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Three-nucleon force in chiral effective field theory with explicit A(1232) degrees of freedom:
Longest-range contributions at fourth order
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We analyze the longest-range two-pion exchange contributions to the three-nucleon force at leading-loop
order in the framework of heavy-baryon chiral effective field theory with explicit A(1232) degrees of freedom.
All relevant low-energy constants which appear in the calculation are determined from pion-nucleon scattering.
Comparing our results with the ones obtained in the A-less theory at next-to-next-to-next-to-next-to leading
order (N*LO), we find effects of the A isobar for this particular topology to be rather well represented in terms
of resonance saturation of various low-energy constants in the A-less approach.
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I. INTRODUCTION

Three-nucleon forces (3NF) and their impact on nuclear
structure and reactions have become an important frontier in
nuclear physics; see Refs. [1-25] for a selection of recent stud-
ies along these lines and Refs. [26,27] for review articles. Chiral
effective field theory (EFT) provides a model-independent and
systematically improvable theoretical framework to describe
nuclear forces and low-energy nuclear structure and dynamics
in harmony with the symmetries of QCD [28,29]. Nucleon-
nucleon (NN) scattering has been extensively studied in chiral
EFT in the past two decades following the pioneering work
by Weinberg [30] and Ordonez et al. [31]. In particular,
NN potentials at next-to-next-to-next-to-leading order (N*LO)
in the chiral expansion have been available for about 15
years [32,33] and served as a basis for numerous ab ini-
tio calculations of nuclear structure and reactions. Recently,
accurate and precise chiral EFT potentials up to fifth order
in the chiral expansion, i.e., N4LO, have been developed
[34-37]. In particular, the semilocal N4LO* potentials of
Ref. [37] provide a description of the 2013 Granada database
of neutron-proton and proton-proton scattering data below
Ep, = 300 MeV, which is comparable to or even better than
that based on the available high-precision phenomenological
potentials.

The chiral expansion of the 3NF at one-loop level, i.e.,
up to and including next-to-next-to-next-to-next-to-leading-
order (N*LO) contributions, can be described in terms of
six topologies depicted in Fig. 1. The first nonvanishing
contributions emerge at next-to-next-to leading order (N>LO)
from tree-level diagrams of types shown in Figs. 1(a), 1(d) and
1(f) [38,39]. The resulting 3NF at N’LO has been intensively
explored in three- and four-nucleon scattering calculations
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as well as in nuclear structure calculations; see Refs. [1—
11,13,17-24] for some recent examples and the review articles
[26,27] and references therein. The first corrections to the 3NF
emerge at N°LO from all possible one-loop diagrams of types
shown in Figs. 1(a)-1(e) constructed from the lowest-order
vertices. The resulting parameter-free expressions have been
worked out in Refs. [40,41]; see also Ref. [42]. An interesting
feature of the N®LO 3NF contributions is their rather rich
isospin-spin-momentum structure emerging primarily from the
ring topology [Fig. 1(c)]. This is in contrast with the quite
restricted operator structure of the N’LO 3NF. Numerical
implementation of the N>LO 3NF corrections requires their
partial wave decomposition [15,43] and a consistent imple-
mentation of the regulator. This work is currently in progress;
see Refs. [4,12,14,44] for some preliminary results. We further
emphasize that four-nucleon forces also start to contribute at
N3LO and have been worked out in Refs. [45,46]. Pioneering
applications of the chiral four-nucleon forces to the «-particle
binding energy [47,48] and neutron matter [11,22,49] indicate
that their effects in these systems are fairly small.

While the impact of the first corrections to the chiral 3NF on
few- and many-nucleon observables is yet to be investigated,
one may ask whether the chiral expansion of the 3NF at
subleading order, i.e., at N*LO, provides a reasonable approx-
imation to the converged result. To clarify this issue, we have
worked out the next-to-next-to-next-to-next-to-leading-order
(N*LO) contributions to the long-range [50] and intermediate-
range [51] 3NF corresponding to Fig. 1(a) on one hand and
Figs. 1(b) and 1(c) on the other hand. The corresponding po-
tentials at large distance emerge as parameter-free predictions
as they are completely determined by the chiral symmetry of
QCD and experimental information on pion-nucleon scattering
needed to fix the relevant low-energy constants (LECs). More
precisely, for the two-pion-exchange topology, the N*LO 3NF
contributions depend on some of the LECs c;, d;, and &; from
the order-Q?, 03, and Q* effective pion-nucleon Lagrangians,
which have been extracted from the available 7 N partial
wave analyses. The resulting longest-range 3 NF was shown to
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FIG. 1. Various topologies contributing to the 3NF up to and including N*LO: two-pion (27r) exchange (a), two-pion—one-pion (27-17)
exchange (b), ring (c), one-pion exchange contact (d), two-pion exchange contact (e) and purely contact (f) diagrams. Solid and dashed lines
represent nucleons and pions, respectively. Shaded blobs represent the corresponding amplitudes.

converge reasonably fast [50]. The situation appears to be very
different for the two-pion—one-pion (2r-17) exchange and
ring 3NF topologies corresponding to Figs. 1(b) and 1(c): The
formally leading contributions emerging at N*LO turn out to be
rather small in magnitude while the first corrections at N*LO
are considerably larger [51]. The origin of such an unnatural
convergence pattern can be understood if one assumes the in-
termediate A(1232) excitation as a dominant 3NF mechanism,
which is well in line with various phenomenological studies
[52-54]. In the standard formulation of chiral EFT based on
pions and nucleons as the only explicit degrees of freedom
and used, in particular, in Refs. [50,51], all effects of the A
(and heavier resonances as well as heavy mesons) are taken
into account implicitly through (some of the) LECs starting
from the subleading effective Lagrangian, i.e., ¢;, di,é, ...
In particular, the values of the LECs c3 4, which contribute to
the two-pion exchange 3NF at N2LO, are known to receive
large contributions from the A. Thus, for this longest-range
3NF topology, effects of the A are already, to a large extent,
accounted for at the lowest order (N2LO). The first corrections
at N3LO emerge from one-loop diagrams constructed from the
leading-order pion-nucleon vertices, which are not affected
by the A, and the corresponding potentials appear to be
fairly small in magnitude. This explains the observed good
convergence pattern of the chiral expansion for the two-pion
exchange 3NF. On the other hand, for the intermediate-range
topologies, the expansion starts at N°LO while the first effects
of the A appear at N*LO and lead to large corrections.
Moreover, since the N*LO contributions to the 27-17 and
ring 3NFs are proportional to ¢;, only effects due to single-A
excitations are implicitly taken into account at that order.
This raises the question of whether the double- and triple-A
excitations, which in the standard A-less formulation of chiral
EFT are taken into account at even higher orders, might lead
to sizable 3NF contributions. While this question could, at
least in principle, be clarified by extending the calculations
to even higher orders in the chiral expansion, this would
require calculation of two—loop diagrams and also dealing
with a large number of new LECs, which makes this strategy
hardly feasible. Instead, we follow a different approach and
use chiral EFT with explicit A degrees of freedom, which
offers a more efficient way to resum the contributions due
to intermediate A excitations. To be specific, we employ a
formulation in which the A-nucleon mass splitting is treated
on the same footing as the pion mass, which is known as the
small-scale expansion (SSE) [55]. Following the pioneering

calculations in Refs. [56,57], we have already worked out the
contributions of the A to the two- and three-nucleon forces up
to N?LOin the SSE [58,59] and also looked at isospin-breaking
corrections to the NN potential [60]. These calculations con-
firmed a better convergence of the A-full EFT formulation
compared to its standard, A-less version. Interestingly, for
the 3NF, the only nonvanishing A contribution up to N’LO
is the two-pion exchange diagram with an intermediate A
resonance, commonly called the Fujita-Miyazawa force. This
term is shifted in the A-full theory to next-to leading order
(NLO).

In this paper, for the first time, we extend the SSE for
the nuclear forces to N>LO and concentrate on the longest-
range contribution to the 3NF corresponding to Fig. 1(a).
This topology is particularly challenging due to (i) the need
to carry out a nontrivial renormalization program as will be
explained later and (ii) the need to reconsider pion-nucleon
scattering in order to determine the relevant LECs; see Ref. [50]
where this program was carried out in the standard, A-
less version of chiral EFT. We will also discuss in detail
renormalization within the A-full framework and work out
the A contributions to the relevant low-energy constants
in the effective Lagrangian. Although we do not expect to
see large benefits from the explicit treatment of the A for
the 2w -exchange 3NF, where the standard chiral expansion
already shows a good convergence [40,50], this calculation
is a necessary prerequisite for analyzing the A contribu-
tions to the more problematic intermediate-range diagrams.
This work is in progress and will be reported in a separate
publication.

Our paper is organized as follows. In Sec. II, we describe
the framework and specify all terms in the effective Lagrangian
that are needed in the calculation. Renormalization of the
lowest-order effective Lagrangian to leading loop order is car-
ried out in Sec. III. In Sec. IV, we provide analytic expressions
for the contribution of the A to the relevant LECs ¢;, d;, and
¢; and determine the numerical values of these LECs from
pion-nucleon scattering. A contributions to the 27 -exchange
3NF at N®LO are worked out in Sec. V. In particular, we
provide here parameter-free expressions both in momentum
and coordinate spaces. A comparison of our findings with the
ones of Refs. [40,50] is given in Sec. VI. Finally, the main
results of our work are briefly summarized in Sec. VII. The
appendices contain the unitary transformations of the nuclear
Hamiltonian and the A contributions up to N*LO to the 7 N
invariant amplitudes.
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II. THE FRAMEWORK

In the following, we briefly describe the formalism we
employ in our analysis, namely the heavy-baryon formulation
of chiral EFT with explicit A(1232) degrees of freedom [55].
In this framework, the soft scales are given by small external
momenta Q, pion mass M, and the A-nucleon mass splitting
A :=mp — my. The resulting expansion in powers of the
small parameter € defined as

RN

A AR 2.1

with A, ~ 1GeV denoting the chiral symmetry breaking
scale, is known in the literature as the SSE.

We begin with specifying the effective chiral Lagrangian
for pions, nucleons, and the A. It is well known that the free
spin-3/2 Lagrangian is nonunique and can be written in the
form

LR =~ P, 03[ — ma)gun

— byunid — may v )E,00wh. 22

where the tensor

oy =g¢g"+ %A yhyY 2.3)
parametrizes nonuniqueness in the description of a spin-3/2
theory in terms of a parameter A, which can be chosen
arbitrarily subject to the restriction A # —1/2. Further, the
quantity $§§2 is the isospin-3/2 projection operator given by

£y, =87 — it/ (2.4)

where 7; denote the isospin Pauli matrices. Physical observ-
ables do not depend on the choice of the parameter A since the
entire dependence on A can be absorbed into a field redefinition
of the A field. In practical calculations, the choice of A is a
matter of convenience. In the covariant approach, one usually
chooses A = —1 (see, e.g., Refs. [61-65]), since in this case
the free Lagrangian takes the particularly simple form

LI = Pl (Va0 — maV)Esp W) (2.5)
with
Yuva = i{[m,%],)’a}, Yuv = %[VM,Vv]' (26)

This form of the Lagrangian leads to a fairly compact and
convenient expression for the free propagator of the A field

g p+mA(
p —m

1
g’“+3y Y’

3m

" ) Q2.7)

For every interaction in the Lagrangian, one generally has
a freedom to introduce an off-shell parameter. As a conse-
quence, interaction terms depend, in addition to the point-
transformation parameter A, also on the off-shell parameters
z; via the tensor

00}, =g"' + [z +

=y
A

3 +4z)Aly*y (2.8)

All terms proportional to the off-shell parameters are redundant
[66-68], meaning that their contributions to observables can be
absorbed into a redefinition of the corresponding low-energy
constants (LECs). A particular choice of the off-shell param-
eters in the calculations is therefore a matter of convention.
For example, in the covariant calculation of Ref. [64], we
have set ARClatvistic — _1 and all zReltvistic — O In the present
analysis, we employ the heavy-baryon 1/m expansion worked
out by Hemmert et al. [55], where the choice A" = 0 without
specifying a particular value for the off-shell parameter z{i® of
the leading-order pion-nucleon-A coupling has been made. In
order to be consistent with the convention used in the covariant
calculation of Ref. [64], we have to set

Byl (1 + 4ZHB)AHB
— Relatmstlc E(1 + 4Z0Relativistic) ARelativistic
= 7" = —1. (2.9)
This choice will be used throughout this work.
The effective heavy-baryon Lagrangians which contribute
to the nuclear forces up to N3LO are given by

Lssg = LA+ LY + L0 + L2 + L+ LD + L4
+Liva  Loan + Loan +8L7% 2.10)
where the subscripts refer to the small-scale dimension. Notice
that the last term denotes the contribution to the pion-nucleon
effective Lagrangian induced by the nonpropagating spin-1,/2
components of the Rarita-Schwinger field for the A. The
relevant terms in the pion Lagrangians have the form [69]

1 2
L2 = 5(a,ﬂ% M — MPR - T) +3 (8a — D - 7)?
2F2(1 —4a)(it - 0,7 ) (7T - 0" 7t)
—%n.ﬁauﬁ-a“fz, @.11)

I !
£e = —F—32M47‘i S+ F;‘ZM%auﬁ St — MR - R),

(2.12)

where 7z, M, and F refer to the pion fields in the chiral limit,
the pion mass to leading order in quark masses, and the pion
decay coupling in the chiral limit, while /; are further LECs.
Here and in what follows, X indicates that the quantity X is
taken in the chiral limit. Further, the parameter « reflects the
freedom in the choice of a particular parametrization for the
pion field. All physical quantities are, of course, independent of
this parameter. We do not give here explicitly Lg}v,ﬁf;\,,ﬁgv
as all relevant terms are listed in Ref. [50] where, in order to
be consistent with our notation, the LECs ¢; and d; should be
replaced by ¢ and d;. The remaining Lagrangians in Eq. (2.10)
are given by [55]
h
‘CSTII)VA = _FA

NIT!9"#' + He., (2.13)

i o .
LA = S b3 +bNT0"0 vt

ha oo e .
it N Tio v 4 He.
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2 S
00 = 5 @ho = hs = 2ho = 2hio)M* NI T 0" 3

1 7T i 2 o i
- F(hIZ + hi3)N)T, (@ - v)*8"#' + H.c.,

L, =11 |:i d-v—A— %r : (aaﬁ)sa]fvfgwaij,
ES)AA = —4M2C1AT;TTngMU5,’j

1 .. o
+ 5107 — @ 0T gy,

Mfz)v = 18FA2m Nj[lr (0Tt X OyT) — 20,7 - 3,7%]

x {41+ 8288 + 12 (z4B)°] 578

+[5— 828 — 4 (cHB) ] v "} N, (2.14)

where N, and T;i denote the large components of the nucleon
and A field, respectively, v is the four-velocity, and m is the
nucleon mass in the chiral limit. For the sake of compactness,
we do not show the velocity index explicitly in the case of the
A fields T;i- The quantity & 4 denotes the 7 N A axial coupling;

b;, h;,and cl.A are further LECs; and the covariant spin operator
is defined via

1

o i
Su = ElVSO—;wv y Opy = E[y/u Wl

(2.15)
Last but not least, we emphasize that we adopt in the present
work the convention for the pion-nucleon LECs which main-
tains an explicit decoupling of the A. To be specific, the results
for a given amplitude or nuclear potential M have the form

M= Mg+ Ma, (2.16)

where M denotes the contribution associated with the A
degrees of freedom while M is the purely nucleonic part.
As guaranteed by the decoupling theorem [70], all effects
of the A isobar at low energy can be accounted for in an
implicit way, i.e., through its contributions to the effective
pion-nucleon Lagrangian. Expanding the A contribution M x
around A — oo, one generally finds terms with both positive
and negative powers of the A. While the latter ones can be
identified with the A-resonance saturation of the pion-nucleon
LECs (see Sec. IV for more details), terms with positive
powers of the A-nucleon mass splitting can, as a matter of
convention, be eliminated by an appropriate redefinition of
the pion-nucleon LECs. This is the convention we adopt in
our analysis. It guarantees that no positive powers of the
A appear in the finite expressions for all physical quantities
and the A(1232) contributions decouple (vanish) in the large-
A limit. Stated differently, this convention ensures that our
results actually correspond to a partial resummation of the
A-resonance contributions to the pion-nucleon LECs within
the A-less formulation.

—.—

FIG. 2. Feynman diagrams which contribute to the nucleon self-
energy up to order €*. Only nonvanishing diagrams are shown. Solid,
dashed, and double lines represent nucleons, pions, and the A, respec-
tively. Solid dots (filled circles) denote leading-order (subleading and
higher order) vertices from the effective Lagrangian.

III. RENORMALIZATION OF THE EFFECTIVE
LAGRANGIAN TO LEADING LOOP ORDER

We now discuss in detail renormalization of the lowest-
order effective chiral Lagrangian at the one-loop level which is
achieved by expressing all quantities in terms of renormalized
parameters rather than their chiral limit values. We do not
consider here renormalization in the pionic sector as it is
extensively discussed in the literature and concentrate entirely
on the nucleon and A sectors. We begin with introducing the
renormalized fields and coupling constants via the relations

Ny =ZyN,, T} = VZAT). # = Z.7',
M =M, +8M, m =my~+dm, A=A+S3A,
Zy =1+468Z,, Zy = 1482y, Zn = 14824,
F=F;+8F, ga = ga+93ga,

ha=ha~+8hs, & = g1+ 3g1. 3.1
and determine the shifts 85X with X e
{M,F.m,A,Zyn,Zxr,84,h4a,81} order by order in the
small-scale expansion. Notice that in this formulation, the
heavy baryon expansion corresponds to a 1/my expansion,
where my is now the physical nucleon mass and not the
nucleon mass in the chiral limit; see Ref. [71] for more
details. We further emphasize that T;i does not correspond
to an interpolating field of an asymptotic state so that its
renormalization prescription is conventional. Even if Z, is
a complex number, the replacement f“/i = JZ,T,, in the
Lagrangian does not lead to a violation of unitarity in the
kinematical region we are interested in simply because there
are no external A lines. Indeed, the complex renormalization
factor Z A, which shows up in the A propagator, is compensated
by vertices to which this A propagator is attached so the
amplitude does not depend on Z,. This argument does
not rely on whether the renormalization factor is a real or
complex number. The main motivation for us to make the
replacement T;i = «/Z_A T,i is to ensure that we can treat A
fields in the same manner as stable particles. This procedure
is a matter of convention and does not affect the final result
for the amplitudes. In the following, we discuss in detail
renormalization of the various quantities in Eq. (3.1).

A. Nucleon mass and field renormalization

To study nucleon-mass and field renormalization up to order

€3, one needs to calculate the self-energy diagrams shown in

Fig. 2. The full nucleon propagator in the rest frame of the
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FIG. 3. Leftpanel: generic one-particle irreducible contribution to the axial-vector nucleon form factor. Right panel: Nonvanishing Feynman
diagrams which contribute to G 4(0) up to order €. Wavy lines represent external axial sources. For the remaining notation, see Fig. 2.

nucleon can be parametrized via

1
p-v—Xy(p-v)+ie’

Dy(p-v) = (3.2)

where Xy (p - v) denotes the nucleon self-energy. In the vicin-
ity of p - v = 0, the propagator of the renormalized physical
nucleon fields has a simpler form

1
Dy(p-v)= ——— +O0[(p-v)]. (3.3)
p-V+i€
Making the Taylor expansion
p-v—Zn(p-v)
=—Zn(0)+[1 = ZpO)]p-v+Ol(p-v)l. (34)

we obtain renormalization conditions for the nucleon mass and
the Z-factor Zy:

Ty(0)=0 and T, (0)=0. (3.5)

J

The contribution of the first diagram in Fig. 2 to the nucleon
self-energy is given by

SN (p - v) = dm —da Mz —8Zyp v (3.6)

The contribution of the nucleonic one-loop diagram, see
second graph in Fig. 2, to the self-energy at the order we are
working is given by

loop, 7 N 38% 3g/24 2 2
SN v) = TEp @0+ ML — (p-v)]

x I(d : 0;(p,0)), 3.7

while the A-loop contribution emerging from the last diagram
in Fig. 2 is given by

oop, T 2 d — 2 h2
2(d — 2)h%

M2 — A +2Ap -
(d—l)Fg[ n T ATEAAPY

—(p-v)*]1(d : 0;(p.A)).

Here, scalar master integrals in d dimensions are defined
according to

(3.8)

- )_1 47d/ dl 1
Ply--sPn —l.ﬂ (ZJT)d(l—i-p])z—M?%—i-iG (l+pn)2—M7%+l.6’
1 dil 1 1
Id:pi,....pus(p,8) = p* = . (39
(@ prseeeopai(p8) = " O Ut p P M tic Ut pr—Mticltp v_stic O
Using the renormalization conditions in Eq. (3.5), we obtain the following expressions at order €* in four dimensions:
3gi M3 h% A 8h2 A 4h? -
Sm = dei M2 A7 4 _(2A%* —3M2 A (2A% = 3M2)hg + —2 (A% — M2)Jo(—A),
m=deMot st e o)+ 3 <+ 3 w)Jo(=4)
3834M2 hi 2 2 1 2 2 2 2272 4h%4A 7
82y = -5 0575 + 1o (20% — M) + m[16hA(2A — M7) —9gi M2 s + 73 Jo(=4), (3.10)
[
where the quantities A, and Jy are defined in Appendix B. be parametrized via [72]
o e . . / i>J = E 2
B. Renormalization of the nucleon axial coupling M p.q) = —T"GA : Uz—GA(q )+, (3.11)
my

To renormalize the axial-vector coupling constant g4, we
consider the axial-vector form factor of the nucleon as shown
in Fig. 3. In the Breit frame (go = 0), the matrix element can

where the ellipses refer to terms which are of no relevance for
renormalization of g,. In the above expression, E denotes the
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FIG. 4. Nonvanishing diagrams which contribute to A self-energy
up to order €*. For the remaining notation, see Fig. 2.

energy of the incoming nucleon (which in the Breit frame is
also equal to the energy of the outgoing nucleon) while € is
the polarization vector of the jth component of an isotriplet
external axial field. The physical value of the nucleon axial

J

coupling g4 is defined as
8a = G4(0).

Up to order €3, the contributions to the axial form factor G 4(0)
emerge from the tree-level diagrams

(3.12)

G'(0) = ga + 884 + 848 Zy + 4disM,  (3.13)
one-loop diagrams without A excitations
G (0) = —j’%(gj(d —3)—4)I(d:0), (3.14)

and one-loop diagrams with intermediate A excitations (see
the second row of the right panel of Fig. 3)

G2V () = —92((61‘1__—12))2}%[24& +5(d*—2d —3)gi11(d : 0) — 16;? d__zif;‘g‘fg I[d : 0;(0,0)]
%[24& (M — A*) —5(d* — 2d — 3)g1 A*]1[d : 0;(0,A)]. (3.15)
Using the renormalization condition in Eq. (3.12), we obtain in four dimensions
8ga = —8Znga — 4digM2 — #%(2435 — 576g4h% + 1240h% g1) — 4#2;3(24& —155¢g1) — %
+ [12?3%?2 (2484 +2581) — %(81 g +36g4(32h7 —9) + 400h124g1):|)»ﬂ
+ [‘:ﬁ‘é (24g4 +25g1) — %}fg(—A). (3.16)

C. A mass and field renormalization

To study the A mass and field renormalization, one needs
to calculate the corresponding nonvanishing self-energy dia-
grams shown in Fig. 4. In general, the self-energy of the A
resonance in the rest frame can be parametrized via

Talp-v)if, = PIPEL; ,Balp ),

where the spin- and isospin-3/2 projector operators are
defined by

(3.17)

P/%Z = guv — Uy + %SuSV and E;j:m =8 — %tirj,
(3.18)
respectively. The contribution of the tree-level diagram, see the
first graph in Fig 4, to the A self-energy is given by
TU(p . v) = —ded M. (3.19)

The contributions of the two one-loop diagrams with the 7 N
and A cuts in d space-time dimensions have the form
2

= A

@—DF?

+[Mz — (p-v)*]11d : 0:(p.O)]},

5(d* —2d — 3)g?

loop,m A 1

)y )= 7 ol
A P = T R
+[M2 —(p-v—AP]Id : 0;(p,A)]}.

(3.20)

RPN () {p-vid:0)

{(p~v —AN)I(d:0)

(

The full A propagator in the rest frame of the A resonance can
be written as

Da(p - v)f, = =Da(p - VP51, with

1

Da(p-v) = (3.21)

p-v—A—Sx(p-v)

In the vicinity of the pole, the full A propagator has a simpler
structure, namely

i
p-v—A+ilp/2

Da(p-v) >~ (3.22)

Here, A and I's denote the (pole-position) mass and width of
the A resonance, respectively. Expanding the full propagator
around the pole, one extracts the mass, width, and the complex
Z A factor:

p-v—A—Za(p-v)

Ty . r
—A—i-2_A_s,(Aa-i2
2 2

014003-6



THREE-NUCLEON FORCE IN CHIRAL EFFECTIVE FIELD ...

PHYSICAL REVIEW C 98, 014003 (2018)

FIG. 5. Left panel: generic one-particle irreducible contribution to the axial-vector nucleon-§ transition form factor. Right panel:
Nonvanishing Feynman diagrams which contribute to H,(A,A2,0) up to order €*. Wavy lines represent external axial sources. For the remaining

notation, see Fig. 2.

Renormalization of the A mass and width is determined from
the condition

Ta Ta

From the real part of this condition, we deduce the A-mass
renormalization as

o s
A—A—RCEA(A—iT)—O (3.25)

while the imaginary part of this condition yields the following
result for the width:

Ca Ta

Ly (Aa-i=2) =0 (3.26)
2 2

The complex-valued Z, factor is determined by the relation

> (A ;Ta =0.
A 12 -

At the one-loop level, we can replace the relations (3.25)—
(3.27) by

(3.27)

A—A—ReZx(A) =0,

r

7A +ImZA(A) =0, and ¥,(A)=0, (3.28)
One immediately sees that the above relations coincide with the
Breit-Wigner conditions. The pole conditions in Egs. (3.25)—
(3.27) and the Breit-Wigner conditions start to differ from each
other at the two-loop level, which is beyond the order we are

J

h
HY*(A,A%,0) = ha+8ha — (by+b7)A + TA(SZN +8Zp) + 2[hg + 2(hg + hio)IM2,

working at. From the conditions in Eq. (3.28), we finally obtain

SA = det M2 + 2;1F2A (3M7 = 2A%) - + %
h%(jﬁ;;;Mﬁ) _ %(Mg — AY)Redy(A),
02 = ~ g BOKA (M3 = 28%) + 2561 M
_ % _ h; Jo(A). (3.29)

D. Renormalization of the w N A axial coupling

To renormalize the LEC i 4, we consider the axial-vector
nucleon-A transition form factor, see Fig. 5, in the rest frame
of the A:

M(pa,pn-9),
(3.30)

where the ellipses refer to other terms which are not relevant
for renormalization of the w NA axial coupling constant.
We analytically continue the form factor H4 and choose the
renormalization point to be

r r'a\’
i-2 (Aa-i=2) 0|, @331
2 2

which, in the one-loop approximation, becomes

ha =Re Ha(A, A2, 0).

= Pi£25;i3/26A(Q);HA(PA 0.g7pv) e,

/’lA ZRGHA|:A—

(3.32)

Uptoorder €3, the quantity H4(A,A?,0) receives contributions
from the tree-level diagram (first graph in the right panel of
Fig. 5)

(3.33)

one-loop diagrams without A excitations (the remaining two diagrams in the upper raw of the right panel of Fig. 5)

M 1(d : 0) +

loop,7 N 2 _
Hy (4,4%0) = (d —1)F? (d—

gAhAM
DFZA d—

giha(M? — A?)

I1d : 0:(0,0)] — DFIA

Ild : 0;(A,0)], (3.34)
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and one-loop graphs with pions, nucleons, and A degrees of freedom (diagrams in the second raw of the right panel of Fig. 5)

d—3)h
H™ ™0 (A, A%,0) = —ﬁ{lw — DA +5(d + Dgi[3(d — 1)*ga + 4811} 1(d : 0)
5(d* —2d — 3)h g M d =35 (M2 - A2
B 9d — 1)’F2A I1d : 0;(0.0)] — 6(d — 1)2F2A I1d : 0;(A,0)]
(d —3ha(M2 — A?) ) sy
18(d — 1’ F2A [10d + Dgi +3(d — DAZ]I1d : 05(0,A)]. (3.35)

Substituting these expressions into the renormalization condition given in Eq. (3.32), we obtain the following order-e¢* expression
for 84 4 in four dimensions:

3h ——}E(az +Re8Zp) + A(by + by) — 2[hg + 2(ho + h1)IMz + (317 + 5g7 — 27 2)h*‘—A2
A= N edZa 2 + by 8 9 10) M7 A T 98] 8a 97272 F2
haM? 5 5 o haM
—— (121} — 108 20 195 81g% —25g%) ——— =
25927 2F2( €+ 2087 + 195gag1) + (8123 g1)1944nFT%A
+ | ha(81g5 + 913 +25g2)£ — ha{100g] +225g481 +36[1% +9(g3 — 1)]} My A
A A 243 F2 ! A A 162F2
ha(M? — A?) _ ha(M? — A? _
—(9n3 + Sng)MJO(—A) + (h} + 18gi)MRe Jo(A). (3.36)

486 F2A S4F2A

IV. DETERMINATION OF THE LECS FROM = N SCATTERING

Given that the LECs in the effective Lagrangian with and without explicit A degrees of freedom have a different meaning,
we cannot use the values of the various LECs from our earlier work [50] based on the A-less formulation and have to redo the
analysis of the pion-nucleon system utilizing the small-scale expansion. Specifically, we need to calculate the 7 N scattering
amplitude up to order €3.

Before discussing renormalization of the # N amplitude in the explicit decoupling scheme as explained in Sec. II, we first
perform the following shifts in the LECs in order to get rid of redundant terms:

ha — ha — A(by + b3 + bg + b7) + A*(hyp + hy3) +4M2hy,

. 3 4(d —2) 2(d —2) 2 4d — 2)
ha(b b — A0 b ——— Aha(h h
Cz—>C2+3(d D (b3 + bg) — 3d =1 (b3 + bg)” — 3d—1) alhio + hi3),
. 3 4d —2) 2(d —2) ) 4(d —2)
——hs(b b — A0 bg)” + —————Ah(h h
C3 —> C3 — 3d 1) albz + 6)+3(d_1) (b3 + bg)” + 3d—1) alhi2 + hy3),
o bt (b3 + be) 2 A(bs + be)? Aha(his + hi3) .1
Gy —> by ——— - - , .
4 1 3g ol H00) = 3 Al s 3@ 1) Al +
c?+c?—>c?+c?+d (by + be)* — 2h(h + hi3),
1 +dy 1 +d 6(d b3 b 3@ /et
d; — d d - (b+b)2 2h(h + hi3),
3 T ea T 3 1)tz i
diy—d diy —dis — ———(b b + ———ha(h hi3).
14 —dis — dig — dis 3(d—1)(3+ 6) +3(d—1) Alhiy + hi3)

(

Notice that these replacements are performed in the amplitude ~ previous section are absorbed into redefinition of the LECs c;

written in d dimensions. After this shift, the amplitude does
not depend on the LECs b3 + bg,bs + b7,h15 + hy3, and hy
anymore.

Let us now discuss renormalization of the pion-nucleon
amplitude. All divergencies which remain after expressing the
amplitude in terms of physical quantities as discussed in the

and d; entering the order-Q? and Q3 effective pion-nucleon
Lagrangians. While the LECs ¢; are finite in the A-less
framework provided one uses dimensional regularization with
the M'S scheme, this does not hold true anymore in the A-full
theory due to the appearance of ultraviolet divergencies A at
€3 and higher powers of A at orders beyond €. We parametrize
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the bare LECs ¢&; and d; via

d,N _ pd N __
1815 _1318 =0,

B A dA | pda | pda 105
= , ’ ’ == —h7,
= C’+A[F2 "t anE | Pt b+ BT =gl
AN | pdA h?
d = MA +d»+;d4 (4.2) ﬁg’A =5 (1258f+288h§1 —243831 —4508Ag1),
i [ TGt G 2187
T
5
where the various B functions relevant for pion-nucleon ,Bg A= —Ehi,
scattering are given by JA
¢ Big” =0,
B =2 hzz‘l’ 212
: 80 L8 — Bl = A (28813 — 243 45
B = =584 — S8, Pii® = Bis” = g7 (2880 — 2435
16 —450 g4 g1 + 125 g7). (4.3)
B = mhz [729 + 59 g4 — 581)%].
This particular form of the B functions guarantees that the
Bi = —mhz (972 + 2349 gA + 1152 h2 amplitude remains finite in the d — 4 limit. We use here the
5 notation in which the divergencies associated with loop dia-
—2250g4 g1 + 1257), grams without A excitations (with A excitations) are cancelled
AN 1, by terms oc,Bl.d’N (oc/Sic’A and oc,Bid’A). Furthermore, in order to
B = _ggA’ maintain the explicit decoupling scheme, we have introduced
1 s additional finite dimensionless shifts ¢/* and d/*. The explicit
ﬁg N — — g a4 decoupling scheme is defined by the requirement that all
212 observables calculated in the SSE include only nucleonic
ﬁd N l + 1 contributions after taking the A — oo limit. In this limit, all
3 2 6gA’ contributions emerging from the intermediate A excitations
AN 1 5 have to vanish (in the explicit decoupling scheme) so that the A
Bs’ Y + ﬁg As isobar explicitly decouples from the theory. In order to satisfy
1 the explicit decoupling, the values of the LECs ¢* and d{* have
Bl = 584/;, to be chosen as
2A
e = 2h% log (—),
|
3 i (6399 g5 — 8910 +357587) — 804y —4(9 5g1)°1 24
CHh = — — —_ 0
2 6561 8a 8a 81 81 2187 8A 81 g P
A y > I 24
= 6561(6399gA 8910g4 g1 +3575g7) + 187 [729 4+ 5(9 g4 — 5g1)*1log )
2
= 652 1 (4860 — 35559 g3 + 1728 1% + 28350 g4 g1 — 4775 g7)
h 2 2 2 2A
~ 5187 (972 +2349 g7 + 1152 1% — 2250 g4 g1 + 125 g7) log <7> (4.4)
and
A A h 2 2 2
di +dy = ~ 6561 (—2106 45103 g4 +216hyy — 3870 g4 g1 + 925 81)
+ i (810 + 243 g5 — 288 73 +450 125 7)1 <2A>
84— 8481 — 81) 108
2187 A ! w
2
dy = 5561 (5103gA+216h2 — 3870 g4 &1 +925g,)
A 2 2 2 2A
+ 5y (24385 +288 15 — 450 g4 81 + 125 g7) log =)
1313 5 n’ 2A
dsA = — log — ],
81 27 %
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h2
diy —dfy = —2-(5589 g5 + 432 1% — 9090 g4 g1 + 3425 g7)

6561

2187

2h? 2A
+ A (—243 g5 + 28877 — 450 g4 g1 + 125g7) log (-)
"

respectively. Clearly, the above expressions are unique modulo
terms that vanish in the A — oo limit. On top of the explicit
decoupling scheme, we put a constraint on negative powers
of A. Specifically, we require that the 1/A expansion of
the pion-nucleon amplitude is consistent with the resonance
saturation. This means that the 1/A expansion of the A-
full pion-nucleon amplitude should be equal to the A-less
amplitude with the LECs ¢; and d; being replaced by Egs. (4.13)
and (4.14), respectively. In order to achieve this also for
relativistic corrections, we have to perform additional shifts
of ¢; and d;-LECs, namely

8h2
9mN ’

C2—>C2—‘r

hZ
di+dy — dy+do + A

18mNA’
d d Zhi 4.6)
e — .
3 3 OmyA’
h2
ds — d a_
ST S DA
2h?
dig —d dig —dis — —4—.
14 15 — di4 15 Omy A

We now turn to pion-nucleon scattering. In the center-of-
mass (c.m.) system, the amplitude for the reaction 7“(g;) +
N(p1) = 7%(q2) + N(p2), with p; , and q; > being the corre-
sponding four-momenta and a,b referring to the pion isospin
quantum numbers, takes the form

E > o -
Ty = %(5ba[8+(w,l) +iG -G X 1 hT (w,1)]

+ie" T (g (w,1) +iG - Go X @1 h ™ (w,D)]).  (4.7)
Here,w = q? = qg is the pion c.m. system energy, £y = E, =
E = (g% + m?)!/? is the nucleon energy, and §; = g3 = g*> =
[(s — Mi —m?)? — 4m2M72r]/(4s). Further, t = (g1 — g2)? is
the invariant momentum transfer squared while s denotes
the total c.m. system energy squared. The quantities g% (w,t)
[h*(w,1)] refer to the isoscalar and isovector non-spin-flip
(spin-flip) amplitudes and can be calculated in chiral per-
turbation theory. The contributions to the amplitudes which
do not involve intermediate A excitations up to order Q*
(i.e., subleading one-loop order) are given in Ref. [50]. In
Appendix B, we give explicitly the A-isobar contributions up
to order €*. In a complete analogy to the A-less calculation
reported in Ref. [50], the phase shifts are obtained from the
partial-wave amplitudes in the isospin basis £, (s) by means
of the following unitarization prescription

8/.(s) = arctan [|g|Re f/(s)]. (4.8)

4.5)

(

Determination of the LECs is carried out using exactly the
same procedure as in our A-less calculations [50]. While the
7 N scattering amplitude is worked out here only to order €3, we
decided to include also the order- Q* terms obtained within the
A-less theory when fitting the phase shifts in order to facilitate
a direct comparison with the results of Ref. [50]. This way
we make sure that the differences between the values of the
LECs obtained in the two analyses are solely due to the explicit
treatment of the A degrees of freedom. The impact of the Q*
terms on the 3NF will be discussed in Sec. VI.

For the pion-nucleon contributions to the scattering am-
plitude, we proceed in exactly the same way as in Ref. [50].
We remind the reader that certain LECs ¢; from Efjl)\, enter
the amplitude only in linear combinations with the LECs
¢; and therefore cannot be determined from 7 N scattering
data. Following Refs. [73] and [50], these e; contributions are
absorbed into redefinition of the ¢;’s by setting

l3¢

e — 4esg — = 0,
T

ey +e35 =0,
l3c

2¢19 — e — ez +2— =0,
19 22 36 P2

2621 —e37 = 0, (49)

without loss of generality. The LEC dg from E?,)v can be fixed
by means of the Goldberber-Treiman discrepancy

gamy (1 _ 2M2 dlS)

4.10)
Fr 8A

87NN =

where for g,nyy we adopt the value from Ref. [74] of
gJZT yn/4m) = 13.54, which also agrees with the determination
in Ref. [75] based on the Goldberger-Miyazawa-Oehme sum
rule and utilizing the most accurate available data on the
pion-nucleon scattering lengths. We set djg = 0 and use the
effective, larger value for g4 of

annNN
my

~ 1.285 (4.11)

84 =
in all expressions. This is a legitimate procedure at the order
we are working. This leaves us with 13 independent (linear
combinations of the) low-energy constants in the nucleonic
contributions to the scattering amplitude which have to be
fixed from a fit to the data, namely ¢34, di + da, d3, ds,
diy — dis, and &14.15,16.17.18; see Ref. [50] for more details and
explicit expressions. Here bars of LECs indicate that we used
MS renormalization scheme where u = M,,. We also use the
same values for the pion mass and decay constant as in that
reference, namely M, = 138.03MeV and F,, = 92.4 MeV.

The contributions to the amplitude associated with the A
excitations and given in Appendix B involve further LECs,

014003-10



THREE-NUCLEON FORCE IN CHIRAL EFFECTIVE FIELD ...

PHYSICAL REVIEW C 98, 014003 (2018)

>
[
\-

|9,

0 [degree]

|’\ 1

0 [degree]

100 150

~

| | | | | | \ |
50 100 150
—_ T [ T T | T | T | T
8 oo i . i
502 - - s
= 01 — S
Ze] - B - Py ]
0l e 0 Lo ' 0
0 50 100 150 200 O 50 100 150 200 0 50 100 150 200
Py, [MeVic] 0 —er=s N P, [MeVic]
0.1 Dy 7]
0.2 PR IR IR
0 50 100 150 200
Py, [MeVic]

FIG. 6. Results of the fitfor 7 N s-, p-, and d-wave phase shifts using the GW partial wave analysis of Ref. [79]. The solid curves correspond
to the € 4+ Q* results, the dashed curves to the order-€? results, and the dashed-dotted curves to the order-e2 calculation.

namely 1 4 and g, . Forthe = N A axial vector constant, we adopt
the value of 74 = 1.34 which is fixed from the width of the
A resonance and also agrees well with the large- N, prediction
[76,77]. Notice that similarly to the convention adopted for g 4,
the 7 N A Goldberger-Treiman discrepancy is implicitly taken
into account by using the above value of the LEC 4 4.! Our fits
to w N data turn out to be fairly insensitive to a particular value
of g. For this reason, we decided to fix it to its large- N, value
g1 =9/5g4 =~ 2.31[76-78]. We, therefore, have to finally fix
exactly the same combinations of the low-energy constants as
in the A-less theory.

As in Ref. [50], we performed a combined fit for all s,
p, and d waves. We remind the reader that it is crucial to
include d waves in the fit as they impose severe constraints
on some of the ¢; constants, especially on ¢4 and &7, which
also enter the N*LO expressions for the three-body force. The
results of the fits using the partial wave analysis (PWA) by
the George-Washington University group (GW) [79] and the
Karlsruhe-Helsinki group (KH) [80] are presented in Figs. 6
and 7, respectively. In these figures, we show the full, i.e.,
order-€® + Q* results (solid curves) as well as the phase
shifts calculated up to order €3 without Q* terms (dashed

!The results for the 3NF are expected to be much less sensitive to
the precise value of /4 than to the value of g4. This is because the
changes in &4 can, to some extent, be compensated by the changes in
the LECs from the subleading and higher-order effective Lagrangian.

curves) and €2 (dash-dotted curves) using the same parameters
(from the order-e3 + Q* fit) in all curves. We fit the data
points from threshold up to pr., = 150 MeV/c, and obtain
a description of the phase shifts similar to the A-less case.
Naturally, the description of the P33 partial wave (A s-channel)
is significantly improved.

Notice that more sophisticated studies of pion-nucleon
scattering employing a covariant formulation of baryon chi-
ral effective field theory with and without explicit A(1232)
degrees of freedom have been carried out recently; see
Refs. [78,81-84]. Also, more reliable ways to extract the
low-energy constants from the 7w N reaction and to estimate
their uncertainties have been explored as compared to the ones
employed in our analysis. Those include, in particular, analytic
extrapolations of the scattering amplitude into the subthreshold
region using the solutions to the Roy-Steiner equation and a
direct determination of the LECs from the available 7 N scat-
tering data in the physical region instead of using partial-wave
analyses; see Refs. [78,82,83,85-87]. Future studies of nuclear
forces and few-nucleon systems should, obviously, employ the
most reliable available values of the = N LECs, such as the ones
from Refs. [78,84,85]. In this paper, however, we focus mainly
on the A contributions to the 3NF. To facilitate a comparison
between the A-full and A-less calculation of Refs. [50,51]
and to allow for an unambiguous interpretation of our results
in terms of resonance saturation, we follow here the same
procedure for the determination of various LECs as adopted in
Ref. [50].
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FIG. 7. Results of the fitfor 7 N s-, p-, and d-wave phase shifts using the KH partial wave analysis of Ref. [80]. The solid curves correspond
to the full €3 + Q* results, the dashed curves to the order-e> results, and the dashed-dotted curves to the order-€? calculation.

We finally turn to the discussion of the extracted parameters.
The obtained values of the low-energy constants are collected
in Table 1. We also looked at the statistical errors of the fitted
parameters in order to see qualitatively which low-energy
constants (or their linear combinations) are well constrained by
the data and which of them are poorly determined. Similarly to
the strategy utilized in Ref. [88], we assigned the same relative
error to each data point from the partial-wave analyses equal
to 5%. This ansatz is somewhat arbitrary but seems reasonable
for an estimate of the relative uncertainties of different
low-energy constants. Notice further that the statistical
errors are calculated in the linearized approximation; i.e.,
the covariance matrix is taken to be the inverse of the
Hessian matrix of the x2 function at its minimum. Such an
approximation is sufficient for the qualitative analysis that we
are going to perform. The resulting statistical uncertainties
for all low-energy constants are listed in Table I and appear
to be almost the same for both the KH and GW analyses.

Moreover, they change very little when the fit is performed in
the A-less case as in Ref. [50]. One can see that the low-energy
constants ¢, €15, and €;¢ have the largest errors (0.8-5.1) in the
corresponding natural units (GeV_l, GeV~2, and GeV 3 for
the ¢;, d;, and &;, respectively), indicating that these parameters
are not well determined in the fit. On the other hand, &7,
€14, which are the only LECs ¢; contributing to the 3NF at
order @3, and the LEC ¢, are strongly constrained by the
data.

Another important quantity is a correlation between pairs
of parameters. The largest in magnitude values for the cor-
relation coefficients are obtained for the pairs ¢; — ¢; (0.99),
c1 — e (—0.98), ca — &16 (—0.99), and [(d\ + d>) — (d1a —
dis)] (—0.97). In order to get more detailed information on
the correlation among various parameters, we have com-
puted eigenvalues of the covariance matrix. The square roots
of their numerical values in natural units are 5.41,0.59,
0.45,0.35,0.29,0.12,0.05,0.03,0.03,0.02,0.02,0.01,0.01 for the

TABLEI Low-energy constants obtained from a fit to the empirical s-, p-, and d-wave pion-nucleon phase shifts using partial-wave analysis
of Refs. [79,80]. Values of the LECs are given in GeV ™!, GeV~2, and GeV ~ for the ¢;, d;, and &;, respectively.

di +d,

ds ds diy —dis

c ) 3 c4 €4 es €6 ey7 e
Fit to the GW PWA [79] —1.32 039 -2.68 1.86 1.46 —1.01 -0.10 —-2.16 0.06 —-247 —-0.05 -056 0.54
Statistical error 045 1.34 0.16 0.07 0.17 0.31 0.19 0.33 0.03 0.07 0.80 0.38 4.66
Fit to the KH PWA [80] —0.85 045 —-191 1.49 2.07 —2.45 0.66 —3.86 —-0.12 -7.05 339 —-0.38 2.85
Statistical error 050 147 0.18 0.10 0.19 0.33 0.20 0.36 0.03 0.08 0.90 048 5.12
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TABLEII. Low-energy constants obtained from a fit to the empirical s-, p-, and d-wave pion-nucleon phase shifts up to pr, = 200 MeV/c
using partial-wave analysis of Refs. [79,80]. Values of the LECs are given in GeV~!, GeV~2, and GeV 3 for the ¢;, d;, and &;, respectively.

C1 &) C3 a di+d dy ds diy —dis €4 ers €16 e ers
Fit to the GW PWA [79] —1.31 0.11 -2.54 1.85 1.43 —0.90 -0.16 —-2.09 007 —-344 1.65 —-046 047
Statistical error 0.19 0.48 0.08 0.04 0.14 0.19 0.11 0.28 0.02 0.04 0.33 0.17 148
Fit to the KH PWA [80] —1.35 —-0.89 —2.19 1.63 2.08 —2.13 0.45 —3.69 —-0.05 -6.59 722 -—-035 1.88
Statistical error 0.21 0.51 0.08 0.05 0.15 0.20 0.11 0.29 0.02 0.04 0.37 022 1.57

KH analysis and 4.92,0.51,0.37,0.32,0.27,0.11,0.04,0.03,0.02,
0.02,0.01,0.01,0.01 for the GW analysis. One can see that the
first eigenvalue is at least two orders of magnitude larger than
any of the other eigenvalues. This indicates that fixing certain
linear combination of parameters results in very slow changes
in the x 2 even if the individual values of the LECs entering this
linear combination change significantly. This combination is
the corresponding eigenvector and is approximately equal to
—0.1c; — 0.3¢, — 0.1215 + 0.921¢ (the other constants enter

renormalized LECs into A-less (A) and A contributions (A)
via

¢ = ci(A) + ¢i(A),
di = di(A) + di(A),
e = ei(A) + ¢ (A).

Expanding the €' result up to order 1/A, we recover the well-
known results for the ¢;’s [89]

4.12)

with much smaller coefficients). The coefficients are given in A) = 0 A) — 4n3

natural units. We indeed observe that these four parameters () =0, c(a)= 9A’

are strongly correlated and one can obtain fits comparable 4 h? 2 h2

with the best one with those parameters being significantly 3 9A OA .

shifted. The appearance of such a strong correlation among
the parameters reflects the fact that one cannot fully resolve
the energy dependence of the amplitude with a good accuracy
in the low-energy regime. This interpretation is confirmed by

From the 1/A? terms of the order-¢' r N amplitude, we obtain
the A contributions to the LECs d; given by

2

performing a fit to higher energy, namely p; ., = 200 MeV /c; di(A) + dr(A) = 9—AA2,
see Table II. In this case, both the statistical errors and the 2
correlations (including the ones among c;, ¢, €;5, and éj¢) di(A) = ——Az, (4.14)
do become significantly smaller. Unfortunately, the purely 9A2
perturbative approach cannot be expected to be applicable at dia(A) — dys(A) = — 21y
. . . 14 15 = -
such energies as the phase shifts become quite large. 9A

Finally, it is interesting to compare the values of the LECs
with the ones obtained in the A-less approach. As already
pointed out before, one expects to find more natural values
of the LECs in the A-full theory. This is indeed the case, as
one can see from Table III, where such a comparison is carried
out for the KH fits. The situation for the GW fits is similar; see
Table I of Ref. [50]. Comparing the second and the third rows
of this table, one observes a sizable reduction in magnitude
for most of the LECs when the A is included as an explicit
degree of freedom. This raises the question of whether these
differences can be understood analytically. In the following,
we address this question by isolating the contributions of the
A to the various LECs. To this aim, we make a 1/A expansion
of the A-resonance contributions to the 7w N amplitude and
match the expanded expressions to the amplitude obtained in
the A-less theory up to order Q*. We decompose the various

In principle, one could also expect 1/A contributions from
the order-¢2 7 N amplitude. However, all such terms turn out
to contribute to renormalization of i, and do not lead to
resonance saturation of d;. One observes from Table I that the
A contributions explain at least a half of the size of the LECs
dy + dy,ds, and di4 — d;5, which appear to be unnaturally
large in the A-less approach; see also Ref. [78] for similar
conclusions.

To explore A-resonance saturation of the LECs e; from Eff,)v
which enter the order-Q* pion-nucleon amplitude, we need to
analyze the following terms:

(1) 1/A3 contributions from €' amplitude,

2 1/ A? contributions from €2 amplitude (these terms
vanish after renormalization of % 4), and

(3) 1/A contributions from €* amplitude.

TABLE III. Low-energy constants obtained from a fit to the empirical s-, p-, and d-wave pion-nucleon phase shifts using the partial wave
analysis of Ref. [80] and the corresponding A-resonance contributions given in Eqs. (4.13)—(4.15). Values of the LECs are given in GeV !,

GeV~2, and GeV~ for the ¢;, d;, and &;, respectively.

cl 2 3 Cy d +d> ds ds diy —dis ey eis 6 e g
0*, KH PWA [80] —0.75 349 —477 334 6.21 —6.83 0.78 —12.02 1.52 —-1041 6.08 —-0.37 3.26
e+ 0* KHPWA [80] —085 045 —191 1.49 2.07 —245 0.66 —3.86 —0.12 —7.05 339 -—-038 2385
A contribution 0 281 —2.81 1.40 2.39 -239 0 —4.77 1.87 —4.15 4.15 -0.17 1.32
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The complete contribution of the A to these LECs is given by a sum of these terms and has the form

5 2 2A
(8183 — 5084 g1 +25¢7)log )

/g

e14(A) U 74101 24
e = — 0 — 1,
4 864 F272 A &\,
h? h?
e15(A) = ——4— — A 3969 g2 — 4050 1225 g%),
as(B) =~ gas 839808an2A( 8a gag1+12258))
2 2
Z16(A) = —4 A 3969 g2 — 4050 1225 g?),
#16(4) 18A3+839808F;n2A( 84 ga 81 +1225¢1)
_ h’ 2A
el7(A):_—1728F2]'[2A 1+210g E ,
h? h?
Z13(A) = —4 A 2025 g2 + 3456 h% — 450 425 g*
Z18(4) 36A3+839808F3n2A( 4t A 8481 +42587)
M (28
108 F2 72 A M,
1 h>
219(A) = S836(A) — 2235(A) = —m(m + 1296 g5 + 400 g7)
n’ 5 ) 2A
— A (-334+81g%—50 25g¢%) log [ =— ),
T Sisarzaza 088~ 08ag +25g1) log | -
-A-A—L812252——%4
20(A) +855(A) = g (8184 +2581) — s o1
1 h2
2r1(A) — —37(A) = ————A (72 —999 g2 + 384 h2 + 750 —175¢%
e 1(A) 2637( ) 62208F7$712A( gx+ 4+ 84 & st)
n2 2A
— 4 (2441352450 —25¢%)log | =— ),
T l0368 Fiaza 413981+ 08081 = 254)) 0g<Mn)
h? 2A
en(A) —4deg(A) = ———2 | 14+1log | =—)|. 4.15)
T2 F2 72 A M

The appearance of logarithms of the physical pion mass in
the above expressions is due to our choice of the renormal-
ization scale & = M, in the definitions of ¢;, d;, and &;. The
LECs &;5(A),216(A), and &,g(A) receive 1/A* contributions
from the order-e! 7w N amplitude. Numerically, these terms
dominate over the loop contributions (as one would expect
from naive dimensional analysis) and explain a half of the size
of the LECs é;s,€;¢6, and €3, which appear to be unnaturally
large in the A-less theory; see Table III. It is comforting to
see that the A contributions to the LECs ¢;, d;, and &; given
in the above expressions, whose numerical values are listed in
Table III, are in a very good agreement with the differences
between the A-less and A-full fits. Clearly, one should not
expect this agreement to be perfect since the A contributions
to the amplitude involve terms beyond the order-Q* A-less
result. Our findings, however, indicate that these resummed
contributions are likely to be small and the most important
terms are well represented by the A-resonance contributions
to the LECs ¢;, d;, and é;.

Last but not least, we emphasize that the (linear combina-
redefinition of ¢;’s [see Eq. (4.9)] do receive contributions due
to the A resonance [see Eq. (4.15)]. Assuming that these LECs

(

are saturated by the A, we may estimate the shifts in the ¢;
induced by absorbing these order-Q* contributions via

F2

g

2 f - _ l3c
C1—>Cl—‘r2Mn ey —4desg + s
2 = 3 — 8 M2 (8 + &35),
c3 = 3 —4AM:2(2819 — &2 — &),
cy — cqg —4M2(Q2éy — &37). (4.16)
Since the A-resonance contributions to the induced shifts of
c;’s start with the loop corrections and do not have any 1/A3

contribution from the order-¢! terms, the induced shifts appear
to be rather small:

2 M2 [@(A) ~ () + 205

T

} = —0.10GeV~!,

—8 M2[20(A) + &35(A)] = —0.14GeV ™!,
—4 M2[2215(A) — e3p(A) — E36(A)] = 0.10GeV !,
—4 M2[22,(A) — e37(A)] = —0.26GeV ™.
4.17)
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V. A(1232) CONTRIBUTIONS TO THE TWO-PION
EXCHANGE 3NF

After these preparations, we are now in the position to discuss
the contributions to the two-pion exchange 3 NF emerging from
the intermediate A excitations up to the leading one-loop order
(i.e., N°LO).

In the isospin and static limits, the general structure of the
two-pion exchange 3 NF in momentum space has the following
form (modulo terms of a shorter range; see Ref. [50] for more
details):

014103 g3
[af + M2][q5 + MZ]
+ 1173 T2q1 X g3 - 02 B(g2)],

Vor = [t1- 73 Alg2)

G.D

where o; (;) denote the Pauli spin (isospin) matrices for the
nucleon i while g; is the momentum transfer, g; = p; — p;,
with p/ and p; being the final and initial momenta of the
nucleon i. Here and in what follows, we use the notation
gi = |g;|. Unless stated otherwise, the expressions for the 3NF
are given for a particular choice of the nucleon labels. The
complete result can then be obtained by taking into account all
possible permutations of the nucleons,

Vil = Vi + 5 permutations. (5.2)

The quantities A(g) and B(g;) in Eq. (5.1) are scalar functions
of the momentum transfer ¢, of the second nucleon whose ex-
plicit form is derived within the chiral expansion. In the A-less
framework, this expansion starts at N>L.O which corresponds to
the order Q3. The explicit expressions for A(g,) and B(q,) up
to N*LO, i.e., up to order QS, can be found in Ref. [50]. In the
A-full framework, the leading contributions are shifted from
N2LO to NLO, i.e., to order €2. These leading A contributions
have the form

AQ(q2) = _sam (M2 + 43)
18A 2\
21,2
gah
B = (5.3)

and are known to provide the dominant long-range mechanism
of the 3NF [52]. There are no contributions of the A to A(g;)
and B(q») at N2LO [59], i.e., at order €7, except for the shift of
the LEC h 4 as discussed in Sec. IV; see Eq. (4.1). AtN3LO (¢*)
one has to take into account the contributions emerging from
the diagrams shown in Fig. 8. These graphs are analogous to
the A-less ones shown in Fig. 2 of Ref. [40] but involve at least
one intermediate A excitation. Notice that in contrast to that
work, we do not show in Fig. 8 certain diagrams which yield
vanishing results for the sake of compactness. This concerns,
for example, one-loop graphs leading to integrals involving an
odd power of the loop momentum to be integrated over.

The last three diagrams in Fig. 8 contribute to renormal-
ization of the pion field and the lowest-order pion-nucleon
and pion-nucleon-A vertices and also give rise to the cor-
responding Goldberger-Treiman discrepancy relations. These
contributions are automatically taken into account by express-
ing the 3NF in terms of physical quantities and using the
effective values of the LECs g4 and k4 which account for

the Goldberger-Treiman discrepancy; see the discussion in the
previous section. We are therefore left with one-loop diagrams
constructed out of the lowest-order and tree-order graphs which
involve a single insertion of the 1/m y vertices which give rise
to the leading relativistic corrections. We remind the reader that
the power counting scheme used to derive the nuclear forces
and currents in Refs. [32,35,37,40,41,45,46,50,51,90-93]
makes the assignment Q/my ~ Q?/ Ai for the nucleon mass;
see Ref. [94] for more details. This implies that 1/m y correc-
tions to the nuclear forces and currents are shifted to higher
orders compared to the corresponding static contributions.?
In particular, the leading relativistic corrections appear at the
same order with the leading one-loop diagrams.

It is important to keep in mind that, in order to derive
the genuine 3NF contributions, one needs to separate the
irreducible parts in the corresponding amplitudes in order to
avoid double counting when iterating the potentials in the
scattering equation. While this can be achieved in different
ways (see Ref. [95] for more details), we employ here the
method of unitary transformation which was first applied in
the context of chiral EFT in Ref. [96]. A comprehensive
discussion of this approach can be found in Ref. [97]. The
same method was used in our earlier work on the derivation
of the three- [40,41,50,51] and four-nucleon forces [45,46]
and electroweak nuclear current operators [91-93]. We remind
the reader that in this approach one first applies the canonical
formalism to the effective chiral Lagrangian expressed in terms
of renormalized fields to derive the Hamilton density in the
pion-nucleon sector. In the second step, one decouples the
purely nucleonic subspace of the Fock space from the rest via
a suitably chosen unitary transformation. The determination
of the unitary operator and the resulting nuclear potentials is
carried out perturbatively within the EFT expansion. Clearly,
there is always certain ambiguity in the choice of the unitary
operator. However, as was found in Refs. [45,46], most of
the choices of the unitary operator lead to nuclear potentials
which cannot be renormalized, i.e., the corresponding matrix
elements involve ultraviolet-divergent integrals even after ex-
pressing all LECs in terms of their physical values. While
this is, of course, not a fundamental problem since nuclear
potentials do not correspond to observable quantities, it is
desirable to have a well-defined and finite nuclear Hamiltonian.
Enforcing renormalizability at the level of the Hamiltonian
strongly restricts the unitary ambiguity mentioned above. In
particular, the renormalizability requirement was found to lead
to an unambiguous result for the static parts of the three-
[40,41,50,51] and four-nucleon potentials [45,46], while the
leading relativistic corrections still depend on two arbitrary
constants, which parametrize the unitary ambiguity at this
order in the chiral expansion [41]. Explicit expressions for
the nuclear Hamiltonian in the operator form after fixing the
unitary ambiguity up to N*LO in the A-less approach can be
found in Refs. [41,46,50].

To employ the method of unitary transformation within the
small-scale expansion one can follow the lines of Ref. [46]. The

INotice that the same power counting is employed to determine the
LECs from pion-nucleon scattering in Ref. [50] and in this work.
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FIG. 8. Two-pion exchange 3N diagrams involving intermediate A excitations at N>LO. Solid dots and filled rectangles denote vertices
from £, + £, 4 + L9, and L), + L£E), ., respectively. Open rectangles refer to 1/m vertices from £, + £}, . Diagrams which result
from the interchange of the nucleon lines and/or application of the time-reversal operation are not shown. Also not shown are diagrams which
lead to vanishing contributions to the 3NF. For the remaining notation, see Fig. 2.

crucial difference is that one now needs to decouple not only
pions but also the A degrees of freedom. As discussed in that
work, it is convenient to start with the minimal parametrization
of the unitary operator using the ansatz proposed by Okubo
[98]; see Eq. (2.12) of Ref. [46]. Using this parametrization, the
unitary operator can be calculated via a perturbative solution
of the decoupling equation (2.13) of Ref. [46] within the small-
scale expansion. The resulting rather lengthy expressions for
the A contributions to the nuclear force in the operator form
are not listed in this work but can be made available as
a MATHEMATICA notebook upon request from the authors.
Notice further that the resulting nuclear Hamiltonian is defined
unambiguously within this ansatz but is not renormalizable as

explained before. Following the lines of Ref. [46], we exploit
the unitary ambiguity to ensure renormalizability of the nuclear
potentials. This is achieved by applying all possible additional
unitary transformations acting on the nucleonic subspace of
the Fock space which can be constructed at a given order in
the SSE; see Ref. [46] for more details. The corresponding
transformation angles are to be chosen in such a way that the
resulting Hamiltonian is finite. In the A-less approach, we had
to introduce six such additional unitary transformations (plus
two more transformations involving 1/m y corrections) whose
generators are given in Ref. [46] (Ref. [92]). The inclusion
of the A excitations in the intermediate states allows for
much more flexibility in the construction of the additional
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unitary transformations. In particular, we were able to write
50 anti-Hermitian generators S7*, which are listed in Eq. (A4).
The corresponding unitary transformations generate additional
contributions to the nuclear Hamiltonian which depend on
50 real parameters o*. In order to derive nuclear potentials,
one has to evaluate the corresponding matrix elements of
the nuclear Hamilton operator written in second-quantized
form. Calculating the 3NF contributions, expressing them
in terms of physical parameter, and requiring that there are
no ultraviolet divergencies lead to constraints on aiA, which

J

are given in Eq. (AS). In particular, we find that 23 specific
linear combinations of the otl.A’s have to vanish. While these
constraints obviously do not allow for a unique determination
of these parameters, we find that they lead to an unambiguous
result for the 3NF, which does not depend on any of the
undetermined linear combinations of o*’s.

We now turn to the results for the 3NF and consider first
the static terms. We obtain the following contributions of the A
isobar to the functions .Ax(g2) and Ba(g2) at leading one-loop
order:

2h2
AD(go) = _139%‘2‘%(815 (40A* +34M* — x AM? — 13A°M2)(2M2 + ¢)
— 4508481 (8AY +2M2 — T AMZ — SA*M2)(2M? + q3) + 36A(20mh% M (2M2 + ¢3)
— 27(2AM; — N)(M? +2¢3)) + 2581 (40A* + 34M7} — 17w AM; — 13A°M2)(2M2 + g3))
gihi AD M2 4202V (=2 A2 + 2 M2 2 8/24h§x AL M2 4242
* aan2Fo (@) (M7 +243)(=24° +2M; +q3) — Ta4n F6 (@2)(M; +2¢;)
272
gala 2 4 4 _ 242 2 2
+ 39968m2aFe 1O (B183 (4047 +34M; — 4TAMZ) My + )
— 4508481 (8A* +2My — TAPMZ) (2M + 43) + 2587 (40A* + 34M; — 4TA°M) (2M;, + 43)
272
gah 2A
— 1944A% (M2 — A?)(M2 +243)) + WJTAZF;A log (E) (M2(1620g3 — 1800g4g1 + 500g7 + 729)
+ 245 (4055 — 4508481 + 125g7 + 729)),
272
@) 8ah
By(q2) = WM(?&@% (S8A* +34M* — 7 AM3 +50A%M2)

— 4508481 (10A* + 10M} — ST AM; +2A*M7) — 144h% (—16A* + 8M} — 9w AM? + 16A*M?)
+ 250A%g? + 850g7M* — 4257 AgIM2 + S0A%gI M2 — 972A°M?)

576m2F8 " P P T 0) T g e A L@
2,2
gahi 4 2 4 4 2302 4 4 N
————2=——H(0)(486A" + 81g4 (29A™ + 17TM_ + 8A“M;) — 450 SA"+5M; —4A°M
130968 2aTFs 1 (O(480A" + 81g4 (204" + 17M + BATM,) — 450gag1(SA + SM; 2)

—576h% (=2A% + M2 + A*M2) + 125A%g] +425g7 M — 400A% g7 M2 — 486 A M)

2 p2 2A
EATA___ A Jog (-)(2349gi —2250g4g1 + 1152h3 + 125g7 +972),

13996872 FS M,

54)

where we use the notation for the various loop functions introduced in Ref. [57] which, in the case of dimensional regularization,

reads

L(q)

_ Va* +4M? n Var+4M2 +q

D(q) 1/00 il
q) = — 5
A Jom, g% + 1?

arctan

oM,

T (5.5)

AM?Z +2q% — AN?
H@) = i aar L@ — L2 87 = M3)].
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The expressions for the loop functions resulting in the framework of spectral function regularization introduced in Ref. [99] can
be found in Ref. [58]. 1/A expansion of the loop functions is given by

—L(g)+1log (32) +1  —3L(@)(4M] +¢*) +3(6M; + ¢*) log (57) +3M? +¢°
N + T2A* |
—10L(q)(4M2 + ¢%)° — 15M2 + 10M24> + 10(30M} + 10M24> + ¢*) log (22) + 24
+ 16004
2MZ —4 MZlog(3) TMi—12M7log (3) = 74M§ — 120MS log (37)
8A2 T 32A4 * 384A6

D(q) =

+0(1/A%,  (5.6)

HO0)=1—log (2—A)+ + O(1/A%).
M
These expressions indicate that the log( AY terms in Al )(qz) and B )(qg) are essential for vanishing of A )(qz) and BY )(qz) in
the A — oo limit as required by the decouphng theorem. Notice further that the two-pion exchange diagrams shown in Fig. 8
also induce shorter-range contributions, which will be discussed in a separate publication.
The static contributions discussed above depend only on the momentum transfers ¢; and are therefore local. It is thus natural
to switch to the coordinate space representation of these 3NF terms. The Fourier transform of a local potential is given by

d’q d’q3
(2m)3 2n)3

where 7;; = F; — r; is the distance between the nucleons i and j. For the two-pion-exchange contribution, we obtain from Eq. (5.1)

Vin(Fia, F3) = / e BT (G, G3), (5.7)

Vo (Fi2, F32) = =01 - Vi2 63 - Vi[t1 - T3 A(F12,732) — T1 X T3 - T2 Vio X V3o - 63 B(F12,732)]. (5.8)

Here and in what follows, the differential operators %l‘j are defined in terms of dimensionless variables X;; = r;; M, while the
functions A and B are defined via

2 o dq dPqy - 1 1

A , = g2 ,lq3r3 A ,
(r12,732) am)y ) ¢ e MM (42)

e Py gz iz i 1 1

B , = 1qi1-r2 ,lq3r3 B . 5.9
(7’12 }’32) (27.[)3 (27.[)3 ¢ € q12 + szr q% + M7.2[ (qZ) ( )

To perform the integrations, we employ the spectral-function representation of the functions .4 and BB. The only nonpolynomial
in g, terms in Eq. (5.4) emerge from the scalar loop functions L(g,) and D(qg,). Their spectral-function representation is given by

L) i = 4M2

o0
L(qz>=1+q§/ anEE i) =

oM, 4R u? ’
00 2 2
o) 1 W= 4 M
D(qy) = / d , (u) = —arctan | — |]. (5.10)
q2 - Mq§+u2 Pp( A A
Therefore, the Fourier transform of the 3NF terms involving these functions can be written as
P Pgy iag, iai 1 1 M?
1q1-ri2 ,iq3-r3 L — U U
@) any e P Ve Ve (q2) = an)y 1(x12)U1(x32)
M,
T any (Vi2 + Va)? /d3XU1(|X12 + XDU1(|¥32 + XD Vi(x),
d3ql d3(I3 ei(]l-?lz eic;3.f32 1 1 D(q ) — ; / d3x U (|)‘C' _i_)‘c")U (|)_C’ + £|)Q (x) (5 ]1)
@n)} @my MG+ M2 Gy nee nee i '

where the profile functions are given by

4 d3q £l4x/Mx e
Uitn) = -~ S T 1
M, ) Qr) q+ M: X

4 d*q .- o0 ‘W
Vi(x) = e"f’x/Mﬂ/ ,/ / d,u V2 —4, (5.12)
: M, ] @n) M, e rew
[e'S) — X M M / —4
Ql(x)=/ due —arctan( M—)
2 X A A

2
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We are interested here only in the long-range terms and therefore restrict ourselves to the case  Xij # 0. All terms involving
positive powers of momenta ¢; and g3 can be expressed through gradients —i M, Vlz and —i M, V32 which can be taken out of

the integrals.
For the NLO delta contributions to 3NF, we obtain the following coordinate-space expressions:

2,2
e P L 67/ S \2
AN (Fr2,r3) = MMn[(VIZ + V32)" = 2]U1(x12) U1 (x32),
BOGr Ty = gihi 6
A (r12,732) = mMnUl(xlz)Ul(xn)- (5.13)

The N3LO A contributions have the form

g3

AL (1, r) = WM; (243A4[2(% + Va2 = 11{2A% + M2[(Viz + V2)? — 21} Q1(F12,%32)

+ 7 M? (-25g12[(%12 + V32)? = 21(40A*[H(0) — 1] 4 34[H(0) — 11M?
+ AY13 — 4TH(0)IM? 4 170 AM3) + 1944A2[H(0) — 11[2(V12 + Vn)? — 1]1(M2 — A?)

- - =d =d ZA
+4A*729[1 — 2(Vi2 + V3)*] — 25087 (V12 + V32)* — 2]} log (M—>> U (xlz)Ul(X32))

272

—h Y, v ~ < - >
+ 92fgn?F6 AMZ(Vio + V)’ [1 = 2(Viz + V)’ Vi (12, 332)

4h2 N N
S MV + Vi) = 20Uy (k1)U <x32><40A“[H(0> — 1]+ 34[H(0) — 1M}

2A
+ A?[13 — 47TH(0)IM?* + m AM? 4 40A* log (M—))

2530581

mm [(Vi2 + V32)? = 21U; (x12)U, (x32><8A4[H(0) — 1]+ 2[H(0) — 1]M*

2A
+ A*[5 — TH(O)IM? + t AM] + 8A* log (M—>>

S (s + 90 — 2001 (1)U (),
1555273 A2F8 ™
~@ gﬁhﬁ 6 > N2 gihﬁ 4 2 210 S N2
B (Fio,Fp) = ——=4244 __ AMOV A% s —2 S AM4A Mz[(V Vv —4 ,
A (r12,732) 1843275 2 (Vi2 + V) Vi(x12,x32) + 3686475 F6 p| + M [(Vi2 + V3) 1} Q1(x12,x32)
gihi 6 4 4
- MU U S58A[H(0) —1 34[H0) — 1M
552067 ATES T 1(x12) 1()632){ [H(0) — 1]+ 34[H(0) — 1]M;
294 h? 2A
2 2 3 Alta 6
+2A°[8H(0) — 25IM; + T AM } — 76487 6 AM2U (x12)U)(x32) log w
258}1’1%\81 6 4 4
—a = MU U 10A"[H(0) — 1 10[H(0) — 1M
2488327 ATFS 7 112) Uy (x) | [H(0) — 1]+ 10[H(0) — 1]M
125g3 h2 g1 2A
2 2 3 Alta 6
— 2A°[4H(0) + 1IM; + 57 AM; } + 12441679 F5 AMCU\(x12)U(x32) log "
gihi 6 4 4
—c L MU U —16A"[H(0) — 1 S8[H(0) — 1]M
311047 ATES 7 1(x12) U1 (x32){ [H(0) — 1] + 8[H(0) — 1]M;

ZSgAh2 s 6 A
m g MU (x12)U) (x32) (10A*[H(0) — 1]

+ 34[H(0) — 11M; — 2A*[16H(0) + 1IM? + 177 AM3)

+ 8A’[H(0) — 21M: + 9 AM } —
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FIG. 9. Chiral expansion of the functions .A(g,) and 5(g,) entering the two-pion exchange 3NF in Eq. (5.1) in the A-full and A-less
theories. Left (right) panel shows the results obtained with the LECs determined from the fit to the KH [80] (GW [79]) partial-wave analysis
of pion-nucleon scattering as explained in the text.

gahi 6(ns2 2 gihs 6 2A
2608774 A F6 M2 (M — A*)[H(0) — 11U (x12)Uy (x32) — 19444 6 AMZ U (x12)U1(x32) log R
b P e
125gih124g% 6 2A gihi 6 IA
~ 577040036 AM. 1 — | - ———AM 1 -— 14
223948874 F 2U1(x12)U1(x32) log M 23047 F6 2U1(x12)U1(x32) log i) (5.14)

where the scalar integrals Q1 (X12,X32) and V;(X12,X3,) are defined as
Q1(X12,X3) = /d3x Ur(1X12 + XDUL (X352 + X)) Q1(x),
Vi(X12,X3) = /d3x Ui(|X12 + XDU (1X32 + XD Vi(x). (5.15)

At N3LO one also has to take into account relativistic corrections. Nucleonic contributions are already discussed in Ref. [50].
Here we give only the corresponding A contributions from the diagrams (36)—(39) of Fig. 8 proportional to 1/my:

- s o - 2 2
q1 0193 - 03 8aha

Ty Ta[—4G1 - G3) +iQky Gy — K1 -Gz + k3 - G1 — 2K3 - §3)1 - Ga X &
[q%+M§][q§+M§]72A2F;‘mN{ 1 T3[=4q1 - q3)" + ik g1 — ki - g3+ k3 - q 3-93)q1 - g3 X 02]

Vor 1ymy =

—ig- @1 -T2 x 132k -Gy — ki - Ga + ks - Gy — 2K - 3 — i - Gs X 52 (5.16)
At this stage several comments are in order:

(1) There are no contributions from 1/my corrections to pion-nucleon and pion-nucleon-A vertices since both of them are
proportional to zeroth components of momenta and for this reason vanish in the kinematics relevant for nuclear forces.
This argument is, however, only applicable to irreducible topologies since the corresponding 3NF contributions can be
calculated using Feynman rules. All diagrams with intermediate A excitations involving 1/m y corrections to pion-nucleon
or pion-nucleon-A vertices are indeed irreducible. The situation is different in the case of nucleonic contributions, where
we used the unitary transformation technique to extract the corresponding irreducible pieces; see Ref. [41] for more details.

(2) Since the Fujita-Miyazawa 3NF corresponds to an irreducible diagram, we cannot construct additional unitary transfor-
mations which would affect relativistic corrections to it. For this reason, the expression in Eq. (5.16) is unambiguous.
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Deltaless EFT Deltaful EFT

FIG. 10. Profile functions F4(r), Fs(r), Fi5(r), and Fi6(r) in units of MeV generated by the two-pion exchange 3 NF topology in the A-less
approach of Ref. [50] (left panel) and in the A-full approach of the current work (right panel). The dash-dotted, dashed, and solid lines are the re-
sults of the calculation at order Q3(e®), Q*(e*), and Q°(e*+Q°), respectively. The bands indicate the purely nucleonic contribution at
order Q°.

This is, again, different for nucleonic contributions, where additional unitary transformations can be employed and the
corresponding relativistic corrections do depend on arbitrary parameters Bg and Bg [41].

(3) Finally, we emphasize that Eq. (5.16) is consistent with the resonance saturation of the nucleonic N SLO two-pion-exchange
tree-level diagram with one of the vertices taken from the order- Q* N -Lagrangian proportional to d;. Indeed, if we replace
the d; constants of this diagram with their resonance saturation values given in Eq. (4.14), we reproduce the result of
Eq. (5.16).

In coordinate space, the corresponding relativistic corrections are given by

21 2247

Vow iy = — S M G S G 53V Vart1 - T2 X To(—2h - Vo + Fr - Vi — -V

imy = TTspm2pi iy V12 01V 03(Viz - VT - T2 X T 1-Vio+ki -V —k3-Vpp
+2K3 - Vag + My Vip - Vay X 32) 4 71 - 132k - Vig — ki - Vg + k3 - Vig — 2k3 - Vi) Via - Vg X &,
+4M(Viz - Vi)’ 11 - T3) U1 (x12) U1 (x32). (5.17)
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FIG. 11. Profile functions Fi7(r), Fis(r), Fio(r), Foo(r) in units of MeV generated by the two-pion exchange 3NF topology in the A-less
approach of Ref. [50] (left panel) and in the A-full approach of the current work (right panel). The dash-dotted, dashed, and solid lines are
the results of the calculation at order Q°(e?), Q*(e*), and Q3(e* + Q°), respectively. The bands indicate the purely nucleonic contribution at

order Q°.

VI. DISCUSSION

Having constructed explicitly the two-pion-exchange A-
full three-nucleon force and having determined all the relevant
low-energy constants, we are now in the position to analyze
the convergence of chiral expansion for the long-range part
of the 3NF. In Fig. 9, we show the results for the functions
A(q) and B(q,) for small values of the momentum transfer g5,
q>» < 300MeV at various orders in the small-scale expansion.
In addition to the €2, €3, and € results, we show also the results,
where the purely nucleonic contributions of order Q° are added
to the €* result in order to compare it with the A-less N*LO

calculation from Ref. [50] (double-dash-dotted lines in Fig. 9).
One should, however, keep in mind that this is not a complete
€’ result. We use here at all orders the low-energy constants
¢;, d;, and &; determined from the order-¢> + Q4 fit to the
KH and GW partial wave analyses as described in Sec. IV
and listed in Table I. We also adopt the same conventions
regarding the LECs as in the case of pion-nucleon scattering;
see Egs. (4.9) and (4.11). Notice that although some of the ¢;
constants (&is,16,18) are rather sensitive to a particular choice
of the partial wave analysis in pion-nucleon scattering (see
Table I), the functions A and B depend only on the LECs
€14,17, which are quite stable.
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FIG. 12. Profile functions F;(r) in units of MeV generated by the two-pion exchange 3 NF topology in the A-less approach of Ref. [50]. The
dash-dotted, dashed, and solid lines are the results of the calculation at orders Q3, Q*, and Q°, respectively. The bands indicate the difference

between the A-less-Q? result and the A-full result at order €* + Q°.

One observes a fairly slow convergence for the functions
A(g>) and B(g,) when going from order € to €*. On the
other hand, the difference between the results at orders €* and
e* 4+ @3 is small for the function B(g,) and almost negligible
for the function .A(g;), which may indicate that convergence
is reached at this order. Making a more definite statement
about the convergence would, however, require performing a
complete €3 derivation of the 3NF.

It is also comforting to see that the results at order e* +
Q? are very close to the A-less calculation at order Q°. This
indicates that the contributions of the A-isobar to the two-pion
exchange 3NF topology can be well represented in terms of
resonance saturation of the LECs ¢;, d;, and ¢; at N*LO in
the A-less approach. This also indicates that nucleonic terms

at order Q° and higher saturated by the double- and triple-A
excitations are small.

Another instructive way to quantitatively analyze the ob-
tained three-nucleon forces is to look at the structure func-
tions JF;(r12,723,r31) for the equilateral triangle configuration
of the nucleons given by the condition rjp =ry;3 =r3 =7
[51]. Structure functions F;(ry2,r23,r31) are the coefficients
in the expansion of a general local three-nucleon force in
the basis of 20 operators ,C';i (for their explicit form, see
Ref. [100]):

20
Vin' = Z Gi Fi(ri2,r23,r31) + 5 permutations.

i=1

6.1)
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Only 8 out of 20 structure functions do not vanish for the
two-pion-exchange topology, namely Fu, Fe, Fis, Fi6, F17
Fis, Fio, and Fyg. Our results for these structure functions are
visualized in Figs. 10-12.

We first comment on the convergence pattern of the chiral
expansion for the A-less (A-full) scheme (see Figs. 10 and 11)
by looking at the tree-level results and at the results at orders
0* (¢*) and Q° (¢* + Q7). We observe a better convergence of
the A-full approach, which is reflected in significantly smaller
bands on the right panels of Figs. 10 and 11, which indicate
the size of the purely nucleonic contributions at order Q. This
means that the large loop contributions at order Q° in the A-less
theory reported in Refs. [50,100] are, to a considerable extent,
saturated by the lower order (¢*) contributions in the A-full
scheme. As the distance increases to r ~ 2.5-3.0 fm, the
results at all orders get closer together for both the A-less and
A-full approaches, fully in line with the general expectation
that the chiral expansion converges most rapidly at large
distances.

It is also instructive to compare with each other the re-
sults within the A-less and A-full approaches at the highest
considered orders Q3 and €* 4+ Q3, respectively. As shown in
Fig. 12, the A-isobar contributions to the structure functions
Feo, Fies F1s, F19, and Frq are almost completely given by the
resonance saturation of the corresponding LECs. Indeed, the
bands indicating the difference between the order-Q> A-less
and order-(¢* + Q°) A-full results are almost invisible in those
cases even at relatively short distances of r ~ 1.0-1.5 fm.
For the functions F;5 and F;7, the saturation at this chiral
order explains only a part of the A contributions. For the
JF4 function, the A-less and A-full results turn out to be of
a different sign at short distances. Notice, however, that the
corresponding structure function is rather small in magnitude
as compared to other ones. For larger distances of » ~ 2.5-3.0
fm, the saturation pattern improves and holds true for all
structure functions. This means that A-resonance saturation
of the A-less contributions at orders beyond Q, emerging
from the considered diagrams at order e* 4+ 07, leads to small
effects for the two-pion exchange 3 NF topology. This may be
considered as yet another indication of the convergence of the
theory at orders Q3 and €* + Q°.

VII. SUMMARY AND CONCLUSIONS

In this paper, we have analyzed the longest-range con-
tribution to the three-nucleon force at N3LO utilizing the
heavy-baryon formulation of chiral EFT with pions, nucleons,
and As as the only explicit degrees of freedom. The pertinent
results of our study can be summarized as follows:

(1) We worked out in detail renormalization of the lowest-
order effective chiral Lagrangian at the one-loop level.

(2) Employing renormalization conditions which maintain
the explicit decoupling of the A isobar, we derived the
A contributions to those LECs ¢;, d;, and &; from
the effective Lagrangians L’f])v, ES,)V, and Cﬁj])\, which
contribute to pion-nucleon scattering at the considered
order.

(3) Inorder to determine the LECs ¢;, d; and &; contributing
to the 2 -exchange 3NF, we reanalyzed pion-nucleon
scattering at order > + Q* employing the same power
counting scheme as in the derivation of the nuclear
forces and using the same fitting protocol as in the
A-less analysis of Ref. [50]. We used the available
partial-wave analyses of the pion-nucleon scattering
data to determine all relevant LECs. The resulting
values turn out to be rather stable and consistent with
our A-less analysis reported in Ref. [50].

(4) We worked out the N’LO A contributions to the 27-
exchange 3NF. The unitary ambiguity of the Hamil-
ton operator is parametrized by 50 additional unitary
transformations. After imposing the renormalizability
constraint, i.e., the requirement that the resulting 3NF
matrix elements are finite, the expressions for the 3NF
appear to be defined unambiguously. These findings
pave the way for the derivation of the remaining
3NF contributions at the same order, which are not
considered in this paper.

(5) The obtained results for the 277 -exchange 3NF at N3’LO
of the SSE are in good agreement with the N*LO
calculations of Ref. [50] within the A-less approach.
The agreement becomes even better when adding the
nucleonic contributions at order N*LO to the expres-
sions at N°LO of the SSE. This indicates that the effects
of the A isobar for this particular topology are well
represented by resonance saturation of the LECs ¢;, d;,
and &; at N*LO in the A-less approach.

The presented calculations should be extended to the
intermediate-range topologies, where we do expect significant
contributions of the A to be still missing in the N*LO analysis
of Ref. [51] within the A-less framework, as well as to short-
range contributions. Work along these lines is in progress.
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APPENDIX A: UNITARY AMBIGUITY OF THE 3NF AND
CONSTRAINTS IMPOSED BY THE
RENORMALIZABILITY REQUIREMENT

To derive the effective potential, we use the method of
unitary transformation. A detailed discussion of this approach
including the explicit form of the unitary operator at low orders
in the chiral expansion can be found in Ref. [46]. As explained
in Sec. V, this method can be straightforwardly extended to
carry out calculations within the A-full chiral EFT approach.
In this appendix, we discuss the restrictions on the choice of
the unitary transformation imposed by the condition that the
resulting nuclear Hamiltonian is renormalizable.
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We first specify our notation. The indices in the interaction
vertices H a('(b) c.a.c have the following meaning:

a = Number of pion fields

b = Number of outgoing nucleons

¢ = Number of outgoing As

d = Number of incoming nucleons

e = Number of incoming As
k=d+3b+c+d+e)+a—4 (A1)

where d is the number of derivatives at a given vertex. We
also introduce the projection operators 1 and A onto the
purely nucleonic and the remaining parts of the Fock space,
respectively. These operators satisfy the usual relations 7> =
n, A2=x nAi=in=0, and A +7n =1. We also need to
differentiate the states from the XA subspace by introducing the
operators A*?, where a and b refer to the number of pions and
As in the corresponding intermediate state, respectively. The
total energy of the pions and As in the corresponding state will
be denoted by E o = O(e).

As pointed out in Sec. V, renormalizability of the nuclear
Hamiltonian is achieved by performing all possible n-space
unitary transformations after decoupling of pions and deltas
by means of the (minimal) Okubo-type unitary transformation.
Such additional unitary operators have a general form

U =¢’, (A2)
where S is an anti-Hermitian operator (ST = —S) acting on the
n space. We parametrize the operator S as

S—Za,S +ZaAsA (A3)

where o; and aiA are real numbers. The operators S; include
only nucleon degrees of freedom and have already been
discussed earlier [46,50]. We now give 50 operators Sl-A which
include A contribution:
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The requirement that the A contributions to the 3 NF are renor- ol — sy +ag — % =0,
malizable leads to the following constraints on the coefficients ‘
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the pion-nucleon scattering matrix at first three orders in €
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