass Mπ , and the �-nucleon mass splitting
� := m� − mN . The resulting expansion in powers of the
small parameter ε defined as

ε ∈
{

Q

�χ

,
Mπ

�χ

,
�

�χ

}
, (2.1)

with �χ ∼ 1 GeV denoting the chiral symmetry breaking
scale, is known in the literature as the SSE.

We begin with specifying the effective chiral Lagrangian
for pions, nucleons, and the �. It is well known that the free
spin-3/2 Lagrangian is nonunique and can be written in the
form

Lfree
� = −ψ̄ i

αO
αμ
A

[
(i /∂ − m�)gμν

− 1
4γμγλ(i /∂ − m�)γ λγν

]
ξ

ij
3/2O

νβ
A ψ

j
β , (2.2)

where the tensor

O
μν
A = gμν + 1

2 Aγ μγ ν (2.3)

parametrizes nonuniqueness in the description of a spin-3/2
theory in terms of a parameter A, which can be chosen
arbitrarily subject to the restriction A �= −1/2. Further, the
quantity ξ

ij
3/2 is the isospin-3/2 projection operator given by

ξ
ij
3/2 = δij − 1

3τ iτ j , (2.4)

where τi denote the isospin Pauli matrices. Physical observ-
ables do not depend on the choice of the parameter A since the
entire dependence on A can be absorbed into a field redefinition
of the � field. In practical calculations, the choice of A is a
matter of convenience. In the covariant approach, one usually
chooses A = −1 (see, e.g., Refs. [61–65]), since in this case
the free Lagrangian takes the particularly simple form

Lfree
� = ψ̄

μ
i (iγμνα ∂α − m�γμν)ξ ij

3/2 ψν
j , (2.5)

with

γμνα = 1
4 {[γμ,γν],γα}, γμν = 1

2 [γμ,γν]. (2.6)

This form of the Lagrangian leads to a fairly compact and
convenient expression for the free propagator of the � field

Sμν = /p + m�

p2 − m2
�

(
−gμν + 1

3
γ μγ ν

+ 1

3m�

(γ μpν − γ νpμ) + 2

3m2
�

pμpν

)
. (2.7)

For every interaction in the Lagrangian, one generally has
a freedom to introduce an off-shell parameter. As a conse-
quence, interaction terms depend, in addition to the point-
transformation parameter A, also on the off-shell parameters
zi via the tensor

Õμλ
zi

Oν
Aλ = gμν + [

zi + 1
2 (1 + 4zi)A

]
γ μγ ν. (2.8)

All terms proportional to the off-shell parameters are redundant
[66–68], meaning that their contributions to observables can be
absorbed into a redefinition of the corresponding low-energy
constants (LECs). A particular choice of the off-shell param-
eters in the calculations is therefore a matter of convention.
For example, in the covariant calculation of Ref. [64], we
have set ARelativistic = −1 and all zRelativistic

i = 0. In the present
analysis, we employ the heavy-baryon 1/m expansion worked
out by Hemmert et al. [55], where the choice AHB = 0 without
specifying a particular value for the off-shell parameter zHB

0 of
the leading-order pion-nucleon-� coupling has been made. In
order to be consistent with the convention used in the covariant
calculation of Ref. [64], we have to set

zHB
0 + 1

2

(
1 + 4zHB

0

)
AHB

= zRelativistic
0 + 1

2

(
1 + 4zRelativistic

0

)
ARelativistic

=⇒ zHB
0 = − 1

2 . (2.9)

This choice will be used throughout this work.
The effective heavy-baryon Lagrangians which contribute

to the nuclear forces up to N3LO are given by

LSSE = L(2)
ππ + L(4)

ππ + L(1)
πN + L(2)

πN + L(3)
πN + L(1)

πN� + L(2)
πN�

+L(3)
πN� + L(1)

π�� + L(2)
π�� + δL(2)

πN , (2.10)

where the subscripts refer to the small-scale dimension. Notice
that the last term denotes the contribution to the pion-nucleon
effective Lagrangian induced by the nonpropagating spin-1/2
components of the Rarita-Schwinger field for the �. The
relevant terms in the pion Lagrangians have the form [69]

L(2)
ππ = 1

2
(∂μπ̊ · ∂μπ̊ − M2π̊ · π̊ ) + M2

8F 2
(8α − 1)(π̊ · π̊ )2

+ 1

2F 2
(1 − 4α)(π̊ · ∂μπ̊)(π̊ · ∂μπ̊)

− α

F 2
π̊ · π̊ ∂μπ̊ · ∂μπ̊ , (2.11)

L(4)
ππ = − l3

F 2
M4π̊ · π̊ + l4

F 2
M2(∂μπ̊ · ∂μπ̊ − M2π̊ · π̊),

(2.12)

where π̊ , M , and F refer to the pion fields in the chiral limit,
the pion mass to leading order in quark masses, and the pion
decay coupling in the chiral limit, while li are further LECs.
Here and in what follows, X̊ indicates that the quantity X is
taken in the chiral limit. Further, the parameter α reflects the
freedom in the choice of a particular parametrization for the
pion field. All physical quantities are, of course, independent of
this parameter. We do not give here explicitly L(1)

πN ,L(2)
πN ,L(3)

πN

as all relevant terms are listed in Ref. [50] where, in order to
be consistent with our notation, the LECs ci and di should be
replaced by c̊i and d̊i . The remaining Lagrangians in Eq. (2.10)
are given by [55]

L(1)
πN� = − h̊A

F
N̊ †

v T̊
i
μ∂μπ̊ i + H.c., (2.13)

L(2)
πN� = i

F
(b3 + b6)N̊ †

v T̊
i
μ∂μ∂ · v π̊ i

+ i
h̊A

Fm
N̊ †

v ∂
μT̊ i

μ∂ · v πi + H.c.,
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L(3)
πN� = 2

F
(2 h7 − h8 − 2 h9 − 2 h10)M2N̊ †

v T̊
i
μ∂μπ̊ i

− 1

F
(h12 + h13)N̊ †

v T̊
i
μ(∂ · v)2∂μπ̊ i + H.c.,

L(1)
π�� = −T̊ i†

μ

[
i ∂ · v − �̊ − g̊1

F
τ · (∂απ̊)Sα

]
T̊ j

ν gμνδij ,

L(2)
π�� = −4M2c�

1 T̊ i†
μ T̊ j

ν gμνδij

+ 1

2m
T̊ i†

μ [∂2 − (∂ · v)2]T̊ j
ν gμνδij ,

δL(2)
πN = h̊2

A

18F 2m
N̊ †

v [iτ · (∂μπ̊ × ∂ν π̊ ) − 2 ∂μπ̊ · ∂ν π̊ ]

× {
4
[
1 + 8 zHB

0 + 12
(
zHB

0

)2]
SμSν

+ [
5 − 8 zHB

0 − 4
(
zHB

0

)2]
vμvν

}
N̊v, (2.14)

where Nv and T i
μ denote the large components of the nucleon

and � field, respectively, v is the four-velocity, and m is the
nucleon mass in the chiral limit. For the sake of compactness,
we do not show the velocity index explicitly in the case of the
� fields T i

μ. The quantity hA denotes the πN� axial coupling;
bi , hi , and c�

i are further LECs; and the covariant spin operator
is defined via

Sμ = 1

2
iγ5σμνv

ν, σμν = i

2
[γμ, γν]. (2.15)

Last but not least, we emphasize that we adopt in the present
work the convention for the pion-nucleon LECs which main-
tains an explicit decoupling of the �. To be specific, the results
for a given amplitude or nuclear potential M have the form

M = M /� + M�, (2.16)

where M� denotes the contribution associated with the �
degrees of freedom while M /� is the purely nucleonic part.
As guaranteed by the decoupling theorem [70], all effects
of the � isobar at low energy can be accounted for in an
implicit way, i.e., through its contributions to the effective
pion-nucleon Lagrangian. Expanding the � contribution M�

around � → ∞, one generally finds terms with both positive
and negative powers of the �. While the latter ones can be
identified with the �-resonance saturation of the pion-nucleon
LECs (see Sec. IV for more details), terms with positive
powers of the �-nucleon mass splitting can, as a matter of
convention, be eliminated by an appropriate redefinition of
the pion-nucleon LECs. This is the convention we adopt in
our analysis. It guarantees that no positive powers of the
� appear in the finite expressions for all physical quantities
and the �(1232) contributions decouple (vanish) in the large-
� limit. Stated differently, this convention ensures that our
results actually correspond to a partial resummation of the
�-resonance contributions to the pion-nucleon LECs within
the �-less formulation.

FIG. 2. Feynman diagrams which contribute to the nucleon self-
energy up to order ε3. Only nonvanishing diagrams are shown. Solid,
dashed, and double lines represent nucleons, pions, and the �, respec-
tively. Solid dots (filled circles) denote leading-order (subleading and
higher order) vertices from the effective Lagrangian.

III. RENORMALIZATION OF THE EFFECTIVE
LAGRANGIAN TO LEADING LOOP ORDER

We now discuss in detail renormalization of the lowest-
order effective chiral Lagrangian at the one-loop level which is
achieved by expressing all quantities in terms of renormalized
parameters rather than their chiral limit values. We do not
consider here renormalization in the pionic sector as it is
extensively discussed in the literature and concentrate entirely
on the nucleon and � sectors. We begin with introducing the
renormalized fields and coupling constants via the relations

N̊v =
√

ZNNv, T̊ i
μ =

√
Z�T i

μ, π̊ i =
√

Zππi,

M = Mπ + δM, m = mN + δm, �̊ = � + δ�,

Zπ = 1 + δZπ, ZN = 1 + δZN, Z� = 1 + δZ�,

F = Fπ + δF, g̊A = gA + δgA,

h̊A = hA + δhA, g̊1 = g1 + δg1. (3.1)

and determine the shifts δX with X ∈
{M,F,m,�,ZN,Z�,gA,hA,g1} order by order in the
small-scale expansion. Notice that in this formulation, the
heavy baryon expansion corresponds to a 1/mN expansion,
where mN is now the physical nucleon mass and not the
nucleon mass in the chiral limit; see Ref. [71] for more
details. We further emphasize that T̊ i

μ does not correspond
to an interpolating field of an asymptotic state so that its
renormalization prescription is conventional. Even if Z� is
a complex number, the replacement T̊ i

μ = √
Z�T i

μ in the
Lagrangian does not lead to a violation of unitarity in the
kinematical region we are interested in simply because there
are no external � lines. Indeed, the complex renormalization
factor Z�, which shows up in the � propagator, is compensated
by vertices to which this � propagator is attached so the
amplitude does not depend on Z�. This argument does
not rely on whether the renormalization factor is a real or
complex number. The main motivation for us to make the
replacement T̊ i

μ = √
Z�T i

μ is to ensure that we can treat �
fields in the same manner as stable particles. This procedure
is a matter of convention and does not affect the final result
for the amplitudes. In the following, we discuss in detail
renormalization of the various quantities in Eq. (3.1).

A. Nucleon mass and field renormalization

To study nucleon-mass and field renormalization up to order
ε3, one needs to calculate the self-energy diagrams shown in
Fig. 2. The full nucleon propagator in the rest frame of the
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p

q

p

GA

FIG. 3. Left panel: generic one-particle irreducible contribution to the axial-vector nucleon form factor. Right panel: Nonvanishing Feynman
diagrams which contribute to GA(0) up to order ε3. Wavy lines represent external axial sources. For the remaining notation, see Fig. 2.

nucleon can be parametrized via

DN (p · v) = 1

p · v − �N (p · v) + iε
, (3.2)

where �N (p · v) denotes the nucleon self-energy. In the vicin-
ity of p · v = 0, the propagator of the renormalized physical
nucleon fields has a simpler form

DN (p · v) = 1

p · v + iε
+ O[(p · v)0]. (3.3)

Making the Taylor expansion

p · v − �N (p · v)

= −�N (0) + [1 − �′
N (0)]p · v + O[(p · v)2], (3.4)

we obtain renormalization conditions for the nucleon mass and
the Z-factor ZN :

�N (0) = 0 and �′
N (0) = 0. (3.5)

The contribution of the first diagram in Fig. 2 to the nucleon
self-energy is given by

�tree
N (p · v) = δm − 4c1M

2
π − δZNp · v. (3.6)

The contribution of the nucleonic one-loop diagram, see
second graph in Fig. 2, to the self-energy at the order we are
working is given by

�
loop,πN
N (p · v) = 3g2

A

4F 2
π

p · vI (d : 0) + 3g2
A

4F 2
π

[
M2

π − (p · v)2
]

× I (d : 0; (p,0)), (3.7)

while the �-loop contribution emerging from the last diagram
in Fig. 2 is given by

�
loop,π�
N (p · v) = −2(d − 2)h2

A

(d − 1)F 2
π

(� − p · v)I (d : 0)

+ 2(d − 2)h2
A

(d − 1)F 2
π

[
M2

π − �2 + 2�p · v

− (p · v)2
]
I (d : 0; (p,�)). (3.8)

Here, scalar master integrals in d dimensions are defined
according to

I (d : p1, . . . ,pn) = 1

i
μ4−d

∫
ddl

(2π )d
1

(l + p1)2 − M2
π + iε

· · · 1

(l + pn)2 − M2
π + iε

,

I (d : p1, . . . ,pn; (p,δ)) = μ4−d 1

i

∫
ddl

(2π )d
1

(l + p1)2 − M2
π + iε

· · · 1

(l + pn)2 − M2
π + iε

1

(l + p) · v − δ + iε
. (3.9)

Using the renormalization conditions in Eq. (3.5), we obtain the following expressions at order ε3 in four dimensions:

δm = 4c1M
2
π + 3g2

AM3
π

32πF 2
π

+ h2
A�

36π2F 2
π

(
2�2 − 3M2

π

) + 8h2
A�

3F 2
π

(
2�2 − 3M2

π

)
λπ + 4h2

A

3F 2
π

(
�2 − M2

π

)
J̄0(−�),

δZN = − 3g2
AM2

π

32π2F 2
π

+ h2
A

4π2F 2
π

(
2�2 − M2

π

) + 1

2F 2
π

[
16h2

A

(
2�2 − M2

π

) − 9g2
AM2

π

]
λπ + 4h2

A�

F 2
π

J̄0(−�), (3.10)

where the quantities λπ and J̄0 are defined in Appendix B.

B. Renormalization of the nucleon axial coupling

To renormalize the axial-vector coupling constant g̊A, we
consider the axial-vector form factor of the nucleon as shown
in Fig. 3. In the Breit frame (q0 = 0), the matrix element can

be parametrized via [72]

M(p′,p,q) = −τ j 
ε j
A · 
σ E

2mN

GA(q2) + · · · , (3.11)

where the ellipses refer to terms which are of no relevance for
renormalization of g̊A. In the above expression, E denotes the
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FIG. 4. Nonvanishing diagrams which contribute to� self-energy
up to order ε3. For the remaining notation, see Fig. 2.

energy of the incoming nucleon (which in the Breit frame is
also equal to the energy of the outgoing nucleon) while 
ε j

A is
the polarization vector of the j th component of an isotriplet
external axial field. The physical value of the nucleon axial

coupling gA is defined as

gA = GA(0). (3.12)

Up to order ε3, the contributions to the axial form factor GA(0)
emerge from the tree-level diagrams

Gtree
A (0) = gA + δgA + gAδZN + 4d16M

2
π , (3.13)

one-loop diagrams without � excitations

G
loop,πN
A (0) = − gA

4F 2
π

(
g2

A(d − 3) − 4
)
I (d : 0), (3.14)

and one-loop diagrams with intermediate � excitations (see
the second row of the right panel of Fig. 3)

G
loop,πN�
A (0) = − 2(d − 2)h2

A

9(d − 1)2F 2
π

[24gA + 5(d2 − 2d − 3)g1]I (d : 0) − 16(d − 2)gAh2
AM2

π

3(d − 1)2F 2
π�

I [d : 0; (0,0)]

+ 2(d − 2)h2
A

9(d − 1)2F 2
π�

[
24gA

(
M2

π − �2
) − 5(d2 − 2d − 3)g1�

2
]
I [d : 0; (0,�)]. (3.15)

Using the renormalization condition in Eq. (3.12), we obtain in four dimensions

δgA = −δZNgA − 4d16M
2
π − M2

π

7776π2F 2
π

(
243g3

A − 576gAh2
A + 1240h2

Ag1
) − h2

A�2

486π2F 2
π

(24gA − 155g1) − 4gAh2
AM3

π

27πF 2
π�

+
[

16h2
A�2

81F 2
π

(24gA + 25g1) − M2
π

162F 2
π

(
81g3

A + 36gA

(
32h2

A − 9
) + 400h2

Ag1
)]

λπ

+
[

4h2
A�

81F 2
π

(24gA + 25g1) − 32gAh2
AM2

π

27F 2
π�

]
J̄0(−�). (3.16)

C. � mass and field renormalization

To study the � mass and field renormalization, one needs
to calculate the corresponding nonvanishing self-energy dia-
grams shown in Fig. 4. In general, the self-energy of the �
resonance in the rest frame can be parametrized via

��(p · v)ijμν = P 3/2
μν ξ

ij
I=3/2��(p · v), (3.17)

where the spin- and isospin-3/2 projector operators are
defined by

P 3/2
μν = gμν − vμvν + 4

3SμSν and ξ
ij
I=3/2 = δij − 1

3τ iτ j ,

(3.18)

respectively. The contribution of the tree-level diagram, see the
first graph in Fig 4, to the � self-energy is given by

�tree
� (p · v) = −4c�

1 M2. (3.19)

The contributions of the two one-loop diagrams with the πN
and π� cuts in d space-time dimensions have the form

�
loop,πN
� (p · v) = h2

A

(d − 1)F 2
π

{
p · v I (d : 0)

+ [
M2

π − (p · v)2
]
I [d : 0; (p,0)]

}
,

�
loop,π�
� (p · v) = 5(d2 − 2d − 3)g2

1

12(d − 1)2F 2
π

{
(p · v − �)I (d : 0)

+ [
M2

π − (p · v − �)2
]
I [d : 0; (p,�)]

}
.

(3.20)

The full � propagator in the rest frame of the � resonance can
be written as

D�(p · v)ijμν = −D�(p · v)P 3/2
μν ξ

ij
I=3/2, with

D�(p · v) = i

p · v − �̊ − ��(p · v)
. (3.21)

In the vicinity of the pole, the full � propagator has a simpler
structure, namely

D�(p · v) � i

p · v − � + i��/2
. (3.22)

Here, � and �� denote the (pole-position) mass and width of
the � resonance, respectively. Expanding the full propagator
around the pole, one extracts the mass, width, and the complex
Z� factor:

p · v − �̊ − ��(p · v)

= � − i
��

2
− �̊ − ��

(
� − i

��

2

)

+
[

1 − �′
�

(
� − i

��

2

)](
p · v − � + i

��

2

)

+O
[(

p · v − � + i
��

2

)2
]
. (3.23)
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pN

q

pΔ

HA

FIG. 5. Left panel: generic one-particle irreducible contribution to the axial-vector nucleon-δ transition form factor. Right panel:
Nonvanishing Feynman diagrams which contribute to HA(�,�2,0) up to order ε3. Wavy lines represent external axial sources. For the remaining
notation, see Fig. 2.

Renormalization of the � mass and width is determined from
the condition

� − i
��

2
− �̊ − ��

(
� − i

��

2

)
= 0. (3.24)

From the real part of this condition, we deduce the �-mass
renormalization as

� − �̊ − Re ��

(
� − i

��

2

)
= 0, (3.25)

while the imaginary part of this condition yields the following
result for the width:

��

2
+ Im ��

(
� − i

��

2

)
= 0. (3.26)

The complex-valued Z� factor is determined by the relation

�′
�

(
� − i

��

2

)
= 0. (3.27)

At the one-loop level, we can replace the relations (3.25)–
(3.27) by

� − �̊ − Re ��(�) = 0,

��

2
+ Im ��(�) = 0, and �′

�(�) = 0, (3.28)

One immediately sees that the above relations coincide with the
Breit-Wigner conditions. The pole conditions in Eqs. (3.25)–
(3.27) and the Breit-Wigner conditions start to differ from each
other at the two-loop level, which is beyond the order we are

working at. From the conditions in Eq. (3.28), we finally obtain

δ� = 4c�
1 M2

π + 2h2
A�

3F 2
π

(
3M2

π − 2�2
)
λπ + 25g2

1M
3
π

864πF 2
π

+ h2
A�

(
2�2 − 3M2

π

)
72π2F 2

π

− h2
A

3F 2
π

(
M2

π − �2
)
ReJ̄0(�),

δZ� = − 1

18F 2
π

[
36h2

A

(
M2

π − 2�2
) + 25g2

1M
2
π

]
λπ

− 65g2
1M

2
π

864π2F 2
π

− h2
A�

F 2
π

J̄0(�). (3.29)

D. Renormalization of the π N� axial coupling

To renormalize the LEC h̊A, we consider the axial-vector
nucleon-� transition form factor, see Fig. 5, in the rest frame
of the �:

M(p�,pN,q)iμ

= P 3/2
μν ξ

ij
I=3/2εA(q)νjHA(p� · v,q2,p · v) + · · · , (3.30)

where the ellipses refer to other terms which are not relevant
for renormalization of the πN� axial coupling constant.
We analytically continue the form factor HA and choose the
renormalization point to be

hA = Re HA

[
� − i

��

2
,

(
� − i

��

2

)2

, 0

]
, (3.31)

which, in the one-loop approximation, becomes

hA = Re HA(�, �2, 0). (3.32)

Up to order ε3, the quantityHA(�,�2,0) receives contributions
from the tree-level diagram (first graph in the right panel of
Fig. 5)

H tree
A (�,�2,0) = hA + δhA − (b2 + b7)�+ hA

2
(δZN + δZ�) + 2[h8 + 2(h9 + h10)]M2

π , (3.33)

one-loop diagrams without � excitations (the remaining two diagrams in the upper raw of the right panel of Fig. 5)

H
loop,πN
A (�,�2,0) = hA

(
d − 1 − g2

A

)
(d − 1)F 2

π

I (d : 0) + g2
AhAM2

π

(d − 1)F 2
π�

I [d : 0; (0,0)] − g2
AhA

(
M2

π − �2
)

(d − 1)F 2
π�

I [d : 0; (�,0)], (3.34)
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and one-loop graphs with pions, nucleons, and � degrees of freedom (diagrams in the second raw of the right panel of Fig. 5)

H
loop,πN�
A (�,�2,0) = − (d − 3)hA

36(d − 1)3F 2
π

{
12(d − 1)h2

A + 5(d + 1)g1[3(d − 1)2gA + 4g1]
}
I (d : 0)

− 5(d2 − 2d − 3)hAg2
1M

2
π

9(d − 1)3F 2
π�

I [d : 0; (0,0)] − (d − 3)h3
A

(
M2

π − �2
)

6(d − 1)2F 2
π�

I [d : 0; (�,0)]

+ (d − 3)hA

(
M2

π − �2
)

18(d − 1)3F 2
π�

[
10(d + 1)g2

1 + 3(d − 1)h2
A

]
I [d : 0; (0,�)]. (3.35)

Substituting these expressions into the renormalization condition given in Eq. (3.32), we obtain the following order-ε3 expression
for δhA in four dimensions:

δhA = −hA

2
(δZN + Re δZ�) + �(b2 + b7) − 2[h8 + 2(h9 + h10)]M2

π + (
3h2

A + 5g2
1 − 27g2

A

) hA�2

972π2F 2
π

− hAM2
π

2592π2F 2
π

(
12h2

A − 108g2
A + 20g2

1 + 195gAg1
) + (

81g2
A − 25g2

1

) hAM3
π

1944πF 2
π�

+
[
hA

(
81g2

A + 9h2
A + 25g2

1

) 4�2

243F 2
π

− hA

{
100g2

1 + 225gAg1 + 36
[
h2

A + 9
(
g2

A − 1
)]} M2

π

162F 2
π

]
λπ

− (
9h2

A + 50g2
1

)hA

(
M2

π − �2
)

486F 2
π�

J̄0(−�) + (
h2

A + 18g2
A

)hA

(
M2

π − �2
)

54F 2
π�

Re J̄0(�). (3.36)

IV. DETERMINATION OF THE LECS FROM π N SCATTERING

Given that the LECs in the effective Lagrangian with and without explicit � degrees of freedom have a different meaning,
we cannot use the values of the various LECs from our earlier work [50] based on the �-less formulation and have to redo the
analysis of the pion-nucleon system utilizing the small-scale expansion. Specifically, we need to calculate the πN scattering
amplitude up to order ε3.

Before discussing renormalization of the πN amplitude in the explicit decoupling scheme as explained in Sec. II, we first
perform the following shifts in the LECs in order to get rid of redundant terms:

hA → hA − �(b2 + b3 + b6 + b7) + �2(h12 + h13) + 4M2
πh7,

c̊2 → c̊2 + 4(d − 2)

3(d − 1)
hA(b3 + b6) − 2(d − 2)

3(d − 1)
�(b3 + b6)2 − 4(d − 2)

3(d − 1)
�hA(h12 + h13),

c̊3 → c̊3 − 4(d − 2)

3(d − 1)
hA(b3 + b6) + 2(d − 2)

3(d − 1)
�(b3 + b6)2 + 4(d − 2)

3(d − 1)
�hA(h12 + h13),

c̊4 → c̊4 + 4

3(d − 1)
hA(b3 + b6) − 2

3(d − 1)
�(b3 + b6)2 − 4

3(d − 1)
�hA(h12 + h13), (4.1)

d̊1 + d̊2 → d̊1 + d̊2 + d − 2

6(d − 1)
(b3 + b6)2 − d − 2

3(d − 1)
hA(h12 + h13),

d̊3 → d̊3 − d − 2

6(d − 1)
(b3 + b6)2 + d − 2

3(d − 1)
hA(h12 + h13),

d̊14 − d̊15 → d̊14 − d̊15 − 2

3(d − 1)
(b3 + b6)2 + 4

3(d − 1)
hA(h12 + h13).

Notice that these replacements are performed in the amplitude
written in d dimensions. After this shift, the amplitude does
not depend on the LECs b3 + b6,b2 + b7,h12 + h13, and h7

anymore.
Let us now discuss renormalization of the pion-nucleon

amplitude. All divergencies which remain after expressing the
amplitude in terms of physical quantities as discussed in the

previous section are absorbed into redefinition of the LECs ci

and di entering the order-Q2 and Q3 effective pion-nucleon
Lagrangians. While the LECs ci are finite in the �-less
framework provided one uses dimensional regularization with
the MS scheme, this does not hold true anymore in the �-full
theory due to the appearance of ultraviolet divergencies ∝� at
ε3 and higher powers of � at orders beyond ε3. We parametrize
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the bare LECs c̊i and d̊i via

c̊i = ci + �

[
βc

i

F 2
π

λπ + 1

(4πFπ )2
c�
i

]
,

d̊i = β
d,N
i + β

d,�
i

F 2
π

λπ + di + 1

(4πFπ )2
d�

i , (4.2)

where the various β functions relevant for pion-nucleon
scattering are given by

βc
1 = 2 h2

A,

βc
2 = − 80

2187
h2

A(9 gA − 5 g1)2,

βc
3 = 16

2187
h2

A

[
729 + 5(9 gA − 5 g1)2

]
,

βc
4 = − 2

2187
h2

A

(
972 + 2349 g2

A + 1152 h2
A

− 2250 gA g1 + 125 g2
1

)
,

β
d,N
1 = −1

6
g4

A,

β
d,N
2 = − 1

12
− 5

12
g2

A,

β
d,N
3 = 1

2
+ 1

6
g4

A,

β
d,N
5 = 1

24
+ 5

24
g2

A,

β
d,N
14 = 1

3
g4

A,

β
d,N
15 = β

d,N
18 = 0,

β
d,�
1 + β

d,�
2 + β

d,�
3 = 10

27
h2

A,

β
d,�
3 = h2

A

2187

(
125 g2

1 + 288 h2
A − 243 g2

A − 450 gAg1
)
,

β
d,�
5 = − 5

27
h2

A,

β
d,�
18 = 0,

β
d,�
14 − β

d,�
15 = 2 h2

A

2187

(
288 h2

A − 243 g2
A

− 450 gA g1 + 125 g2
1

)
. (4.3)

This particular form of the β functions guarantees that the
amplitude remains finite in the d → 4 limit. We use here the
notation in which the divergencies associated with loop dia-
grams without � excitations (with � excitations) are cancelled
by terms ∝β

d,N
i (∝β

c,�
i and ∝β

d,�
i ). Furthermore, in order to

maintain the explicit decoupling scheme, we have introduced
additional finite dimensionless shifts c�

i and d�
i . The explicit

decoupling scheme is defined by the requirement that all
observables calculated in the SSE include only nucleonic
contributions after taking the � → ∞ limit. In this limit, all
contributions emerging from the intermediate � excitations
have to vanish (in the explicit decoupling scheme) so that the �
isobar explicitly decouples from the theory. In order to satisfy
the explicit decoupling, the values of the LECs c�

i and d�
i have

to be chosen as

c�
1 = 2h2

A log

(
2�

μ

)
,

c�
2 = − 2 h2

A

6561

(
6399 g2

A − 8910 gA g1 + 3575 g2
1

) − 80 h2
A

2187
(9 gA − 5 g1)2 log

(
2�

μ

)
,

c�
3 = 2 h2

A

6561

(
6399 g2

A − 8910 gA g1 + 3575 g2
1

) + 16 h2
A

2187
[729 + 5 (9 gA − 5 g1)2] log

(
2�

μ

)
,

c�
4 = h2

A

6561

(
4860 − 35559 g2

A + 1728 h2
A + 28350 gA g1 − 4775 g2

1

)
− 2 h2

A

2187

(
972 + 2349 g2

A + 1152 h2
A − 2250 gA g1 + 125 g2

1

)
log

(
2�

μ

)
, (4.4)

and

d�
1 + d�

2 = − h2
A

6561

(−2106 + 5103 g2
A + 216 h2

A − 3870 gA g1 + 925 g2
1

)
+ h2

A

2187

(
810 + 243 g2

A − 288 h2
A + 450 gA g1 − 125 g2

1

)
log

(
2�

μ

)
,

d�
3 = h2

A

6561

(
5103 g2

A + 216 h2
A − 3870 gA g1 + 925 g2

1

)
+ h2

A

2187

(−243 g2
A + 288 h2

A − 450 gA g1 + 125 g2
1

)
log

(
2�

μ

)
,

d�
5 = −13 h2

A

81
− 5 h2

A

27
log

(
2�

μ

)
,
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d�
14 − d�

15 = h2
A

6561

(
5589 g2

A + 432 h2
A − 9090 gA g1 + 3425 g2

1

)
+ 2 h2

A

2187

(−243 g2
A + 288 h2

A − 450 gA g1 + 125 g2
1

)
log

(
2�

μ

)
, (4.5)

respectively. Clearly, the above expressions are unique modulo
terms that vanish in the � → ∞ limit. On top of the explicit
decoupling scheme, we put a constraint on negative powers
of �. Specifically, we require that the 1/� expansion of
the pion-nucleon amplitude is consistent with the resonance
saturation. This means that the 1/� expansion of the �-
full pion-nucleon amplitude should be equal to the �-less
amplitude with the LECs ci and d̄i being replaced by Eqs. (4.13)
and (4.14), respectively. In order to achieve this also for
relativistic corrections, we have to perform additional shifts
of ci and di-LECs, namely

c2 → c2 + 8h2
A

9mN

,

d1 + d2 → d1 + d2 + h2
A

18mN�
,

d3 → d3 − 2h2
A

9mN�
, (4.6)

d5 → d5 + h2
A

12mN�
,

d14 − d15 → d14 − d15 − 2h2
A

9mN�
.

We now turn to pion-nucleon scattering. In the center-of-
mass (c.m.) system, the amplitude for the reaction πa(q1) +
N (p1) → πb(q2) + N (p2), with p1,2 and q1,2 being the corre-
sponding four-momenta and a,b referring to the pion isospin
quantum numbers, takes the form

T ba
πN = E + m

2m
(δba[g+(ω,t) + i 
σ · 
q2 × 
q1 h+(ω,t)]

+ iεbacτ c[g−(ω,t) + i 
σ · 
q2 × 
q1 h−(ω,t)]). (4.7)

Here, ω = q0
1 = q0

2 is the pion c.m. system energy, E1 = E2 ≡
E = (
q2 + m2)1/2 is the nucleon energy, and 
q2

1 = 
q2
2 ≡ 
q2 =

[(s − M2
π − m2)2 − 4m2M2

π ]/(4s). Further, t = (q1 − q2)2 is
the invariant momentum transfer squared while s denotes
the total c.m. system energy squared. The quantities g±(ω,t)
[h±(ω,t)] refer to the isoscalar and isovector non-spin-flip
(spin-flip) amplitudes and can be calculated in chiral per-
turbation theory. The contributions to the amplitudes which
do not involve intermediate � excitations up to order Q4

(i.e., subleading one-loop order) are given in Ref. [50]. In
Appendix B, we give explicitly the �-isobar contributions up
to order ε3. In a complete analogy to the �-less calculation
reported in Ref. [50], the phase shifts are obtained from the
partial-wave amplitudes in the isospin basis f I

l±(s) by means
of the following unitarization prescription

δI
l±(s) = arctan

[|
q|Re f I
l±(s)

]
. (4.8)

Determination of the LECs is carried out using exactly the
same procedure as in our �-less calculations [50]. While the
πN scattering amplitude is worked out here only to order ε3, we
decided to include also the order-Q4 terms obtained within the
�-less theory when fitting the phase shifts in order to facilitate
a direct comparison with the results of Ref. [50]. This way
we make sure that the differences between the values of the
LECs obtained in the two analyses are solely due to the explicit
treatment of the � degrees of freedom. The impact of the Q4

terms on the 3NF will be discussed in Sec. VI.
For the pion-nucleon contributions to the scattering am-

plitude, we proceed in exactly the same way as in Ref. [50].
We remind the reader that certain LECs ēi from L(4)

πN enter
the amplitude only in linear combinations with the LECs
ci and therefore cannot be determined from πN scattering
data. Following Refs. [73] and [50], these ei contributions are
absorbed into redefinition of the ci’s by setting

e22 − 4e38 − l3c1

F 2
π

= 0,

e20 + e35 = 0,

2e19 − e22 − e36 + 2
l3c1

F 2
π

= 0,

2e21 − e37 = 0, (4.9)

without loss of generality. The LEC d18 from L(4)
πN can be fixed

by means of the Goldberber-Treiman discrepancy

gπNN = gA mN

Fπ

(
1 − 2M2

π d18

gA

)
, (4.10)

where for gπNN we adopt the value from Ref. [74] of
g2

πNN/(4π ) � 13.54, which also agrees with the determination
in Ref. [75] based on the Goldberger-Miyazawa-Oehme sum
rule and utilizing the most accurate available data on the
pion-nucleon scattering lengths. We set d18 = 0 and use the
effective, larger value for gA of

gA = FπgπNN

mN

� 1.285 (4.11)

in all expressions. This is a legitimate procedure at the order
we are working. This leaves us with 13 independent (linear
combinations of the) low-energy constants in the nucleonic
contributions to the scattering amplitude which have to be
fixed from a fit to the data, namely c1,2,3,4, d̄1 + d̄2, d̄3, d̄5,
d̄14 − d̄15, and ē14,15,16,17,18; see Ref. [50] for more details and
explicit expressions. Here bars of LECs indicate that we used
MS renormalization scheme where μ = Mπ . We also use the
same values for the pion mass and decay constant as in that
reference, namely Mπ = 138.03 MeV and Fπ = 92.4 MeV.

The contributions to the amplitude associated with the �
excitations and given in Appendix B involve further LECs,

014003-10



THREE-NUCLEON FORCE IN CHIRAL EFFECTIVE FIELD … PHYSICAL REVIEW C 98, 014003 (2018)

0 50 100 150 200
0

5

10
δ 

[d
eg

re
e]

0 50 100 150 200
-10

-5

0

0 50 100 150 200
-2

-1

0

0 50 100 150 200

-2

-1

0

δ 
[d

eg
re

e]

0 50 100 150 200
-2

-1

0

0 50 100 150 200
0

15

30

0 50 100 150 200
p

Lab
 [MeV/c]

0

0.1

0.2

δ 
[d

eg
re

e]

0 50 100 150 200
0

0.04

0.08

0 50 100 150 200
p

Lab
 [MeV/c]

0

0.1

0.2

0 50 100 150 200
p

Lab
 [MeV/c]

-0.2

-0.1

0

S
11

S
31

P
11

P
33

P
13

P
31

D
13

D
33

D
15

D
35

FIG. 6. Results of the fit for πN s-, p-, and d-wave phase shifts using the GW partial wave analysis of Ref. [79]. The solid curves correspond
to the ε3 + Q4 results, the dashed curves to the order-ε3 results, and the dashed-dotted curves to the order-ε2 calculation.

namelyhA andg1. For theπN� axial vector constant, we adopt
the value of hA = 1.34 which is fixed from the width of the
� resonance and also agrees well with the large-Nc prediction
[76,77]. Notice that similarly to the convention adopted for gA,
the πN� Goldberger-Treiman discrepancy is implicitly taken
into account by using the above value of the LEC hA.1 Our fits
to πN data turn out to be fairly insensitive to a particular value
of g1. For this reason, we decided to fix it to its large-Nc value
g1 = 9/5 gA ≈ 2.31 [76–78]. We, therefore, have to finally fix
exactly the same combinations of the low-energy constants as
in the �-less theory.

As in Ref. [50], we performed a combined fit for all s,
p, and d waves. We remind the reader that it is crucial to
include d waves in the fit as they impose severe constraints
on some of the ei constants, especially on ē14 and ē17, which
also enter the N4LO expressions for the three-body force. The
results of the fits using the partial wave analysis (PWA) by
the George-Washington University group (GW) [79] and the
Karlsruhe-Helsinki group (KH) [80] are presented in Figs. 6
and 7, respectively. In these figures, we show the full, i.e.,
order-ε3 + Q4 results (solid curves) as well as the phase
shifts calculated up to order ε3 without Q4 terms (dashed

1The results for the 3NF are expected to be much less sensitive to
the precise value of hA than to the value of gA. This is because the
changes in hA can, to some extent, be compensated by the changes in
the LECs from the subleading and higher-order effective Lagrangian.

curves) and ε2 (dash-dotted curves) using the same parameters
(from the order-ε3 + Q4 fit) in all curves. We fit the data
points from threshold up to pLab = 150 MeV/c, and obtain
a description of the phase shifts similar to the �-less case.
Naturally, the description of the P33 partial wave (� s-channel)
is significantly improved.

Notice that more sophisticated studies of pion-nucleon
scattering employing a covariant formulation of baryon chi-
ral effective field theory with and without explicit �(1232)
degrees of freedom have been carried out recently; see
Refs. [78,81–84]. Also, more reliable ways to extract the
low-energy constants from the πN reaction and to estimate
their uncertainties have been explored as compared to the ones
employed in our analysis. Those include, in particular, analytic
extrapolations of the scattering amplitude into the subthreshold
region using the solutions to the Roy-Steiner equation and a
direct determination of the LECs from the available πN scat-
tering data in the physical region instead of using partial-wave
analyses; see Refs. [78,82,83,85–87]. Future studies of nuclear
forces and few-nucleon systems should, obviously, employ the
most reliable available values of the πN LECs, such as the ones
from Refs. [78,84,85]. In this paper, however, we focus mainly
on the � contributions to the 3NF. To facilitate a comparison
between the �-full and �-less calculation of Refs. [50,51]
and to allow for an unambiguous interpretation of our results
in terms of resonance saturation, we follow here the same
procedure for the determination of various LECs as adopted in
Ref. [50].
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FIG. 7. Results of the fit for πN s-, p-, and d-wave phase shifts using the KH partial wave analysis of Ref. [80]. The solid curves correspond
to the full ε3 + Q4 results, the dashed curves to the order-ε3 results, and the dashed-dotted curves to the order-ε2 calculation.

We finally turn to the discussion of the extracted parameters.
The obtained values of the low-energy constants are collected
in Table I. We also looked at the statistical errors of the fitted
parameters in order to see qualitatively which low-energy
constants (or their linear combinations) are well constrained by
the data and which of them are poorly determined. Similarly to
the strategy utilized in Ref. [88], we assigned the same relative
error to each data point from the partial-wave analyses equal
to 5%. This ansatz is somewhat arbitrary but seems reasonable
for an estimate of the relative uncertainties of different
low-energy constants. Notice further that the statistical
errors are calculated in the linearized approximation; i.e.,
the covariance matrix is taken to be the inverse of the
Hessian matrix of the χ2 function at its minimum. Such an
approximation is sufficient for the qualitative analysis that we
are going to perform. The resulting statistical uncertainties
for all low-energy constants are listed in Table I and appear
to be almost the same for both the KH and GW analyses.

Moreover, they change very little when the fit is performed in
the �-less case as in Ref. [50]. One can see that the low-energy
constants c2, ē15, and ē16 have the largest errors (0.8–5.1) in the
corresponding natural units (GeV−1, GeV−2, and GeV−3 for
the ci , d̄i , and ēi , respectively), indicating that these parameters
are not well determined in the fit. On the other hand, ē17,
ē14, which are the only LECs ēi contributing to the 3NF at
order Q5, and the LEC c4 are strongly constrained by the
data.

Another important quantity is a correlation between pairs
of parameters. The largest in magnitude values for the cor-
relation coefficients are obtained for the pairs c1 − c2 (0.99),
c1 − ē16 (−0.98), c2 − ē16 (−0.99), and [(d̄1 + d̄2) − (d̄14 −
d̄15)] (−0.97). In order to get more detailed information on
the correlation among various parameters, we have com-
puted eigenvalues of the covariance matrix. The square roots
of their numerical values in natural units are 5.41,0.59,
0.45,0.35,0.29,0.12,0.05,0.03,0.03,0.02,0.02,0.01,0.01 for the

TABLE I. Low-energy constants obtained from a fit to the empirical s-, p-, and d-wave pion-nucleon phase shifts using partial-wave analysis
of Refs. [79,80]. Values of the LECs are given in GeV−1, GeV−2, and GeV−3 for the ci , d̄i , and ēi , respectively.

c1 c2 c3 c4 d̄1 + d̄2 d̄3 d̄5 d̄14 − d̄15 ē14 ē15 ē16 ē17 ē18

Fit to the GW PWA [79] −1.32 0.39 −2.68 1.86 1.46 −1.01 −0.10 −2.16 0.06 −2.47 −0.05 −0.56 0.54
Statistical error 0.45 1.34 0.16 0.07 0.17 0.31 0.19 0.33 0.03 0.07 0.80 0.38 4.66

Fit to the KH PWA [80] −0.85 0.45 −1.91 1.49 2.07 −2.45 0.66 −3.86 −0.12 −7.05 3.39 −0.38 2.85
Statistical error 0.50 1.47 0.18 0.10 0.19 0.33 0.20 0.36 0.03 0.08 0.90 0.48 5.12
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TABLE II. Low-energy constants obtained from a fit to the empirical s-, p-, and d-wave pion-nucleon phase shifts up to pLab = 200 MeV/c
using partial-wave analysis of Refs. [79,80]. Values of the LECs are given in GeV−1, GeV−2, and GeV−3 for the ci , d̄i , and ēi , respectively.

c1 c2 c3 c4 d̄1 + d̄2 d̄3 d̄5 d̄14 − d̄15 ē14 ē15 ē16 ē17 ē18

Fit to the GW PWA [79] −1.31 0.11 −2.54 1.85 1.43 −0.90 −0.16 −2.09 0.07 −3.44 1.65 −0.46 0.47
Statistical error 0.19 0.48 0.08 0.04 0.14 0.19 0.11 0.28 0.02 0.04 0.33 0.17 1.48

Fit to the KH PWA [80] −1.35 −0.89 −2.19 1.63 2.08 −2.13 0.45 −3.69 −0.05 −6.59 7.22 −0.35 1.88
Statistical error 0.21 0.51 0.08 0.05 0.15 0.20 0.11 0.29 0.02 0.04 0.37 0.22 1.57

KH analysis and 4.92,0.51,0.37,0.32,0.27,0.11,0.04,0.03,0.02,
0.02,0.01,0.01,0.01 for the GW analysis. One can see that the
first eigenvalue is at least two orders of magnitude larger than
any of the other eigenvalues. This indicates that fixing certain
linear combination of parameters results in very slow changes
in the χ2 even if the individual values of the LECs entering this
linear combination change significantly. This combination is
the corresponding eigenvector and is approximately equal to
−0.1c1 − 0.3c2 − 0.1ē15 + 0.9ē16 (the other constants enter
with much smaller coefficients). The coefficients are given in
natural units. We indeed observe that these four parameters
are strongly correlated and one can obtain fits comparable
with the best one with those parameters being significantly
shifted. The appearance of such a strong correlation among
the parameters reflects the fact that one cannot fully resolve
the energy dependence of the amplitude with a good accuracy
in the low-energy regime. This interpretation is confirmed by
performing a fit to higher energy, namely pLab = 200 MeV/c;
see Table II. In this case, both the statistical errors and the
correlations (including the ones among c1, c2, ē15, and ē16)
do become significantly smaller. Unfortunately, the purely
perturbative approach cannot be expected to be applicable at
such energies as the phase shifts become quite large.

Finally, it is interesting to compare the values of the LECs
with the ones obtained in the �-less approach. As already
pointed out before, one expects to find more natural values
of the LECs in the �-full theory. This is indeed the case, as
one can see from Table III, where such a comparison is carried
out for the KH fits. The situation for the GW fits is similar; see
Table I of Ref. [50]. Comparing the second and the third rows
of this table, one observes a sizable reduction in magnitude
for most of the LECs when the � is included as an explicit
degree of freedom. This raises the question of whether these
differences can be understood analytically. In the following,
we address this question by isolating the contributions of the
� to the various LECs. To this aim, we make a 1/� expansion
of the �-resonance contributions to the πN amplitude and
match the expanded expressions to the amplitude obtained in
the �-less theory up to order Q4. We decompose the various

renormalized LECs into �-less ( /�) and � contributions (�)
via

ci = ci( /�) + ci(�),
di = di( /�) + di(�), (4.12)
ei = ei( /�) + ei(�).

Expanding the ε1 result up to order 1/�, we recover the well-
known results for the ci’s [89]

c1(�) = 0, c2(�) = 4 h2
A

9 �
,

c3(�) = −4 h2
A

9 �
, c4(�) = 2 h2

A

9 �
. (4.13)

From the 1/�2 terms of the order-ε1 πN amplitude, we obtain
the � contributions to the LECs d̄i given by

d1(�) + d2(�) = h2
A

9 �2
,

d3(�) = − h2
A

9 �2
, (4.14)

d14(�) − d15(�) = − 2 h2
A

9 �2
.

In principle, one could also expect 1/� contributions from
the order-ε2 πN amplitude. However, all such terms turn out
to contribute to renormalization of hA and do not lead to
resonance saturation of di . One observes from Table I that the
� contributions explain at least a half of the size of the LECs
d1 + d2,d3, and d14 − d15, which appear to be unnaturally
large in the �-less approach; see also Ref. [78] for similar
conclusions.

To explore �-resonance saturation of the LECs ei fromL(4)
πN

which enter the order-Q4 pion-nucleon amplitude, we need to
analyze the following terms:

(1) 1/�3 contributions from ε1 amplitude,
(2) 1/�2 contributions from ε2 amplitude (these terms

vanish after renormalization of hA), and
(3) 1/� contributions from ε3 amplitude.

TABLE III. Low-energy constants obtained from a fit to the empirical s-, p-, and d-wave pion-nucleon phase shifts using the partial wave
analysis of Ref. [80] and the corresponding �-resonance contributions given in Eqs. (4.13)–(4.15). Values of the LECs are given in GeV−1,
GeV−2, and GeV−3 for the ci , d̄i , and ēi , respectively.

c1 c2 c3 c4 d̄1 + d̄2 d̄3 d̄5 d̄14 − d̄15 ē14 ē15 ē16 ē17 ē18

Q4, KH PWA [80] −0.75 3.49 −4.77 3.34 6.21 −6.83 0.78 −12.02 1.52 −10.41 6.08 −0.37 3.26
ε3 + Q4, KH PWA [80] −0.85 0.45 −1.91 1.49 2.07 −2.45 0.66 −3.86 −0.12 −7.05 3.39 −0.38 2.85
� contribution 0 2.81 −2.81 1.40 2.39 −2.39 0 −4.77 1.87 −4.15 4.15 −0.17 1.32
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The complete contribution of the � to these LECs is given by a sum of these terms and has the form

ē14(�) = h2
A

864 F 2
π π2 �

[
7 + 10 log

(
2 �

Mπ

)]
,

ē15(�) = − h2
A

18 �3
− h2

A

839808 F 2
π π2 �

(
3969 g2

A − 4050 gA g1 + 1225 g2
1

)
,

ē16(�) = h2
A

18 �3
+ h2

A

839808 F 2
ππ2 �

(
3969 g2

A − 4050 gA g1 + 1225 g2
1

)
,

ē17(�) = − h2
A

1728 F 2
π π2 �

[
1 + 2 log

(
2 �

Mπ

)]
,

ē18(�) = h2
A

36 �3
+ h2

A

839808 F 2
π π2 �

(
2025 g2

A + 3456 h2
A − 450 gA g1 + 425 g2

1

)

− h2
A g2

A

108 F 2
π π2 �

log

(
2 �

Mπ

)
,

ē19(�) − 1

2
ē36(�) − 2ē38(�) = − h2

A

93312 F 2
π π2 �

(
351 + 1296 g2

A + 400 g2
1

)

+ h2
A

5184 F 2
π π2 �

(−33 + 81 g2
A − 50 gA g1 + 25 g2

1

)
log

(
2 �

Mπ

)
,

ē20(�) + ē35(�) = h2
A

5832 F 2
π π2 �

(
81 g2

A + 25 g2
1

) − h2
A

5184 F 2
π π2 �

(
81 g2

A − 50 gA g1 + 25 g2
1

)
log

(
2 �

Mπ

)
,

ē21(�) − 1

2
ē37(�) = − h2

A

62208 F 2
π π2 �

(
72 − 999 g2

A + 384 h2
A + 750 gA g1 − 175 g2

1

)

+ h2
A

10368 F 2
π π2 �

(−24 + 135 g2
A + 50 gA g1 − 25 g2

1

)
log

(
2 �

Mπ

)
,

ē22(�) − 4 ē38(�) = − h2
A

72 F 2
π π2 �

[
1 + log

(
2 �

Mπ

)]
. (4.15)

The appearance of logarithms of the physical pion mass in
the above expressions is due to our choice of the renormal-
ization scale μ = Mπ in the definitions of ci , d̄i , and ēi . The
LECs ē15(�),ē16(�), and ē18(�) receive 1/�3 contributions
from the order-ε1 πN amplitude. Numerically, these terms
dominate over the loop contributions (as one would expect
from naive dimensional analysis) and explain a half of the size
of the LECs ē15,ē16, and ē18, which appear to be unnaturally
large in the �-less theory; see Table III. It is comforting to
see that the � contributions to the LECs ci , d̄i , and ēi given
in the above expressions, whose numerical values are listed in
Table III, are in a very good agreement with the differences
between the �-less and �-full fits. Clearly, one should not
expect this agreement to be perfect since the � contributions
to the amplitude involve terms beyond the order-Q4 �-less
result. Our findings, however, indicate that these resummed
contributions are likely to be small and the most important
terms are well represented by the �-resonance contributions
to the LECs ci , d̄i , and ēi .

Last but not least, we emphasize that the (linear combina-
tions of the) LECs ē19,20,21,22,35,36,37,38 and c1 absorbed into
redefinition of ci’s [see Eq. (4.9)] do receive contributions due
to the � resonance [see Eq. (4.15)]. Assuming that these LECs

are saturated by the �, we may estimate the shifts in the ci

induced by absorbing these order-Q4 contributions via

c1 → c1 + 2 M2
π

(
ē22 − 4 ē38 + l3 c1

F 2
π

)
,

c2 → c2 − 8 M2
π (ē20 + ē35),

c3 → c3 − 4 M2
π (2 ē19 − ē22 − ē36),

c4 → c4 − 4 M2
π (2 ē21 − ē37). (4.16)

Since the �-resonance contributions to the induced shifts of
ci’s start with the loop corrections and do not have any 1/�3

contribution from the order-ε1 terms, the induced shifts appear
to be rather small:

2 M2
π

[
ē22(�) − 4 ē38(�) + l̄3 c1(�)

F 2
π

]
= −0.10 GeV−1,

−8 M2
π [ē20(�) + ē35(�)] = −0.14 GeV−1,

−4 M2
π [2 ē19(�) − ē22(�) − ē36(�)] = 0.10 GeV−1,

−4 M2
π [2 ē21(�) − ē37(�)] = −0.26 GeV−1.

(4.17)
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V. �(1232) CONTRIBUTIONS TO THE TWO-PION
EXCHANGE 3NF

After these preparations, we are now in the position to discuss
the contributions to the two-pion exchange 3NF emerging from
the intermediate � excitations up to the leading one-loop order
(i.e., N3LO).

In the isospin and static limits, the general structure of the
two-pion exchange 3NF in momentum space has the following
form (modulo terms of a shorter range; see Ref. [50] for more
details):

V2π = 
σ1 · 
q1 
σ3 · 
q3[
q2

1 + M2
π

] [
q2

3 + M2
π

] [τ 1 · τ 3 A(q2)

+ τ 1τ 3 · τ 2 
q1 × 
q3 · 
σ2 B(q2)], (5.1)

where 
σi (τ i) denote the Pauli spin (isospin) matrices for the
nucleon i while 
qi is the momentum transfer, 
qi = 
p′

i − 
pi ,
with 
p′

i and 
pi being the final and initial momenta of the
nucleon i. Here and in what follows, we use the notation
qi ≡ |
qi |. Unless stated otherwise, the expressions for the 3NF
are given for a particular choice of the nucleon labels. The
complete result can then be obtained by taking into account all
possible permutations of the nucleons,

V full
3N = V3N + 5 permutations. (5.2)

The quantitiesA(q2) andB(q2) in Eq. (5.1) are scalar functions
of the momentum transfer q2 of the second nucleon whose ex-
plicit form is derived within the chiral expansion. In the �-less
framework, this expansion starts at N2LO which corresponds to
the order Q3. The explicit expressions for A(q2) and B(q2) up
to N4LO, i.e., up to order Q5, can be found in Ref. [50]. In the
�-full framework, the leading contributions are shifted from
N2LO to NLO, i.e., to order ε2. These leading � contributions
have the form

A(2)
� (q2) = − g2

Ah2
A

18 �F 4
π

(
2M2

π + q2
2

)
,

B(2)
� (q2) = g2

Ah2
A

36 �F 4
π

, (5.3)

and are known to provide the dominant long-range mechanism
of the 3NF [52]. There are no contributions of the � to A(q2)
and B(q2) at N2LO [59], i.e., at order ε3, except for the shift of
the LEC hA as discussed in Sec. IV; see Eq. (4.1). At N3LO (ε4)
one has to take into account the contributions emerging from
the diagrams shown in Fig. 8. These graphs are analogous to
the �-less ones shown in Fig. 2 of Ref. [40] but involve at least
one intermediate � excitation. Notice that in contrast to that
work, we do not show in Fig. 8 certain diagrams which yield
vanishing results for the sake of compactness. This concerns,
for example, one-loop graphs leading to integrals involving an
odd power of the loop momentum to be integrated over.

The last three diagrams in Fig. 8 contribute to renormal-
ization of the pion field and the lowest-order pion-nucleon
and pion-nucleon-� vertices and also give rise to the cor-
responding Goldberger-Treiman discrepancy relations. These
contributions are automatically taken into account by express-
ing the 3NF in terms of physical quantities and using the
effective values of the LECs gA and hA which account for

the Goldberger-Treiman discrepancy; see the discussion in the
previous section. We are therefore left with one-loop diagrams
constructed out of the lowest-order and tree-order graphs which
involve a single insertion of the 1/mN vertices which give rise
to the leading relativistic corrections. We remind the reader that
the power counting scheme used to derive the nuclear forces
and currents in Refs. [32,35,37,40,41,45,46,50,51,90–93]
makes the assignment Q/mN ∼ Q2/�2

χ for the nucleon mass;
see Ref. [94] for more details. This implies that 1/mN correc-
tions to the nuclear forces and currents are shifted to higher
orders compared to the corresponding static contributions.2

In particular, the leading relativistic corrections appear at the
same order with the leading one-loop diagrams.

It is important to keep in mind that, in order to derive
the genuine 3NF contributions, one needs to separate the
irreducible parts in the corresponding amplitudes in order to
avoid double counting when iterating the potentials in the
scattering equation. While this can be achieved in different
ways (see Ref. [95] for more details), we employ here the
method of unitary transformation which was first applied in
the context of chiral EFT in Ref. [96]. A comprehensive
discussion of this approach can be found in Ref. [97]. The
same method was used in our earlier work on the derivation
of the three- [40,41,50,51] and four-nucleon forces [45,46]
and electroweak nuclear current operators [91–93]. We remind
the reader that in this approach one first applies the canonical
formalism to the effective chiral Lagrangian expressed in terms
of renormalized fields to derive the Hamilton density in the
pion-nucleon sector. In the second step, one decouples the
purely nucleonic subspace of the Fock space from the rest via
a suitably chosen unitary transformation. The determination
of the unitary operator and the resulting nuclear potentials is
carried out perturbatively within the EFT expansion. Clearly,
there is always certain ambiguity in the choice of the unitary
operator. However, as was found in Refs. [45,46], most of
the choices of the unitary operator lead to nuclear potentials
which cannot be renormalized, i.e., the corresponding matrix
elements involve ultraviolet-divergent integrals even after ex-
pressing all LECs in terms of their physical values. While
this is, of course, not a fundamental problem since nuclear
potentials do not correspond to observable quantities, it is
desirable to have a well-defined and finite nuclear Hamiltonian.
Enforcing renormalizability at the level of the Hamiltonian
strongly restricts the unitary ambiguity mentioned above. In
particular, the renormalizability requirement was found to lead
to an unambiguous result for the static parts of the three-
[40,41,50,51] and four-nucleon potentials [45,46], while the
leading relativistic corrections still depend on two arbitrary
constants, which parametrize the unitary ambiguity at this
order in the chiral expansion [41]. Explicit expressions for
the nuclear Hamiltonian in the operator form after fixing the
unitary ambiguity up to N4LO in the �-less approach can be
found in Refs. [41,46,50].

To employ the method of unitary transformation within the
small-scale expansion one can follow the lines of Ref. [46]. The

2Notice that the same power counting is employed to determine the
LECs from pion-nucleon scattering in Ref. [50] and in this work.
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FIG. 8. Two-pion exchange 3N diagrams involving intermediate � excitations at N3LO. Solid dots and filled rectangles denote vertices
from L(1)

πN + L(1)
πN� + L(1)

π�� and L(3)
πN + L(3)

πN�, respectively. Open rectangles refer to 1/m vertices from L(2)
πN + L(2)

πN�. Diagrams which result
from the interchange of the nucleon lines and/or application of the time-reversal operation are not shown. Also not shown are diagrams which
lead to vanishing contributions to the 3NF. For the remaining notation, see Fig. 2.

crucial difference is that one now needs to decouple not only
pions but also the � degrees of freedom. As discussed in that
work, it is convenient to start with the minimal parametrization
of the unitary operator using the ansatz proposed by Okubo
[98]; see Eq. (2.12) of Ref. [46]. Using this parametrization, the
unitary operator can be calculated via a perturbative solution
of the decoupling equation (2.13) of Ref. [46] within the small-
scale expansion. The resulting rather lengthy expressions for
the � contributions to the nuclear force in the operator form
are not listed in this work but can be made available as
a MATHEMATICA notebook upon request from the authors.
Notice further that the resulting nuclear Hamiltonian is defined
unambiguously within this ansatz but is not renormalizable as

explained before. Following the lines of Ref. [46], we exploit
the unitary ambiguity to ensure renormalizability of the nuclear
potentials. This is achieved by applying all possible additional
unitary transformations acting on the nucleonic subspace of
the Fock space which can be constructed at a given order in
the SSE; see Ref. [46] for more details. The corresponding
transformation angles are to be chosen in such a way that the
resulting Hamiltonian is finite. In the �-less approach, we had
to introduce six such additional unitary transformations (plus
two more transformations involving 1/mN corrections) whose
generators are given in Ref. [46] (Ref. [92]). The inclusion
of the � excitations in the intermediate states allows for
much more flexibility in the construction of the additional
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unitary transformations. In particular, we were able to write
50 anti-Hermitian generators S�

i , which are listed in Eq. (A4).
The corresponding unitary transformations generate additional
contributions to the nuclear Hamiltonian which depend on
50 real parameters α�

i . In order to derive nuclear potentials,
one has to evaluate the corresponding matrix elements of
the nuclear Hamilton operator written in second-quantized
form. Calculating the 3NF contributions, expressing them
in terms of physical parameter, and requiring that there are
no ultraviolet divergencies lead to constraints on α�

i , which

are given in Eq. (A5). In particular, we find that 23 specific
linear combinations of the α�

i ’s have to vanish. While these
constraints obviously do not allow for a unique determination
of these parameters, we find that they lead to an unambiguous
result for the 3NF, which does not depend on any of the
undetermined linear combinations of α�

i ’s.
We now turn to the results for the 3NF and consider first

the static terms. We obtain the following contributions of the �
isobar to the functions A�(q2) and B�(q2) at leading one-loop
order:

A(4)
� (q2) = − g2

Ah2
A

139968π2�3F 6
π

(
81g2

A

(
40�4 + 34M4

π − π�M3
π − 13�2M2

π

)(
2M2

π + q2
2

)
− 450gAg1

(
8�4 + 2M4

π − π�M3
π − 5�2M2

π

)(
2M2

π + q2
2

) + 36�
(
20πh2

AM3
π

(
2M2

π + q2
2

)
− 27

(
2�M2

π − �3
)(

M2
π + 2q2

2

)) + 25g2
1

(
40�4 + 34M4

π − 17π�M3
π − 13�2M2

π

)(
2M2

π + q2
2

))
+ g2

Ah2
A

144π2F 6
π

�D(q2)
(
M2

π + 2q2
2

)(−2�2 + 2M2
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2
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144π2F 6
π
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(
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2

)

+ g2
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A
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(
81g2

A

(
40�4 + 34M4
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)(
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2

)
− 450gAg1
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π

)(
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2

) + 25g2
1

(
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π

)(
2M2

π + q2
2

)
− 1944�2

(
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π − �2
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M2
π + 2q2

2

)) + g2
Ah2

A

34992π2F 6
π

� log

(
2�

Mπ

)(
M2

π

(
1620g2

A − 1800gAg1 + 500g2
1 + 729

)
+ 2q2

2

(
405g2

A − 450gAg1 + 125g2
1 + 729

))
,

B(4)
� (q2) = g2

Ah2
A

279936π2�3F 6
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(
81g2

A

(
58�4 + 34M4

π − π�M3
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)
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) − 144h2
A
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π − 9π�M3
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π

)
+ 250�4g2
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1M

4
π − 425π�g2

1M
3
π + 50�2g2

1M
2
π − 972�2M2

π

)
− g2

Ah2
A
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π

�D(q2)
(−4�2 + 4M2
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2
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Ah2

A

288π2F 6
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Ah2

A

139968π2�3F 6
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A
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π
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1M
4
π − 400�2g2
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π
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Ah2
A

139968π2F 6
π

� log

(
2�
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)(
2349g2

A − 2250gAg1 + 1152h2
A + 125g2

1 + 972
)
, (5.4)

where we use the notation for the various loop functions introduced in Ref. [57] which, in the case of dimensional regularization,
reads

L(q) =
√

q2 + 4M2
π

q
ln

√
q2 + 4M2

π + q

2Mπ

,

D(q) = 1

�

∫ ∞

2Mπ

dμ

q2 + μ2
arctan

√
μ2 − 4M2

π

2�
, (5.5)

H (q) = 4M2
π + 2q2 − 4�2

4M2
π + q2 − 4�2

[
L(q) − L

(
2
√

�2 − M2
π

)]
.
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The expressions for the loop functions resulting in the framework of spectral function regularization introduced in Ref. [99] can
be found in Ref. [58]. 1/� expansion of the loop functions is given by

D(q) =
−L(q) + log

(
2�
Mπ

) + 1

2�2
+

−3L(q)
(
4M2

π + q2
) + 3

(
6M2

π + q2
)

log
(

2�
Mπ

) + 3M2
π + q2

72�4

+
−10L(q)

(
4M2

π + q2
)2 − 15M4

π + 10M2
πq2 + 10

(
30M4

π + 10M2
πq2 + q4

)
log

(
2�
Mπ

) + 2q4

1600�6
+ O(1/�8), (5.6)

H (0) = 1 − log

(
2�

Mπ

)
+

2M2
π − 4 M2

π log
(

2�
Mπ

)
8�2

+
7M4

π − 12M4
π log

(
2�
Mπ

)
32�4

+
74M6

π − 120M6
π log

(
2�
Mπ

)
384�6

+ O(1/�8).

These expressions indicate that the log ( 2�
Mπ

) terms in A(4)
� (q2) and B(4)

� (q2) are essential for vanishing of A(4)
� (q2) and B(4)

� (q2) in
the � → ∞ limit as required by the decoupling theorem. Notice further that the two-pion exchange diagrams shown in Fig. 8
also induce shorter-range contributions, which will be discussed in a separate publication.

The static contributions discussed above depend only on the momentum transfers 
qi and are therefore local. It is thus natural
to switch to the coordinate space representation of these 3NF terms. The Fourier transform of a local potential is given by

Ṽ3N (
r12, 
r32 ) =
∫

d3q1

(2π )3

d3q3

(2π )3
ei 
q1·
r12 ei 
q3·
r32 V3N (
q1, 
q3), (5.7)

where 
rij ≡ 
ri − rj is the distance between the nucleons i and j . For the two-pion-exchange contribution, we obtain from Eq. (5.1)

Ṽ2π (
r12, 
r32) = −
σ1 · 
∇12 
σ3 · 
∇32[τ 1 · τ 3 Ã(
r12,
r32) − τ 1 × τ 3 · τ 2 
∇12 × 
∇32 · 
σ2 B̃(
r12,
r32)]. (5.8)

Here and in what follows, the differential operators 
∇ij are defined in terms of dimensionless variables 
xij = 
rijMπ while the
functions Ã and B̃ are defined via

Ã(
r12,
r32) =
∫

d3q1

(2π )3

d3q3

(2π )3
ei 
q1·
r12 ei 
q3·
r32

1

q2
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π

1
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3 + M2

π

A(q2),

B̃(
r12,
r32) =
∫

d3q1

(2π )3

d3q3

(2π )3
ei 
q1·
r12 ei 
q3·
r32

1

q2
1 + M2

π

1

q2
3 + M2

π

B(q2). (5.9)

To perform the integrations, we employ the spectral-function representation of the functions A and B. The only nonpolynomial
in q2 terms in Eq. (5.4) emerge from the scalar loop functions L(q2) and D(q2). Their spectral-function representation is given by

L(q2) = 1 + q2
2

∫ ∞

2 Mπ

dμ
ρL(μ)

q2
2 + μ2

, ρL(μ) =
√

μ2 − 4 M2
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,
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∫ ∞

2 Mπ
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ρD(μ)

q2
2 + μ2

, ρD(μ) = 1

�
arctan

(√
μ2 − 4 M2

π

2 �

)
. (5.10)

Therefore, the Fourier transform of the 3NF terms involving these functions can be written as∫
d3q1

(2π )3

d3q3

(2π )3
ei 
q1·
r12 ei 
q3·
r32

1

q2
1 + M2

π

1

q2
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π
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π
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1
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π

D(q2) = 1
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x|)Q1(x), (5.11)

where the profile functions are given by

U1(x) = 4π

Mπ

∫
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(2π )3

ei 
q·
x/Mπ

q2 + M2
π

= e−x

x
,
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Q1(x) =
∫ ∞

2
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x

Mπ

�
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)
.
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We are interested here only in the long-range terms and therefore restrict ourselves to the case xij �= 0. All terms involving
positive powers of momenta 
q1 and 
q3 can be expressed through gradients −iMπ


∇12 and −iMπ

∇32 which can be taken out of

the integrals.
For the NLO delta contributions to 3NF, we obtain the following coordinate-space expressions:

Ã(2)
� (
r12,
r32) = g2

Ah2
A

288π2�F 4
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π [( 
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� (
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The N3LO � contributions have the form

Ã(4)
� (
r12,
r32) = g2

Ah2
A

2239488π5�3F 6
π

M4
π

(
243�4[2( 
∇12 + 
∇32)2 − 1]

{
2�2 + M2

π [( 
∇12 + 
∇32)2 − 2]
}Q1(
x12,
x32)

+πM2
π

(
−25g2

1[( 
∇12 + 
∇32)2 − 2]
(
40�4[H (0) − 1] + 34[H (0) − 1]M4

π

+�2[13 − 47H (0)]M2
π + 17π�M3

π

) + 1944�2[H (0) − 1][2( 
∇12 + 
∇32)2 − 1]
(
M2

π − �2)
+ 4�4

{
729[1 − 2( 
∇12 + 
∇32)2] − 250g2

1[( 
∇12 + 
∇32)2 − 2]
}

log

(
2�

Mπ

))
U1(x12)U1(x32)

)

+ g2
Ah2

A

9216π5F 6
π

�M6
π ( 
∇12 + 
∇32)2[1 − 2( 
∇12 + 
∇32)2]V1(
x12,
x32)

− g4
Ah2

A

27648π4�3F 6
π

M6
π [( 
∇12 + 
∇32)2 − 2]U1(x12)U1(x32)

(
40�4[H (0) − 1] + 34[H (0) − 1]M4

π

+�2[13 − 47H (0)]M2
π + π�M3

π + 40�4 log

(
2�

Mπ

))

+ 25g3
Ah2

Ag1

124416π4�3F 6
π

M6
π [( 
∇12 + 
∇32)2 − 2]U1(x12)U1(x32)

(
8�4[H (0) − 1] + 2[H (0) − 1]M4

π

+�2[5 − 7H (0)]M2
π + π�M3

π + 8�4 log

(
2�

Mπ

))

+ 5g2
Ah4

A

15552π3�2F 6
π

M9
π [( 
∇12 + 
∇32)2 − 2]U1(x12)U1(x32),

B̃
(4)
� (
r12,
r32) = − g2

Ah2
A

18432π5F 6
π

�M6
π ( 
∇12 + 
∇32)2V1(x12,x32) + g2

Ah2
A

36864π5F 6
π

�M4
π

{
4�2 + M2

π [( 
∇12 + 
∇32)2 − 4]
}Q1(x12,x32)

− g4
Ah2

A

55296π4�3F 6
π

M6
πU1(x12)U1(x32)

{
58�4[H (0) − 1] + 34[H (0) − 1]M4

π

+ 2�2[8H (0) − 25]M2
π + π�M3

π

} − 29g4
Ah2

A

27648π4F 6
π

�M6
πU1(x12)U1(x32) log

(
2�

Mπ

)

+ 25g3
Ah2

Ag1

248832π4�3F 6
π

M6
πU1(x12)U1(x32)

{
10�4[H (0) − 1] + 10[H (0) − 1]M4

π

− 2�2[4H (0) + 1]M2
π + 5π�M3

π

} + 125g3
Ah2

Ag1

124416π4F 6
π

�M6
πU1(x12)U1(x32) log

(
2�

Mπ

)

+ g2
Ah4

A

31104π4�3F 6
π

M6
πU1(x12)U1(x32)

{−16�4[H (0) − 1] + 8[H (0) − 1]M4
π

+ 8�2[H (0) − 2]M2
π + 9π�M3

π

} − 25g2
Ah2

A

4478976π4�3F 6
π

g2
1M

6
πU1(x12)U1(x32)

(
10�4[H (0) − 1]

+ 34[H (0) − 1]M4
π − 2�2[16H (0) + 1]M2

π + 17π�M3
π

)
014003-19



H. KREBS, A. M. GASPARYAN, AND E. EPELBAUM PHYSICAL REVIEW C 98, 014003 (2018)

FIG. 9. Chiral expansion of the functions A(q2) and B(q2) entering the two-pion exchange 3NF in Eq. (5.1) in the �-full and �-less
theories. Left (right) panel shows the results obtained with the LECs determined from the fit to the KH [80] (GW [79]) partial-wave analysis
of pion-nucleon scattering as explained in the text.
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, (5.14)

where the scalar integrals Q1(
x12,
x32) and V1(
x12,
x32) are defined as

Q1(
x12,
x32) =
∫

d3x U1(|
x12 + 
x|)U1(|
x32 + 
x|)Q1(x),

V1(
x12,
x32) =
∫

d3x U1(|
x12 + 
x|)U1(|
x32 + 
x|)V1(x). (5.15)

At N3LO one also has to take into account relativistic corrections. Nucleonic contributions are already discussed in Ref. [50].
Here we give only the corresponding � contributions from the diagrams (36)–(39) of Fig. 8 proportional to 1/mN :

V2π,1/mN
= 
q1 · 
σ1 
q3 · 
σ3[

q2
1 + M2

π

][
q2

3 + M2
π

] gA
2hA

2

72�2F 4
πmN

{τ 1 · τ 3[−4(
q1 · 
q3)2 + i(2
k1 · 
q1 − 
k1 · 
q3 + 
k3 · 
q1 − 2
k3 · 
q3)
q1 · 
q3 × 
σ2]

− i 
q1 · 
q3τ 1 · τ 2 × τ 3(2
k1 · 
q1 − 
k1 · 
q3 + 
k3 · 
q1 − 2
k3 · 
q3 − i 
q1 · 
q3 × 
σ2)}. (5.16)

At this stage several comments are in order:

(1) There are no contributions from 1/mN corrections to pion-nucleon and pion-nucleon-� vertices since both of them are
proportional to zeroth components of momenta and for this reason vanish in the kinematics relevant for nuclear forces.
This argument is, however, only applicable to irreducible topologies since the corresponding 3NF contributions can be
calculated using Feynman rules. All diagrams with intermediate � excitations involving 1/mN corrections to pion-nucleon
or pion-nucleon-� vertices are indeed irreducible. The situation is different in the case of nucleonic contributions, where
we used the unitary transformation technique to extract the corresponding irreducible pieces; see Ref. [41] for more details.

(2) Since the Fujita-Miyazawa 3NF corresponds to an irreducible diagram, we cannot construct additional unitary transfor-
mations which would affect relativistic corrections to it. For this reason, the expression in Eq. (5.16) is unambiguous.
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tree
+Q4

+Q5

tree
+ε 4
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FIG. 10. Profile functions F4(r), F6(r), F15(r), and F16(r) in units of MeV generated by the two-pion exchange 3NF topology in the �-less
approach of Ref. [50] (left panel) and in the �-full approach of the current work (right panel). The dash-dotted, dashed, and solid lines are the re-
sults of the calculation at order Q3(ε3), Q4(ε4), and Q5(ε4+Q5), respectively. The bands indicate the purely nucleonic contribution at
order Q5.

This is, again, different for nucleonic contributions, where additional unitary transformations can be employed and the
corresponding relativistic corrections do depend on arbitrary parameters β̄8 and β̄9 [41].

(3) Finally, we emphasize that Eq. (5.16) is consistent with the resonance saturation of the nucleonic N5LO two-pion-exchange
tree-level diagram with one of the vertices taken from the order-Q3 πN -Lagrangian proportional to di . Indeed, if we replace
the di constants of this diagram with their resonance saturation values given in Eq. (4.14), we reproduce the result of
Eq. (5.16).

In coordinate space, the corresponding relativistic corrections are given by

Ṽ2π,1/mN
= gA

2hA
2M7

π

1152π2�2F 4
πmN


∇12 · 
σ1 
∇32 · 
σ3( 
∇12 · 
∇32τ 1 · τ 2 × τ 3(−2
k1 · 
∇12 + 
k1 · 
∇32 − 
k3 · 
∇12

+ 2
k3 · 
∇32 + Mπ

∇12 · 
∇32 × 
σ2) + τ 1 · τ 3(2
k1 · 
∇12 − 
k1 · 
∇32 + 
k3 · 
∇12 − 2
k3 · 
∇32) 
∇12 · 
∇32 × 
σ2

+ 4Mπ ( 
∇12 · 
∇32)2τ 1 · τ 3)U1(x12)U1(x32). (5.17)
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tree
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tree
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FIG. 11. Profile functions F17(r), F18(r), F19(r), F20(r) in units of MeV generated by the two-pion exchange 3NF topology in the �-less
approach of Ref. [50] (left panel) and in the �-full approach of the current work (right panel). The dash-dotted, dashed, and solid lines are
the results of the calculation at order Q3(ε3), Q4(ε4), and Q5(ε4 + Q5), respectively. The bands indicate the purely nucleonic contribution at
order Q5.

VI. DISCUSSION

Having constructed explicitly the two-pion-exchange �-
full three-nucleon force and having determined all the relevant
low-energy constants, we are now in the position to analyze
the convergence of chiral expansion for the long-range part
of the 3NF. In Fig. 9, we show the results for the functions
A(q2) andB(q2) for small values of the momentum transfer q2,
q2 < 300 MeV at various orders in the small-scale expansion.
In addition to the ε2, ε3, and ε4 results, we show also the results,
where the purely nucleonic contributions of order Q5 are added
to the ε4 result in order to compare it with the �-less N4LO

calculation from Ref. [50] (double-dash-dotted lines in Fig. 9).
One should, however, keep in mind that this is not a complete
ε5 result. We use here at all orders the low-energy constants
ci , d̄i , and ēi determined from the order-ε3 + Q4 fit to the
KH and GW partial wave analyses as described in Sec. IV
and listed in Table I. We also adopt the same conventions
regarding the LECs as in the case of pion-nucleon scattering;
see Eqs. (4.9) and (4.11). Notice that although some of the ēi

constants (ē15,16,18) are rather sensitive to a particular choice
of the partial wave analysis in pion-nucleon scattering (see
Table I), the functions A and B depend only on the LECs
ē14,17, which are quite stable.
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tree
+Q4

+Q5

FIG. 12. Profile functions Fi(r) in units of MeV generated by the two-pion exchange 3NF topology in the �-less approach of Ref. [50]. The
dash-dotted, dashed, and solid lines are the results of the calculation at orders Q3, Q4, and Q5, respectively. The bands indicate the difference
between the �-less-Q5 result and the �-full result at order ε4 + Q5.

One observes a fairly slow convergence for the functions
A(q2) and B(q2) when going from order ε2 to ε4. On the
other hand, the difference between the results at orders ε4 and
ε4 + Q5 is small for the function B(q2) and almost negligible
for the function A(q2), which may indicate that convergence
is reached at this order. Making a more definite statement
about the convergence would, however, require performing a
complete ε5 derivation of the 3NF.

It is also comforting to see that the results at order ε4 +
Q5 are very close to the �-less calculation at order Q5. This
indicates that the contributions of the �-isobar to the two-pion
exchange 3NF topology can be well represented in terms of
resonance saturation of the LECs ci , d̄i , and ēi at N4LO in
the �-less approach. This also indicates that nucleonic terms

at order Q6 and higher saturated by the double- and triple-�
excitations are small.

Another instructive way to quantitatively analyze the ob-
tained three-nucleon forces is to look at the structure func-
tions Fi(r12,r23,r31) for the equilateral triangle configuration
of the nucleons given by the condition r12 = r23 = r31 = r
[51]. Structure functions Fi(r12,r23,r31) are the coefficients
in the expansion of a general local three-nucleon force in
the basis of 20 operators G̃i (for their explicit form, see
Ref. [100]):

V full
3N =

20∑
i=1

G̃iFi(r12,r23,r31) + 5 permutations. (6.1)
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Only 8 out of 20 structure functions do not vanish for the
two-pion-exchange topology, namely F4, F6, F15, F16, F17,
F18, F19, and F20. Our results for these structure functions are
visualized in Figs. 10–12.

We first comment on the convergence pattern of the chiral
expansion for the �-less (�-full) scheme (see Figs. 10 and 11)
by looking at the tree-level results and at the results at orders
Q4 (ε4) and Q5 (ε4 + Q5). We observe a better convergence of
the �-full approach, which is reflected in significantly smaller
bands on the right panels of Figs. 10 and 11, which indicate
the size of the purely nucleonic contributions at order Q5. This
means that the large loop contributions at orderQ5 in the�-less
theory reported in Refs. [50,100] are, to a considerable extent,
saturated by the lower order (ε4) contributions in the �-full
scheme. As the distance increases to r ∼ 2.5–3.0 fm, the
results at all orders get closer together for both the �-less and
�-full approaches, fully in line with the general expectation
that the chiral expansion converges most rapidly at large
distances.

It is also instructive to compare with each other the re-
sults within the �-less and �-full approaches at the highest
considered orders Q5 and ε4 + Q5, respectively. As shown in
Fig. 12, the �-isobar contributions to the structure functions
F6, F16, F18, F19, and F20 are almost completely given by the
resonance saturation of the corresponding LECs. Indeed, the
bands indicating the difference between the order-Q5 �-less
and order-(ε4 + Q5) �-full results are almost invisible in those
cases even at relatively short distances of r ∼ 1.0–1.5 fm.
For the functions F15 and F17, the saturation at this chiral
order explains only a part of the � contributions. For the
F4 function, the �-less and �-full results turn out to be of
a different sign at short distances. Notice, however, that the
corresponding structure function is rather small in magnitude
as compared to other ones. For larger distances of r ∼ 2.5–3.0
fm, the saturation pattern improves and holds true for all
structure functions. This means that �-resonance saturation
of the �-less contributions at orders beyond Q5, emerging
from the considered diagrams at order ε4 + Q5, leads to small
effects for the two-pion exchange 3NF topology. This may be
considered as yet another indication of the convergence of the
theory at orders Q5 and ε4 + Q5.

VII. SUMMARY AND CONCLUSIONS

In this paper, we have analyzed the longest-range con-
tribution to the three-nucleon force at N3LO utilizing the
heavy-baryon formulation of chiral EFT with pions, nucleons,
and �s as the only explicit degrees of freedom. The pertinent
results of our study can be summarized as follows:

(1) We worked out in detail renormalization of the lowest-
order effective chiral Lagrangian at the one-loop level.

(2) Employing renormalization conditions which maintain
the explicit decoupling of the � isobar, we derived the
� contributions to those LECs ci , d̄i , and ēi from
the effective Lagrangians L(2)

πN , L(3)
πN , and L(4)

πN which
contribute to pion-nucleon scattering at the considered
order.

(3) In order to determine the LECs ci , d̄i and ēi contributing
to the 2π -exchange 3NF, we reanalyzed pion-nucleon
scattering at order ε3 + Q4 employing the same power
counting scheme as in the derivation of the nuclear
forces and using the same fitting protocol as in the
�-less analysis of Ref. [50]. We used the available
partial-wave analyses of the pion-nucleon scattering
data to determine all relevant LECs. The resulting
values turn out to be rather stable and consistent with
our �-less analysis reported in Ref. [50].

(4) We worked out the N3LO � contributions to the 2π -
exchange 3NF. The unitary ambiguity of the Hamil-
ton operator is parametrized by 50 additional unitary
transformations. After imposing the renormalizability
constraint, i.e., the requirement that the resulting 3NF
matrix elements are finite, the expressions for the 3NF
appear to be defined unambiguously. These findings
pave the way for the derivation of the remaining
3NF contributions at the same order, which are not
considered in this paper.

(5) The obtained results for the 2π -exchange 3NF at N3LO
of the SSE are in good agreement with the N4LO
calculations of Ref. [50] within the �-less approach.
The agreement becomes even better when adding the
nucleonic contributions at order N4LO to the expres-
sions at N3LO of the SSE. This indicates that the effects
of the � isobar for this particular topology are well
represented by resonance saturation of the LECs ci , d̄i ,
and ēi at N4LO in the �-less approach.

The presented calculations should be extended to the
intermediate-range topologies, where we do expect significant
contributions of the � to be still missing in the N4LO analysis
of Ref. [51] within the �-less framework, as well as to short-
range contributions. Work along these lines is in progress.
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APPENDIX A: UNITARY AMBIGUITY OF THE 3NF AND
CONSTRAINTS IMPOSED BY THE

RENORMALIZABILITY REQUIREMENT

To derive the effective potential, we use the method of
unitary transformation. A detailed discussion of this approach
including the explicit form of the unitary operator at low orders
in the chiral expansion can be found in Ref. [46]. As explained
in Sec. V, this method can be straightforwardly extended to
carry out calculations within the �-full chiral EFT approach.
In this appendix, we discuss the restrictions on the choice of
the unitary transformation imposed by the condition that the
resulting nuclear Hamiltonian is renormalizable.
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We first specify our notation. The indices in the interaction
vertices H

(κ)
a,b,c,d,e have the following meaning:

a = Number of pion fields
b = Number of outgoing nucleons
c = Number of outgoing �s
d = Number of incoming nucleons
e = Number of incoming �s
κ = d + 3

2 (b + c + d + e) + a − 4, (A1)

where d is the number of derivatives at a given vertex. We
also introduce the projection operators η and λ onto the
purely nucleonic and the remaining parts of the Fock space,
respectively. These operators satisfy the usual relations η2 =
η, λ2 = λ, ηλ = λη = 0, and λ + η = 1. We also need to
differentiate the states from the λ subspace by introducing the
operators λa,b, where a and b refer to the number of pions and
�s in the corresponding intermediate state, respectively. The
total energy of the pions and �s in the corresponding state will
be denoted by Eπ� = O(ε).

As pointed out in Sec. V, renormalizability of the nuclear
Hamiltonian is achieved by performing all possible η-space
unitary transformations after decoupling of pions and deltas
by means of the (minimal) Okubo-type unitary transformation.
Such additional unitary operators have a general form

U = eS, (A2)

where S is an anti-Hermitian operator (S† = −S) acting on the
η space. We parametrize the operator S as

S =
∑

i

αiSi +
∑

i

α�
i S�

i , (A3)

where αi and α�
i are real numbers. The operators Si include

only nucleon degrees of freedom and have already been
discussed earlier [46,50]. We now give 50 operators S�

i which
include � contribution:

S�
1 = ηH

(1)
1,1,0,0,1

λ1,1

E2
π�

H
(1)
1,1,0,1,0

λ0,1

Eπ�

H
(1)
1,1,0,1,0

λ1,1

Eπ�

×H
(1)
1,0,1,1,0η − hc,

S�
2 = ηH

(1)
1,1,0,0,1

λ1,1

E2
π�

H
(1)
1,1,0,1,0

λ2,1

Eπ�

H
(1)
1,1,0,1,0

λ1,1

Eπ�

×H
(1)
1,0,1,1,0η − hc,

S�
3 = ηH

(1)
1,1,0,1,0

λ1,0

E2
π�

H
(1)
1,1,0,0,1

λ0,1

Eπ�

H
(1)
1,0,1,1,0

λ1,0

Eπ�

×H
(1)
1,1,0,1,0η − hc,

S�
4 = ηH

(1)
1,1,0,1,0

λ1,0

E2
π�

H
(1)
1,1,0,0,1

λ2,1

Eπ�

H
(1)
1,0,1,1,0

λ1,0

Eπ�

×H
(1)
1,1,0,1,0η − hc,

S�
5 = ηH

(1)
1,1,0,0,1

λ1,1

E2
π�

H
(1)
1,1,0,1,0

λ0,1

Eπ�

H
(1)
1,0,1,1,0

λ1,0

Eπ�

×H
(1)
1,1,0,1,0η − hc,

S�
6 = ηH

(1)
1,1,0,0,1

λ1,1

Eπ�

H
(1)
1,1,0,1,0

λ0,1

E2
π�

H
(1)
1,0,1,1,0

λ1,0

Eπ�

×H
(1)
1,1,0,1,0η − hc,

S�
7 = ηH

(1)
1,1,0,0,1

λ1,1

Eπ�

H
(1)
1,1,0,1,0

λ0,1

Eπ�

H
(1)
1,0,1,1,0

λ1,0

E2
π�

×H
(1)
1,1,0,1,0η − hc,

S�
8 = ηH

(1)
1,1,0,0,1

λ1,1

E2
π�

H
(1)
1,1,0,1,0

λ2,1

Eπ�

H
(1)
1,0,1,1,0

λ1,0

Eπ�

×H
(1)
1,1,0,1,0η − hc,

S�
9 = ηH

(1)
1,1,0,0,1

λ1,1

Eπ�

H
(1)
1,1,0,1,0

λ2,1

E2
π�

H
(1)
1,0,1,1,0

λ1,0

Eπ�

×H
(1)
1,1,0,1,0η − hc,

S�
10 = ηH

(1)
1,1,0,0,1

λ1,1

Eπ�

H
(1)
1,1,0,1,0

λ2,1

Eπ�

H
(1)
1,0,1,1,0

λ1,0

E2
π�

×H
(1)
1,1,0,1,0η − hc,

S�
11 = ηH

(1)
1,1,0,0,1

λ1,1

E2
π�

H
(1)
1,0,1,1,0

λ2,0

Eπ�

H
(1)
1,1,0,1,0

λ1,0

Eπ�

×H
(1)
1,1,0,1,0η − hc,

S�
12 = ηH

(1)
1,1,0,0,1

λ1,1

Eπ�

H
(1)
1,0,1,1,0

λ2,0

E2
π�

H
(1)
1,1,0,1,0

λ1,0

Eπ�

×H
(1)
1,1,0,1,0η − hc,

S�
13 = ηH

(1)
1,1,0,0,1

λ1,1

Eπ�

H
(1)
1,0,1,1,0

λ2,0

Eπ�

H
(1)
1,1,0,1,0

λ1,0

E2
π�

×H
(1)
1,1,0,1,0η − hc,

S�
14 = ηH

(1)
1,1,0,0,1

λ1,1

E2
π�

H
(1)
1,0,1,0,1

λ0,1

Eπ�

H
(1)
1,1,0,1,0

λ1,1

Eπ�

×H
(1)
1,0,1,1,0η − hc,

S�
15 = ηH

(1)
1,1,0,0,1

λ1,1

E2
π�

H
(1)
1,1,0,1,0

λ0,1

Eπ�

H
(1)
1,0,1,0,1

λ1,1

Eπ�

×H
(1)
1,0,1,1,0η − hc,

S�
16 = ηH

(1)
1,1,0,0,1

λ1,1

E2
π�

H
(1)
1,0,1,0,1

λ0,1

Eπ�

H
(1)
1,0,1,0,1

λ1,1

Eπ�

×H
(1)
1,0,1,1,0η − hc,

S�
17 = ηH

(1)
1,1,0,0,1

λ1,1

Eπ�

H
(1)
1,0,1,0,1

λ0,1

E2
π�

H
(1)
1,1,0,1,0

λ1,1

Eπ�

×H
(1)
1,0,1,1,0η − hc,

S�
18 = ηH

(1)
1,1,0,0,1

λ1,1

E2
π�

H
(1)
1,0,1,0,1

λ2,1

Eπ�

H
(1)
1,1,0,1,0

λ1,1

Eπ�

×H
(1)
1,0,1,1,0η − hc,
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S�
19 = ηH

(1)
1,1,0,0,1

λ1,1

E2
π�

H
(1)
1,1,0,1,0

λ2,1

Eπ�

H
(1)
1,0,1,0,1

λ1,1

Eπ�

×H
(1)
1,0,1,1,0η − hc,

S�
20 = ηH

(1)
1,1,0,0,1

λ1,1

E2
π�

H
(1)
1,0,1,0,1

λ2,1

Eπ�

H
(1)
1,0,1,0,1

λ1,1

Eπ�

×H
(1)
1,0,1,1,0η − hc,

S�
21 = ηH

(1)
1,1,0,0,1

λ1,1

Eπ�

H
(1)
1,0,1,0,1

λ2,1

E2
π�

H
(1)
1,1,0,1,0

λ1,1

Eπ�

×H
(1)
1,0,1,1,0η − hc,

S�
22 = ηH

(1)
1,1,0,0,1

λ1,1

E2
π�

H
(1)
1,0,1,0,1

λ0,1

Eπ�

H
(1)
1,0,1,1,0

λ1,0

Eπ�

×H
(1)
1,1,0,1,0η − hc,

S�
23 = ηH

(1)
1,1,0,0,1

λ1,1

Eπ�

H
(1)
1,0,1,0,1

λ0,1

E2
π�

H
(1)
1,0,1,1,0

λ1,0

Eπ�

×H
(1)
1,1,0,1,0η − hc,

S�
24 = ηH

(1)
1,1,0,0,1

λ1,1

Eπ�

H
(1)
1,0,1,0,1

λ0,1

Eπ�

H
(1)
1,0,1,1,0

λ1,0

E2
π�

×H
(1)
1,1,0,1,0η − hc,

S�
25 = ηH

(1)
1,1,0,0,1

λ1,1

E2
π�

H
(1)
1,0,1,0,1

λ2,1

Eπ�

H
(1)
1,0,1,1,0

λ1,0

Eπ�

×H
(1)
1,1,0,1,0η − hc,

S�
26 = ηH

(1)
1,1,0,0,1

λ1,1

Eπ�

H
(1)
1,0,1,0,1

λ2,1

E2
π�

H
(1)
1,0,1,1,0

λ1,0

Eπ�

×H
(1)
1,1,0,1,0η − hc,

S�
27 = ηH

(1)
1,1,0,0,1

λ1,1

Eπ�

H
(1)
1,0,1,0,1

λ2,1

Eπ�

H
(1)
1,0,1,1,0

λ1,0

E2
π�

×H
(1)
1,1,0,1,0η − hc,

S�
28 = ηH

(1)
1,1,0,0,1

λ1,1

E3
π�

H
(1)
1,0,1,1,0ηH

(1)
1,1,0,1,0

λ1,0

Eπ�

×H
(1)
1,1,0,1,0η − hc,

S�
29 = ηH

(1)
1,1,0,0,1

λ1,1

E2
π�

H
(1)
1,0,1,1,0ηH

(1)
1,1,0,1,0

λ1,0

E2
π�

×H
(1)
1,1,0,1,0η − hc,

S�
30 = ηH

(1)
1,1,0,0,1

λ1,1

Eπ�

H
(1)
1,0,1,1,0ηH

(1)
1,1,0,1,0

λ1,0

E3
π�

×H
(1)
1,1,0,1,0η − hc,

S�
31 = ηH

(1)
1,1,0,0,1

λ1,1

E3
π�

H
(1)
1,0,1,1,0ηH

(1)
1,1,0,0,1

λ1,1

Eπ�

×H
(1)
1,0,1,1,0η − hc,

S�
32 = ηH

(2)
2,1,0,1,0

λ2,0

E2
π�

H
(1)
1,1,0,0,1

λ1,1

Eπ�

H
(1)
1,0,1,1,0η − hc,

S�
33 = ηH

(2)
2,1,0,1,0

λ2,0

Eπ�

H
(1)
1,1,0,0,1

λ1,1

E2
π�

H
(1)
1,0,1,1,0η − hc,

S�
34 = ηH

(1)
1,1,0,0,1

λ1,1

E2
π�

H
(2)
2,1,0,1,0

λ1,1

Eπ�

H
(1)
1,0,1,1,0η − hc,

S�
35 = ηH

(2)
2,1,0,0,1

λ2,1

E2
π�

H
(1)
1,0,1,1,0

λ1,0

Eπ�

H
(1)
1,1,0,1,0η − hc,

S�
36 = ηH

(2)
2,1,0,0,1

λ2,1

Eπ�

H
(1)
1,0,1,1,0

λ1,0

E2
π�

H
(1)
1,1,0,1,0η − hc,

S�
37 = ηH

(2)
2,1,0,0,1

λ2,1

E2
π�

H
(1)
1,1,0,1,0

λ1,1

Eπ�

H
(1)
1,0,1,1,0η − hc,

S�
38 = ηH

(2)
2,1,0,0,1

λ2,1

Eπ�

H
(1)
1,1,0,1,0

λ1,1

E2
π�

H
(1)
1,0,1,1,0η − hc,

S�
39 = ηH

(2)
2,1,0,0,1

λ2,1

E2
π�

H
(1)
1,0,1,0,1

λ1,1

Eπ�

H
(1)
1,0,1,1,0η − hc,

S�
40 = ηH

(2)
2,1,0,0,1

λ2,1

Eπ�

H
(1)
1,0,1,0,1

λ1,1

E2
π�

H
(1)
1,0,1,1,0η − hc,

S�
41 = ηH

(1)
1,1,0,1,0

λ1,0

E2
π�

H
(2)
2,1,0,0,1

λ1,1

Eπ�

H
(1)
1,0,1,1,0η − hc,

S�
42 = ηH

(1)
1,1,0,1,0

λ1,0

Eπ�

H
(2)
2,1,0,0,1

λ1,1

E2
π�

H
(1)
1,0,1,1,0η − hc,

S�
43 = ηH

(1)
1,1,0,0,1

λ1,1

E2
π�

H
(2)
2,0,1,0,1

λ1,1

Eπ�

H
(1)
1,0,1,1,0η − hc,

S�
44 = ηH

(1)
1,1,0,0,1

λ1,1

E2
π�

H
(1)
1,1,0,0,1

λ2,2

Eπ�

H
(1)
1,0,1,1,0

λ1,1

Eπ�

×H
(1)
1,0,1,1,0η − hc,

S�
45 = ηH

(1)
1,1,0,0,1

λ1,1

E2
π�

H
(1)
1,1,0,0,1

λ0,2

Eπ�

H
(1)
1,0,1,1,0

λ1,1

Eπ�

×H
(1)
1,0,1,1,0η − hc,

S�
46 = ηH

(1)
1,1,0,0,1

λ1,1

E2
π�

H
(1)
1,0,1,1,0

λ2,0

Eπ�

H
(1)
1,1,0,0,1

λ1,1

Eπ�

×H
(1)
1,0,1,1,0η − hc,

S�
47 = ηH

(2)
0,2,0,0,2

λ0,2

E2
π�

H
(1)
1,0,1,1,0

λ1,1

Eπ�

H
(1)
1,0,1,1,0η − hc,

S�
48 = ηH

(2)
0,2,0,0,2

λ0,2

Eπ�

H
(1)
1,0,1,1,0

λ1,1

E2
π�

H
(1)
1,0,1,1,0η − hc,

S�
49 = ηH

(2)
0,2,0,2,0ηH

(1)
1,1,0,0,1λ

1,1 1

E3
π�

H
(1)
1,0,1,1,0η − hc,

S�
50 = ηH

(1)
1,1,0,0,1

λ1,1

E2
π�

H
(2)
0,1,1,1,1

λ1,1

Eπ�

H
(1)
1,0,1,1,0η − hc.

(A4)
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The requirement that the � contributions to the 3NF are renor-
malizable leads to the following constraints on the coefficients
α�

i :
α�

7 − α�
13 = 0,

−α�
13 + α�

8 + 1
2 = 0,

α�
9 = 0,

α�
10 − α�

13 = 0,

α�
13 + 2α�

29 − 1
4 = 0,

α�
18 − α�

25 = 0,

α�
21 − α�

26 = 0,

α�
19 + α�

26 − α�
27 + 1

2 = 0,

α�
15 − α�

25 = 0,

α�
17 + α�

25 − α�
27 + 1

2 = 0,

α�
14 + α�

26 − α�
27 + 1

2 = 0,

α�
24 − α�

27 = 0,

α�
1 − α�

2 = 0,

−α�
11 + α�

2 + 2α�
29 + α�

5 + 1
4 = 0,

−2α�
29 + α�

3 + 1
4 = 0,

−2α�
29 + α�

4 + 1
4 = 0,

α�
5 − α�

11 = 0,

−α�
11 − 2α�

29 + α�
6 − 1

4 = 0,

α�
12 + 4α�

29 = 0,

α�
35 − α�

37 = 0,

α�
36 − α�

37 + α�
38 + 1

2 = 0,

α�
37 − α�

38 + α�
41 − 1

2 = 0,

α�
30 − 1

2 = 0. (A5)

APPENDIX B: �-ISOBAR CONTRIBUTIONS TO THE
INVARIANT π N AMPLITUDES g±(ω,t) AND h±(ω,t)

In this Appendix, we present the explicit expressions for the
invariant amplitudes g±(ω,t) and h±(ω,t) which parametrize
the pion-nucleon scattering matrix at first three orders in ε
expansion (for an earlier calculation, see Ref. [101]). We give
only contributions due to intermediate � excitations, which
have to be added to the nucleonic terms calculated within the
�-less theory and listed in Ref. [50].

Contributions at order ε1:

g+ = 4�h2
A

(−2M2
π + t + 2ω2

)
9F 2

π (� − ω)(� + ω)
,

g− = −2h2
Aω

(−2M2
π + t + 2ω2

)
9F 2

π (� − ω)(� + ω)
,

h+ = 4h2
Aω

9F 2
π (ω2 − �2)

,

h− = 2�h2
A

9F 2
π (�2 − ω2)

. (B1)

Contributions at order ε2:

g+ = 0, g− = 0, h+ = 0, h− = 0. (B2)

Contributions at order ε3:

g± = g±
SL + g±

1/mN
, h± = h±

SL + h+
1/mN

, (B3)

with static limit contributions given by

g+
SL = h2

A

486F 4
πω2

J̄0(−�)
((

81g2
A − 50gAg1 + 25g2

1

)(
M2

π − �2
)(−2M2

π + t + 2ω2
) − 108ω2

(
M2

π − 2t
))

+ h2
A

4374F 4
πω2(� − ω)2

J̄0(ω − �)
(
M2

π − (� − ω)2
)(

2M2
π − t − 2ω2

)(
9�2

(
81g2

A − 50gAg1 + 25g2
1

)
− 10ω(� − ω)(9gA − 5g1)2) + h2

A

36π2F 4
π

D(
√−t)�

(
M2

π − 2t
)(−2�2 + 2M2

π − t
)

+ 8h2
A

243F 4
π (�2 − ω2)2

J̄0(ω)
(
ω2 − M2

π

)(−2M2
π + t + 2ω2

)(
9g2

A(�2 − ω2) + h2
A(5�2 + 4ω2)

)
+ h2

A

34992π2F 4
π (�2 − ω2)2

((
2M2

π − t − 2ω2
)((

81g2
A − 50gAg1 + 25g2

1

)(
9�(�2 − ω2)2

+ πM3
π

(
17�2 + ω2) + 9�M2

π (ω2 − �2)
) + 400πgAg1M

3
π (�2 − ω2)

) − 486�(�2 − ω2)2(M2
π − 2t

))
+

�h2
A log

(
2�
Mπ

)(
10(9gA − 5g1)2

(
2M2

π − t − 2ω2
) + 729

(
M2

π − 2t
))

8748π2F 4
π

+ 2�h2
AĪ20(t)

(
M2

π − 2t
)

9F 4
π

+ (ω → −ω),

(B4)

g−
SL = h2

A

69984F 4
ππ2�ω(�2 − ω2)2

((
2M2

π − 2ω2 − t
)(−81

(
2π (12�4 − 35ω2�2 + 20ω4)M3

π

− 3(6�5 − 13ω2�3 + 7ω4�)M2
π + 9�(�2 − ω2)2(4�2 + 3ω2)

)
g2

A
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+ 150g1�
(
6π�ω2M3

π − 3(2�4 − 3ω2�2 + ω4)M2
π + (�2 − ω2)2(12�2 + 13ω2)

)
gA

+ 25g2
1

(−23�ω6 + (
8πM3

π − 3�M2
π + 34�3

)
ω4 + �2

(−26πM3
π − 3�M2

π + �3
)
ω2 + 6�5

(
M2

π − 2�2
)))

− 18�ω2(�2 − ω2)
(
4h2

A

(
2M2

π − 2ω2 − t
)(

3M2
π − 4�2 − 2ω2

) − 3
(
24M2

π − 72�2 − 19t
)
(�2 − ω2)

))
+ �2

(−2M2
π + 2�2 + t

)
ωD(

√−t)h2
A

18F 4
ππ2

+
(
8M2

π − 12�2 − 5t
)
ωĪ20(t)h2

A

27F 4
π

+ h2
A

4374F 4
π�ω(�2 − ω2)2

((
2M2

π − 2ω2 − t
)(

36h2
A

(
4�4 − 10ω2�2 + M2

π (5�2 + ω2)
)
ω2

+ (�2 − ω2)
(
81

(−19�4 + 15ω2�2 + M2
π (12ω2 − 8�2)

)
g2

A + 1350g1�
2(�2 − ω2)gA

+ 25g2
1

(
4M2

π − 13�2
)
(�2 − ω2)

)) − 972�2ω2(�2 − ω2)2
)
J̄0(−�)

− 2
(
2M2

π − 2ω2 − t
)(

ω2 − M2
π

)
(2h2

Aω(�2 − 12ω� + 2ω2) − 9g2
A(3� − ω)(�2 − ω2))J̄0(ω)h2

A

243F 4
πω(�2 − ω2)2

+ h2
A

8748F 4
π (� − ω)2ω2

(
M2

π − (� − ω)2)(6
(
243g2

A − 150g1gA + 25g2
1

)
�2

−5(9gA − 5g1)2(4� − ω)ω
)(

2M2
π − 2ω2 − t

)
J̄0(ω − �)

+
ω

((
243g2

A + 450g1gA − 288h2
A − 125g2

1

)(
2M2

π − 2ω2 − t
) − 810t

)
log

(
2�
Mπ

)
h2

A

34992F 4
ππ2

− (ω → −ω), (B5)

h+
SL = − h2

A

4374F 4
πω2(� − ω)2

J̄0(ω − �)
(
M2

π − (� − ω)2
)(

6�2
(
243g2

A − 150gAg1 + 25g2
1

) + (5ω2 − 20�ω)(9gA − 5g1)2
)

+ h2
A

2187�F 4
πω(�2 − ω2)2

J̄0(−�)
(
(�2 − ω2)

(
81g2

A

(
19�4 − 3ω2

(
5�2 + 4M2

π

) + 8�2M2
π

)
− 1350�2gAg1(�2 − ω2) − 25g2

1(�2 − ω2)
(
4M2

π − 13�2
)) − 36h2

Aω2
(
4�4 − 10�2ω2 + M2

π (5�2 + ω2)
))

− 4h2
AJ̄0(ω)

(
M2

π − ω2
)(

2h2
Aω(�2 − 12�ω + 2ω2) − 9g2

A(� − ω)(3� − ω)(� + ω)
)

243F 4
πω(�2 − ω2)2

+ h2
A

34992π2�F 4
πω(�2 − ω2)2

(
(�2 − ω2)

(
�(�2 − ω2)

(
729g2

A(4�2 + 3ω2) − 150gAg1(12�2 + 13ω2)

+ 25g2
1(12�2 + 23ω2)

) − 72�h2
Aω2

(
4�2 − 3M2

π + 2ω2
)) + 81g2

A

(
2πM3

π (12�4 − 35�2ω2 + 20ω4)

− 3M2
π (6�5 − 13�3ω2 + 7�ω4)

) − 150�gAg1
(
6π�M3

πω2 − 3M2
π (2�4 − 3�2ω2 + ω4)

)
+ 25g2

1

(
πM3

π (26�2ω2 − 8ω4) + 3�M2
π (−2�4 + �2ω2 + ω4)

))
+

h2
Aω

(−243g2
A − 450gAg1 + 288h2

A + 125g2
1

)
log

(
2�
Mπ

)
17496π2F 4

π

− (ω → −ω), (B6)

h−
SL = �h2

AD(
√−t)

(
4�2 − 4M2

π + t
)

144π2F 4
π

− �h2
AĪ20(t)

9F 4
π

+ h2
A

4374F 4
πω2(�2 − ω2)2

J̄0(−�)
(
10(�2 − ω2)2

(
81g2

A − 90gAg1 + 5g2
1

)(
M2

π − �2
)

+ 648�2g2
A(�2 − ω2)

(
M2

π − �2
) + 9ω2

(
27(�2 − ω2)2 + 32h2

A

(
2�2(�2 − 2ω2) + M2

π (�2 + ω2)
)))

− 4h2
AJ̄0(ω)

(
M2

π − ω2
)(

h2
Aω(9�2 − 8�ω + 8ω2) − 9g2

A(� − 2ω)(�2 − ω2)
)

243F 4
πω(�2 − ω2)2

+ h2
A

69984π2F 4
π (�2 − ω2)2

(
�(�2 − ω2)

(
M2

π

(
81g2

A − 450gAg1 − 576h2
A + 225g2

1

) + 1152�2h2
A

)
+�(�2 − ω2)2

(−7047g2
A + 3150gAg1 + 25g2

1

) + πM3
π (5g1 − 9gA)(�2(297gA − 85g1) − ω2(279gA + 5g1))

)
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−
�h2

A

(
2349g2

A − 2250gAg1 + 1152h2
A + 125g2

1 + 972
)

log
(

2�
Mπ

)
34992π2F 4

π

− h2
A(9gA − 5g1)J̄0(ω − �)

(
M2

π − (� − ω)2
)
(−360�ωgA + 4�2(81gA − 5g1) + 5ω2(9gA − 5g1))

8748F 4
πω2(� − ω)2

+ (ω → −ω),

(B7)

and 1/mN corrections given by

g+
1/mN

= − h2
A

9F 2
πmN (�2 − ω2)2

{
16�4ω2 − 4�3ω

(−4M2
π + t + 4ω2

)
+�2

(
4M4

π − 4M2
π (t + 6ω2) + t2 + 8tω2 − 12ω4

) − 2�ω
(
8M4

π − 2M2
π (3t + 4ω2) + t(t + 4ω2)

)
+ω2

(
4M4

π − 4M2
π (t − 2ω2) + t2 + 4ω4

)} + 16 h2
A ω2

9F 2
πmN

,

g−
1/mN

= − h2
A

18F 2
πmN (�2 − ω2)2

{−4�3ω
(−4M2

π + t + 4ω2) + �2(8M4
π − 2M2

π (3t + 16ω2) + t2 + 10tω2 + 24ω4)
− 2�ω

(
4M4

π − 4M2
π t + t2 + 2tω2 − 4ω4

) + ω2
(
8M4

π − 6M2
π t + t2 + 2tω2 − 8ω4

)}
− h2

A

9F 2
πmN�

ω
(
t + 8

(
ω2 − M2

π

))
,

h+
1/mN

= h2
A

[
4�3ω + �2

(
4M2

π − t − 8ω2
) + 2�ω

(
t − 2M2

π

) + ω2
(
4M2

π − t
)]

9F 2
πmN (�2 − ω2)2

− 4 h2
A ω

9F 2
πmN�

,

h−
1/mN

= h2
A

(
4�3ω + �2

(
2M2

π − t − 6ω2
) + 2�ω

(−4M2
π + t + 2ω2

) + ω2
(
2M2

π − t + 2ω2
))

18F 2
πmN (�2 − ω2)2

. (B8)

The loop functions are defined via

2M2
πλπ = μ4−d

∫
ddl

(2π )d
i

l2 − M2
π + iε

,

J̄0(ω) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ω
8π2 +

√
ω2−M2

π

4π2 arccosh
(− ω

Mπ

)
for ω < −Mπ

ω
8π2 −

√
ω2−M2

π

4π2

(
arccosh

(
ω

Mπ

) − i π
)

for ω > Mπ

ω
8π2 −

√
M2

π −ω2

4π2 arccos
(− ω

Mπ

)
for |ω| < Mπ

,

D(x) = 1

�

∫ ∞

2Mπ

dμ

μ2 + x2
arctan

√
μ2 − 4M2

π

2�
,

Ī20(t) = 1

16π2
−

√
1 − 4M2

π/t

16π2
log

√
1 − 4M2

π/t + 1√
1 − 4M2

π/t − 1
. (B9)
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