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Ulf-G. Meißner,10,11,12 A. Nogga,11 R. Roth,7 R. Skibiński,6 K. Topolnicki,6 J. P. Vary,9 K. Vobig,7 and H. Witała6

(LENPIC Collaboration)
1Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA

2Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
3TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, V6T 2A3, Canada

4Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-44780 Bochum, Germany
5Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA

6M. Smoluchowski Institute of Physics, Jagiellonian University, PL-30348 Kraków, Poland
7Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany

8Department of Physics, Faculty of Engineering, Kyushu Institute of Technology, Kitakyushu 804-8550, Japan
9Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA

10Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn, Germany
11Institut für Kernphysik, Institute for Advanced Simulation and Jülich Center for Hadron Physics,

Forschungszentrum Jülich, D-52425 Jülich, Germany
12JARA-High Performance Computing, Forschungszentrum Jülich, D-52425 Jülich, Germany

(Received 19 March 2018; revised manuscript received 21 June 2018; published 27 July 2018)

We employ a variety of ab initio methods, including Faddeev-Yakubovsky equations, no-core configuration
interaction approach, coupled-cluster theory, and in-medium similarity renormalization group, to perform a
comprehensive analysis of the nucleon-deuteron elastic and breakup reactions and selected properties of light
and medium-mass nuclei up to 48Ca using the recently constructed semilocal coordinate-space regularized chiral
nucleon-nucleon potentials. We compare the results with those based on selected phenomenological and chiral
EFT two-nucleon potentials, discuss the convergence pattern of the chiral expansion, and estimate the achievable
theoretical accuracy at various chiral orders using an approach to quantify truncation errors of the chiral expansion
without relying on cutoff variation. We also address the robustness of this method and explore alternative ways
to estimate the theoretical uncertainty from the truncation of the chiral expansion.
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I. INTRODUCTION

Nuclear forces have been extensively studied within the
framework of chiral effective field theory (EFT) over the
past two decades; see Refs. [1,2] for review articles. In this
approach, two-, three-, and more-nucleon forces are calculated
from the most general effective Lagrangian order by order in
the chiral expansion, i.e., a perturbative expansion in powers
of Q ∈ {p/�b, Mπ/�b} with p, Mπ , and �b referring to
the magnitude of the typical nucleon three-momenta, the pion
mass, and the breakdown scale, respectively.

Most of the calculations available so far utilize the heavy-
baryon formulation of chiral EFT with pions and nucleons
being the only active degrees of freedom and make use of
Weinberg’s power counting for contact interactions based on
naive dimensional analysis [3,4]; see, however, Refs. [5–10]
and references therein for alternative formulations. Much
progress has been made within this framework in the past two
years to improve the description of the nucleon-nucleon (NN)
force. First, the order-Q5 (i.e., N4LO) [11] and even most of
the order-Q6 (N5LO) contributions to the NN force have been
worked out [12]. Second, a new generation of NN potentials

up to N4LO has been developed using semilocal [13,14] and
nonlocal [15] regularization schemes; see also Refs. [16–19]
for related studies along similar lines. In contrast to the previ-
ous order-Q4 (N3LO) chiral NN potentials of Refs. [20,21], the
long-range part of the interaction introduced in Refs. [13,14]
is regularized in coordinate space by multiplying with the
function

f

(
r

R

)
=

[
1 − exp

(
− r2

R2

)]n

, n = 6, (1)

while the contact interactions are regularized in momentum
space using a nonlocal Gaussian regulator with the cutoff � =
2R−1. (See Refs. [16,18,22,23] for recently constructed chiral
potentials with locally regularized long-range interactions.)
The resulting semilocal coordinate-space regularized (SCS)
chiral potentials are available for R = 0.8, 0.9, 1.0, 1.1, and
1.2 fm. The use of a local regulator for the short-range part of
the interaction allows one to reduce the amount of finite-cutoff
artifacts; see, however, Ref. [24] for a discussion of regulator
artifacts in uniform matter. Furthermore, in contrast to the
first generation of the chiral N3LO potentials, all pion-nucleon
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(πN) low-energy constants (LECs) were determined from
the πN system without any fine tuning. Consequently, the
long-range part of the NN force is predicted in a parameter-free
way. In fact, clear evidence of the resulting (parameter-free)
contributions to the two-pion exchange at orders Q3 (i.e.,
N2LO) and Q5 was found in NN phase shifts [13,14]. We
further emphasize that the approximate independence of the
results for phase shifts on the functional form of the coordinate-
space regulator in Eq. (1) was demonstrated in Ref. [13] at
N3LO by employing different exponents n = 5 and n = 7 and
introducing an additional spectral function regularization with
the momentum cutoff in the range of � = 1 to 2 GeV.

Very recently, a new family of semilocal momentum-space
regularized (SMS) chiral NN potentials was introduced [25].
In addition to employing a momentum-space version of a
local regulator for the long-range interactions and using the
πN LECs from matching pion-nucleon Roy-Steiner equations
to chiral perturbation theory [26] (see also Refs. [26–35] for
related work on the determination of the πN LECs), the SMS
potentials of Ref. [25] differ from the SCS ones of Ref. [13,14]
in the determination of the NN contact interactions. That is, the
SMS potentials of Ref. [25] were fitted directly to NN scatter-
ing data rather than to the Nijmegen partial wave analysis [36].
Another important difference concerns the implementation of
the contact interactions. In particular, the SMS potentials of
Ref. [25] utilize a specific choice for 3 redundant N3LO contact
operators out of 15, which parametrize the unitary ambiguity in
the short-range part of the nuclear force at this chiral order. This
is in contrast to the potentials of Refs. [13–15,20,21], where
all 15 order-Q4 contact interactions were fitted to Nijmegen
PWA and/or NN scattering data.

Another important recent development is the establishment
of a simple algorithm for estimating the theoretical uncertainty
from the truncation of the chiral expansion [13]. The new
method uses the available information on the chiral expansion
of a given observable to estimate the magnitude of neglected
higher order terms. To be specific, consider some few-nucleon
observable X(p) with p being the corresponding momentum
scale. The chiral expansion of X up to order Qn can be written
in the form

X(n) = X(0) + �X(2) + · · · + �X(n), (2)

where we have defined

�X(2) ≡ X(2) − X(0), �X(i) ≡ X(i) − X(i−1) for i � 3.

(3)

Assuming that the chiral expansion of the nuclear force trans-
lates into a similar expansion of the observable, one expects

�X(i) = O(QiX(0) ). (4)

In Ref. [13], the size of truncated contributions at a given order
Qi was then estimated via

δX(0) = Q2|X(0)|,
δX(i) = max

2�j�i
(Qi+1|X(0)|, Qi+1−j |�X(j )|) for i � 2, (5)

subject to the additional constraint

δX(i) � max(|X(j�i) − X(k�i)|), (6)

where the expansion parameter Q was chosen as

Q = max

(
p

�b

,
Mπ

�b

)
. (7)

For the breakdown scale of the chiral expansion �b, the
values of �b = 600 MeV for R = 0.8, 0.9 and 1.0 fm, �b =
500 MeV for R = 1.1 fm and �b = 400 MeV for R = 1.2 fm
were adopted based on an analysis of error plots [13]. Smaller
values of the breakdown scale for softer cutoffs reflect an
increasing amount of regulator artifacts.

The algorithm for uncertainty quantification specified above
allows one to circumvent some of the drawbacks of the previous
approach based on cutoff variation [21], such as the relatively
narrow available range of cutoffs and the fact that residual
regulator dependence shows the impact of neglected contact
interactions, which contribute only at even orders Q2n of the
chiral expansion; see [13] for a comprehensive discussion. In
addition, it provides an independent estimation of the theo-
retical uncertainty for any given cutoff value. This algorithm
was already successfully applied in the two-nucleon sector. In
particular, the actual size of the N4LO corrections to NN phase
shifts and scattering observables was shown in Ref. [14] to be
in a good agreement with the estimated uncertainty at N3LO
[13]. A statistical interpretation of the theoretical error bars
is discussed in Refs. [37,38]. For recent applications of this
algorithm beyond the 2N system see Refs. [39–42].

The theoretical developments outlined above open the way
for understanding and validating the details of the many-body
forces and exchange currents that constitute an important
frontier in nuclear physics. First steps along these lines were
taken in Ref. [43] by employing the SCS NN potentials
of Refs. [13,14] along with the algorithm for uncertainty
quantification to analyze elastic nucleon-deuteron scattering
and selected observables in 3H, 4He and 6Li. To allow for a
meaningful quantification of truncation errors in incomplete
calculations based on NN interactions only, a slightly modified
procedure for estimating the uncertainty at N2LO and higher
orders was adopted, by using for i � 3

δX(i) = max(Qi+1|X(0)|, Qi−1|�X(2)|,
× Qi−2|�X(3)|, QδX(i−1)) (8)

instead of Eqs. (5) and (6); see Ref. [43] for more details. For
many considered observables, the results at N2LO and higher
orders were then found to differ from experiment well outside
the range of quantified uncertainties, thus providing a clear
evidence for missing three-nucleon forces.1 Furthermore, the
magnitude of the deviations was found to be in agreement with
the expected size of the chiral three-nucleon force (3NF) whose
first contributions appear at N2LO.

1We remind the reader that nuclear forces are scheme dependent
and not directly measurable. Our conclusions regarding the expected
size of three-body contributions refer to the framework we employ.
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The same modified approach to error analysis was used
recently in Ref. [44] to analyze the cross section and se-
lected polarization observables for deuteron photodisintegra-
tion, nucleon-deuteron radiative capture and three-body 3He
photodisintegration and to study the muon capture rates in
2H and 3He. While these calculations are also incomplete
as the 3NF was not included and the axial (electromagnetic)
currents were only taken into account at the single-nucleon
level (up to the two-nucleon level via the Siegert theorem),
most of the considered observables were found to be in a good
agreement with experimental data. For recent applications of
the approaches to error analysis outlined above to nuclear
matter properties and muonic deuterium see Refs. [45] and
[46], respectively. These promising results provide important
tests of the chiral potentials.

In this paper, we focus on the SCS chiral potentials of
Refs. [13,14] and extend our earlier work [43] in various
directions. First, in addition to elastic nucleon-deuteron scat-
tering, we also study some of the most interesting breakup
observables. We present the first applications of the SCS chiral
NN potentials to light- and medium-mass nuclei beyond 6Li
using a variety of ab initio methods and discuss in detail the
corresponding convergence pattern with respect to truncations
of the model space. Last but not least, we address the limitations
and robustness of the approach for uncertainty quantifications
and consider some possible alternatives.

Our paper is organized as follows. Section II is devoted
to the nucleon-deuteron elastic and breakup scattering re-
actions. Our results for light nuclei calculated by solving
the Faddeev-Yakubovsky equations and/or using the No-Core
Configuration Interaction (NCCI) method are presented in
Sec. III, while those for medium-mass nuclei obtained within
the coupled-cluster (CC) method and in-medium similarity
renormalization group (IM-SRG) method are given in Sec. IV.
Next, in Sec. V, we explore some alternative approaches for
uncertainty quantification. Finally, the results of our work are
summarized in Sec. VI.

II. NUCLEON-DEUTERON SCATTERING

A. Faddeev calculations

Neutron-deuteron (nd) scattering with neutrons and protons
interacting via pairwise-interactions is described in terms of an
amplitude T |φ〉 satisfying the Faddeev-type integral equation
[47,48]

T |φ〉 = tP |φ〉 + tPG0T |φ〉. (9)

Here t represents the two-nucleon t-matrix, which is the
solution of the Lippmann-Schwinger equation with a given NN
interaction. The permutation operator P = P12P23 + P13P23

is given in terms of the transposition operators, Pij , which
interchange nucleons i and j . The incoming state |φ〉 =
|�q0〉|φd〉 describes the free nd motion with relative momentum
�q0 and the deuteron state |φd〉. Finally, G0 is the resolvent of
the three-body center-of-mass kinetic energy. The amplitude
for elastic scattering leading to the corresponding two-body
final state |φ′〉 is then given by [48,49]

〈φ′|U |φ〉 = 〈φ′|PG−1
0 |φ〉 + 〈φ′|PT |φ〉, (10)

while for the breakup reaction one has

〈φ′
0|U0|φ〉 = 〈φ′

0|(1 + P )T |φ〉, (11)

where |φ′
0〉 is the free three-body breakup channel state. We

refer to Refs. [48–50] for a general overview of 3N scattering
and for details on the practical implementation of the Faddeev
equations.

When solving the 3N Faddeev Eq. (9), we include the
NN force components with a total two-nucleon angular mo-
menta j � 5 in 3N partial-wave states with the total 3N
system angular momentum below J � 25/2. This is sufficient
to get converged results for incoming neutron energies of
Elaboratory, n � 200 MeV.

B. Elastic nd scattering

At low energies of the incoming neutron, the elastic nd
scattering analyzing power Ay with polarized neutrons has
been a quantity of great interest because predictions using
standard high-precision NN potentials (AV18 [51], CDBonn
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FIG. 1. The nd elastic scattering analyzing power Ay at
Elaboratory, n = 5 MeV, 10 MeV, and 14.1 MeV. In the left panels
the bottom (red) band covers predictions of standard NN potentials:
AV18, CD Bonn, Nijm1 and Nijm2. The upper (magenta) band results
when these potentials are combined with the TM99 3NF. The dashed
(black) line shows prediction of the AV18+Urbana IX combination.
In the middle (right) panel, predictions based on the SCS chiral NN
potentials of Refs. [13,14] with the coordinate-space cutoff parameter
R = 0.9 fm (R = 1.2 fm) are shown. The bands of increasing width
show estimated theoretical uncertainty at N4LO (red), N3LO (blue),
N2LO (green), and NLO (yellow). The filled circles are nd data from
Ref. [55] at 6.5 MeV, from Ref. [56] at 10 MeV, and from Ref. [57]
at 14.1 MeV.
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FIG. 2. The nd elastic scattering analyzing power Ay at
Elaboratory, n = 10 MeV. In the left panel, bands of predictions for five
versions of the old nonlocal chiral NN potentials of Refs. [21,58] at
different orders of the chiral expansion are shown: NLO—the upper
(magenta) band, N2LO—the middle (red) band, and N3LO—the bot-
tom (green) band. These five versions correspond to different cutoff
values used for the Lippmann-Schwinger equation and the spectral
function regularizations, namely (450,500) MeV, (450,700) MeV,
(550,600) MeV, (600,500) MeV, and (600,700) MeV. In the middle
(right) panel, predictions based on SCS chiral NN potentials of
Refs. [13,14] with the coordinate-space cutoff parameter of R =
0.9 fm (R = 1.2 fm) are shown. The bands of increasing width show
estimated theoretical uncertainty at N4LO (red), N3LO (blue), N2LO
(green), and NLO (yellow). The full circles are nd data from Ref. [56]
at 10 MeV.

[52], Nijm1 and Nijm2 [36]) fail to explain the experimental
data for Ay . The data are underestimated by ∼30% in the region
of the Ay maximum, which occurs at c.m. angles �c.m. ∼
125◦. Combining standard NN potentials with commonly used
models of a 3NF, such as the Tucson-Melbourne (TM99) [53]
or Urbana IX [54] models, removes approximately only half
of the discrepancy (see left column in Fig. 1).

Using the old, nonlocally regularized chiral NN potentials
of Refs. [21,58], the predictions for Ay vary with the order
of the chiral expansion. In particular, as reported in Ref. [59],
the NLO results overestimate the Ay data while the N2LO NN
forces seem to be in quite a good agreement with experiment;
see Fig. 2. Only when the N3LO NN chiral forces are used
does a clear discrepancy between theory and data emerge in
the region of Ay maximum, which is similar to the one for
standard forces. This is visualized for En = 10 MeV in the left
panel of Fig. 2, where bands of predictions correspond to five
versions of the nonlocal NLO, N2LO and N3LO potentials
of Refs. [21,58], which differ from each other by the cutoff
parameters used for the Lippmann-Schwinger equation and
the spectral function regularizations. Such a behavior of Ay

predictions at different orders in the chiral expansion can
be traced back to a high sensitivity of Ay to 3Pj NN force
components [60,61], which are accurately reproduced for the
old nonlocal chiral potentials of Refs. [21,58] only at N3LO.
This is visualized in the left panel of Fig. 3. Contrary to
the observed behavior of old potentials of Refs. [21,58], the
predictions for Ay based on the SCS NN chiral forces turn out
to be similar to those of the high-precision phenomenological
potentials already starting from NLO; see the middle and
right panels of Figs. 1 and 2. This reflects the considerably
improved convergence with the order of the chiral expansion
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FIG. 3. The neutron-proton 3Pj phase-shifts as a function of
laboratory energy Elab. In the left panel the solid (red), dashed (blue),
and dotted (black) lines show predictions of the old chiral Bochum
NLO, N2LO, and N3LO NN potentials of Refs. [21,58] with the cutoff
parameters of (600,500) MeV. In the middle (right) panel the indigo
dashed-dotted, red solid, blue dashed, black dotted and magenta
dashed-double-dotted lines are predictions of SCS chiral potentials
with local regulator and parameter R = 0.9 fm (R = 1.2 fm) at LO,
NLO, N2LO, N3LO, and N4LO, respectively. The brown solid circles
are experimental Nijmegen phase-shifts [60,61].

of the semilocal potentials, as visualized in the middle and right
panels of Fig. 3 for the case of the 3P2 phase shift. Only LO
values are far away from the empirical values while the NLO
results already turn out to be very close to those of the Nijmegen
partial wave analysis (NPWA) at energies below≈40 MeV. The
N2LO, N3LO, and N4LO results for the phase shifts overlap
with each other and with the NPWA values. The corresponding
Ay predictions at orders above LO are very close to each other
as seen in the middle and right panels of Figs. 1 and 2. Notice
that the results for the two different cutoff values are very
similar, the feature which holds true also for other considered
scattering observables. The somewhat wider error bands for
the softest choice of the regulator reflect the estimated lower
breakdown scale of �b = 400 MeV.

It is instructive to look at the estimated theoretical uncer-
tainty from the truncation of the chiral expansion shown in the
right panels of Figs. 1 and 2. Notice that our calculations for
three- and more-nucleon observables are incomplete starting
from N2LO due to the missing 3NFs. The width of the bands
calculated using Eqs. (5) and (6) at LO and NLO and using
Eq. (8) starting from N2LO show our estimations of the
expected theoretical uncertainties after inclusion of the corre-
sponding 3NF contributions. At the considered low energies,
the theoretical uncertainty decreases quite rapidly so that one
expects precise predictions for Ay starting from N3LO.2 Inter-
estingly, our approach to uncertainty quantification is capable
of accounting for the already mentioned strongly fine-tuned
nature of this observable which results in a large theoretical
uncertainty at NLO. Notice that the experimental data are

2We emphasize, however, that the usage of Eq. (8) in the incomplete
calculations presented here may lead to underestimation of the theo-
retical uncertainty at higher orders. A more reliable estimation of the
truncation error is expected from performing complete calculations
that include 3NFs and using Eqs. (5) and (6) at all orders. This work
is in progress.
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FIG. 4. Predictions for the differential cross section, nucleon and deuteron vector analyzing powers An
y and Ad

y , deuteron tensor analyzing

powers Ayy , Axz, and Axx and polarization-transfer coefficients Ky′
xx , Ky′

y , and Ky′
yy at the laboratory energy of 135 MeV based on the NN

potentials of Refs. [13,14] for R = 0.9 fm without including the 3NF. The bands of increasing width show estimated theoretical uncertainty at
N4LO (red), N3LO (blue), N2LO (green), and NLO (yellow). The dotted (dashed) lines show the results based on the CD Bonn NN potential (CD
Bonn NN potential in combination with the Tucson-Melbourne 3NF). Open circles (diamonds) are proton-deuteron data from Refs. [63–66]
(Refs. [138]).

correctly described at this order within the errors. It remains
to be seen upon the inclusion of the 3NF and performing
complete calculations whether the Ay-puzzle will survive at
higher orders of the chiral expansion. Notice further that at
N4LO, the 3NF involves purely short-range contributions with
two derivatives, which affect nucleon-deuteron (Nd) P -waves
[62]. It is conceivable that the inclusion of such terms will lead
to a proper description of Ay once the corresponding LECs are
tuned to reproduce Nd scattering observables.

Apart from Ay and the deuteron tensor analyzing power
iT11, which is known to show a similar behavior to Ay , there
is not much room for three-nucleon force effects in elastic Nd
scattering at low energies; see Ref. [43] for the predictions of
other observables at 10 MeV. However, significant disagree-
ments with the data start to appear at intermediate energies of
∼50 MeV and higher. As a representative example, we show in
Fig. 4 our predictions for selected elastic scattering observables
at 135 MeV. In addition to the well-known underestimation
of the differential cross section minima, the spin-observables

calculated using the NN interactions only start to show devi-
ations from the data. These deviations tend to increase with
energy; see [67] for a comprehensive discussion. As shown in
Ref. [43], the theoretical uncertainty of the chiral EFT results
at N3LO and N4LO is considerably smaller than the observed
disagreements between the predictions based on the NN forces
and the experimental data even at energies of the order of
200 MeV. Our results suggest that elastic Nd scattering in the
energy range of ∼50–200 MeV is very well suited to study the
detailed structure of the chiral 3NF.

C. Nd breakup

Among numerous kinematically complete configurations
of the Nd breakup reaction the so-called symmetric space
star (SST) and quasifree scattering (QFS) configurations
have attracted special attention. The cross sections for these
geometries are very stable with respect to the underlying dy-
namics. To be specific, different phenomenological potentials,
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are from Ref. [76] (Ref. [77]).

alone or combined with standard 3NFs, lead to very similar
results for the cross sections [68] which deviate significantly
from the available SST and neutron-neutron (nn) QFS data.
At low energies, the cross sections in the SST and QFS
configurations are dominated by the S-waves. For the SST
configuration, the largest contribution to the cross section
comes from the 3S1 partial wave, while for the nn QFS the 1S0

partial wave dominates. Neglecting rescattering, the QFS con-
figuration resembles free NN scattering. For elastic low-energy
neutron-proton (np) scattering one expects contributions from
the 1S0 np and 3S1 force components. For elastic nn scattering,
only the 1S0 nn channel is allowed by the Pauli principle.
This suggests that the nn QFS is a powerful tool to study the
nn interaction. The measurements of np QFS cross sections
have revealed a good agreement between the data and theory
[69], thus confirming the knowledge of the np force. However,
for the nn QFS, it was found that the theory underestimates
the data by ∼20% [69,70]. The stability of the QFS cross
sections with respect to the underlying dynamics means that,

assuming correctness of the nn QFS data, the present day 1S0

nn interaction is probably incorrect [68,71,72].
In Fig. 5, we compare predictions of the SCS chiral

potentials at different orders to the SST cross section data at
two incoming nucleon energies E = 13 MeV and 65 MeV
for the cutoffs R = 0.9 fm and R = 1.2 fm. At 65 MeV the
theoretical uncertainty is large at NLO but decreases rapidly
at higher orders of the chiral expansion. One expects accurate
predictions at N3LO and N4LO. Given the good agreement
with the experimental data of Ref. [77] as visualized in the right
panel of Fig. 5, there is not much room for 3NF effects for this
observable. At 13 MeV, the uncertainty bands are rather narrow
at all considered orders, which is especially true for the cutoff
choice of R = 0.9 fm, but the nd and proton-deuteron (pd)
breakup data are far away from the theory. The two nd data sets
are from different measurements and both show a significant
disagreement with our theoretical results, even though the data
seem to be inconsistent with each other for the values of the
kinematical locus variable S in the range of S = 5 . . . 7 MeV.
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FIG. 6. Same as described in the caption of Fig. 5 but for the QFS nd breakup configuration. The pd data at 65 MeV are from Ref. [78].
For remaining notation see Fig. 5.

The pd data set shown in the left panel of Fig. 5 is supported
by other SST pd breakup measurements [79] in a similar energy
range. The calculations of the pd breakup with inclusion of
the pp Coulomb force [80] revealed only very small Coulomb
force effects for this configuration. Since, at that energy, the
SST configuration is practically dominated by the S-wave NN
force components, the big difference between pd and nd data
seems to indicate a large charge-symmetry breaking in the
1S0 NN partial wave. We anticipate it to be very difficult to
explain the large difference between the nd and pd data sets
by the inclusion of a 3NF without introducing large charge
symmetry breaking interactions. Furthermore, the discrepancy
between the theory and experimental pd data is puzzling. It
remains to be seen whether the inclusion of the chiral 3NF
will affect the results for the pd SST configuration at this
energy.

For the nn QFS geometry, we show in Figs. 6 and 7 the
predictions based on the SCS chiral potentials at E = 13 MeV,
65 MeV, and 156 MeV, together with the available pd breakup
data. In the latter case, we refrain from showing the results
corresponding to the softest cutoff of R = 1.2 fm given the
rather high energy. Again the theoretical uncertainty rapidly

decreases with an increasing order of the chiral expansion,
leading to very precise predictions at N3LO and N4LO, which,
in addition, agree well with the pd breakup data. Assuming
that the agreement will hold after the inclusion of the corre-
sponding 3NF, this provides, together with the drastic ≈20%
underestimation of nn QFS data found in Refs. [69,70], yet
another indication of our poor knowledge of low energy 1S0

neutron-neutron force.
Finally, in Figs. 8 and 9, the results for the nucleon analyzing

power Ay in the SST and nn QFS geometries of the Nd breakup
reaction at 13 MeV and 65 MeV are presented. Again, the band
widths of theoretical uncertainties become quite narrow with
an increasing order of chiral expansion. There appears to be
reasonable agreement between experiment and theory without
3NF contributions given the large error bars of the available
data.

III. LIGHT NUCLEI

A. Faddeev–Yakubovsky calculations

For the A = 3 and A = 4 bound state calculations, we
solve Faddeev and Yakubovsky equations, respectively. These
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FIG. 7. The nn QFS pd breakup cross section at incoming neutron
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E1 in the E1-E2 plane. The bands of increasing width show estimated
theoretical uncertainty at N4LO (red), N3LO (blue), N2LO (green) and
NLO (yellow) based on the SCS chiral NN potentials of Refs. [13,14]
with local regulator and parameter R = 0.9 fm. The (black) squares
are pd data of Ref. [81].

calculations are performed in momentum space, which enables
us to obtain high accuracies for binding energies and also for
the properties of the wave function.

For A = 3, similar to the 3N scattering case, we rewrite the
Schrödinger equation into Faddeev equations

|ψ〉 = G0 t P |ψ〉. (12)

Here, |ψ〉 denotes the Faddeev component. The 3N wave
function is related to the Faddeev component by |�〉 =
(1 + P ) |ψ〉. In contrast to the 3N scattering problem, no
singularities show up for bound states since the energy is
negative and below the binding energy of the deuteron.

We represent the equation using partial wave decomposed
momentum eigenstates

|p12 p3 α〉 = ∣∣p12 p3
[
(l12s12)j12

(
l3

1
2

)
I3

]
J3

(
t12

1
2

)
T3

〉
, (13)

where p12, l12, s12, t12, and j12 are the magnitude of the
momentum, the orbital angular momentum, the spin, the
isospin and the total angular momentum of the subsystem
of nucleons 1 and 2. p3, l3, and I3 denote the magnitude of
the momentum, the orbital angular momentum and the total
angular momentum of the spectator nucleon relative to the
(12) subsystem, respectively. The angular momenta and isospin
quantum numbers are coupled together with the spin and
isospin 1

2 of the third nucleon to the total angular momentum
J3 = 1

2 and isospin T3. For the results shown below, we take
angular momenta up through j12 = 7 and T3 = 1

2 and 3
2 states

into account. We adopt N12 = N3 = 64 mesh points for the
discretization of the momenta between 0 and pmax = 15 fm−1.
We note that the solution of the Lippmann-Schwinger equation
for t requires a more extended momentum grid up to momenta
of 35 fm−1. We find that this choice of momenta guarantees

that our numerical accuracy is better than 1 keV for the binding
energy and, for the 3N systems, also the expectation values of
the Hamiltonian H . The latter ones require the calculation of
wave functions and are therefore more difficult to obtain. We
take isospin breaking of the nuclear interaction into account.
For the SCS chiral interactions, we add the point Coulomb
interaction in pp. The contribution of the neutron/proton mass
difference is later treated perturbatively and given in Table II.
For the calculation of the binding energies and wave functions,
we use an averaged mass of mN = 938.918 MeV. More details
on the computational aspects can be found in Ref. [82]. Results
for the binding energies are summarized in Table I.

To provide benchmark results, we also summarize expec-
tation values for the kinetic energy, the potential, the point
proton and neutron rms radii and probabilities for S-, P -, and
D-states in Table II. Here, we restrict ourselves to N4LO and 3H
and compare to results of two phenomenological interactions,
AV18 and CDBonn, and to ones based on the older series of
chiral interactions of Ref. [21] [�, �̃ = (600, 700) MeV]
and the chiral interaction of Ref. [20]. Note that we have
used, for the calculations with these forces, the EM interaction
of AV18 [51] acting in pp and nn to be consistent with
previous calculations. The deviation of the binding energy E
and expectation value 〈H 〉 of the Hamiltonian is due to the
contribution of the mass difference of the proton and neutron
to the kinetic energy 〈TCSB〉, which we take into account for
the calculation of 〈H 〉 but which we do not consider for the
solution of the Faddeev equations. We checked that results for
3He are close to the results for 3H except that the sign of the
contribution of the proton/neutron mass difference is opposite
and proton and neutron radii are interchanged, as expected for
mirror nuclei. Because the convergence with respect to partial
waves of the Faddeev component is faster, it is advantageous to
project on Faddeev components whenever possible. Therefore,
the wave function and Faddeev component are normalized to
3〈�|ψ〉 = 1. The results for the norm 〈�|�〉 show that our
representation of the wave function includes 99.9% of the
wave function. Nevertheless, we evaluate the kinetic energy
using again the faster convergence for overlaps of Faddeev
component and wave function by 〈T 〉 = 3〈�| T |ψ〉. A similar
trick for the potential operator is not possible and not necessary
since the potential operator suppresses contributions of high
angular momenta due to its finite range. Note that our choice
of normalization ensures that the relevant partial waves are
properly normalized and, therefore, the calculation of the
expectation values does not require a division by the norm
of the wave function.

Comparing the new results to those from nonlocal chiral
interactions of Ref. [21], the kinetic energies tend to be
larger now. But they only become comparable to a standard
local phenomenological interaction like AV18 for smaller
configuration-space regulators R. For larger R, the expectation
values are in better agreement with nonlocal interactions like
CDBonn. Generally, the observed pattern indicates that the new
interactions induce more NN short-range correlations than the
chiral interactions of Refs. [20,21] but, at least for larger R,
still less than phenomenological ones. Notice that the kinetic
energies at N3LO, which are not shown explicitly, are found to
take similar values, while those at NLO and N2LO appear to be
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FIG. 8. The SST pd analyzing power at incoming neutron laboratory energy Elaboratory, n = 13 MeV (left panel) and 65 MeV (right panel),
as a function of the arc-length S along the kinematical locus in the E1-E2 plane. The bands of increasing width show estimated theoretical
uncertainty at N4LO (red), N3LO (blue), N2LO (green) and NLO (yellow) based on the SCS chiral NN potentials of Refs. [13,14] with local
regulator and the cutoff parameters of R = 0.9 fm (upper graphs) and R = 1.2 fm (lower graphs). In the left panel the (black) squares are pd
data of Ref. [76]. In the right panel the (black) squares are pd data of Ref. [77].

significantly smaller. These findings are in line with the non-
perturbative nature of the SCS potentials at N3LO and N4LO
as found in the Weinberg eigenvalue analysis of Ref. [83]. As
demonstrated in Ref. [25], this feature can be traced back to the
large values of the LECs accompanying the redundant N3LO
contact interactions in the 1S0 and 3S1-3D1 channels.

The contributions of the D-wave component of the wave
function is of the order of 6-7%, which is comparable to the
nonlocal and older chiral interactions but smaller than results
for AV18. We note that the D-state probability increases with
increasing R. This is a feature of the higher-order interactions
at N3LO and N4LO. The lower order interactions show the
opposite behavior. We found that the proton and neutron rms
radii are not strongly affected by the regulator R. This is
in line with the observation that the binding energies at this
order are quite independent of the cutoff. Nevertheless, it is
interesting that the radii do not appear to be strictly correlated
to the binding energies. We expected that in this situation,
where subtle effects affect the radii, the changes are driven
by the repulsiveness of the interaction at short distances and
therefore correlated with the kinetic energy. But even this is not

supported by the results. At lower orders from LO to N2LO,
the binding energies depend much stronger on the cutoff, and
one finds the usual correlation of binding energy and radius.

For A = 4, we can rewrite the Schrödinger equation into
Yakubovsky equations for the two Yakubovsky components
|ψ1〉 and |ψ2〉. Again, we can recover the wave function
by applications of permutation operators |�〉 = [1 − (1 +
P )P34](1 + P )| ψ1 〉 + (1 + P )(1 + P̃ )|ψ2〉. In addition to
the sum of cyclic and anticyclic permutations used in the 3N
system, we also need a transposition of nucleons 3 and 4, P34,
and the interchange of the subsystems (12) and (34) given by
P̃ = P13P24. The two coupled Yakubovsky equations then read

|ψ1〉 = G0 t P [(1 − P34)|ψ1〉 + |ψ2〉], (14)

|ψ2〉 = G0 t P̃ [(1 − P34)|ψ1〉 + |ψ2〉]. (15)

Here, G0 and t are, again, the free propagator and NN t-matrix
respectively. It is understood that they are embedded into the
4N Hilbert space for this application.
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FIG. 9. Same as described in the caption of Fig. 8 for the QFS nd breakup configurations of Fig. 6.

We again solve the equations in momentum space using
a partial-wave decomposed basis. The form of the equations
guarantees a rather fast convergence with respect to partial
waves if the two Yakubovsky components are expressed in
different basis sets. The first component is expanded in a set

TABLE I. Calculated 3H and 3He binding energies using chiral
NN interactions at different orders of the chiral expansion and at five
different values of R. Energies are given in MeV.

R [fm] LO NLO N2LO N3LO N4LO

3H
0.8 −12.038 −8.044 −8.039 −7.569 −7.489
0.9 −11.747 −8.216 −8.146 −7.575 −7.600
1.0 −11.295 −8.380 −8.282 −7.534 −7.642
1.1 −10.822 −8.554 −8.428 −7.514 −7.630
1.2 −10.394 −8.727 −8.579 −7.481 −7.580
3He
0.8 −11.151 −7.312 −7.303 −6.867 −6.794
0.9 −10.862 −7.472 −7.402 −6.875 −6.897
1.0 −10.423 −7.624 −7.528 −6.837 −6.935
1.1 −9.968 −7.786 −7.664 −6.816 −6.923
1.2 −9.561 −7.948 −7.806 −6.783 −6.876

of Jacobi momenta that separate the (12) subsystem (p12), the
motion of the third nucleon relative to (12) (p3) and the fourth
nucleon relative to the (123) subsystem (q4),

|p12 p3 q4 α〉 = ∣∣p12 p3 q4
{[

(l12s12)j12
(
l3

1
2

)
I3

]
× J3

(
l4

1
2

)
I4

}
J4

[(
t12

1
2

)
T3

1
2

]
T4

〉
. (16)

In addition to the quantities defined for the 3N system, we
require the orbital angular momentum corresponding to the
momentum of the fourth particle l4, its total angular momen-
tum I4 and the total angular momentum and isospin of the
4N system, J4 and T4, respectively. We refer to this set of
basis states as 3+1 coordinates. |ψ2〉 is expanded in states
introducing relative momenta within the subsystems (12) and
(34), p12 and p34, respectively, and the relative momentum of
these two subsystems q,

|p12 p34 q α〉 = ∣∣p12 p34 q {[(l12s12)j12λ] I (l34s34)j34}
× J4

[
(t12t34) 1

2

]
T4

〉
. (17)

The angular momenta, spin, and isospin of the (34) system
are given by l34, s34, j34, and t34. The angular dependence of
the q momentum is expanded in orbital angular momenta λ.
The angular momenta are coupled as indicated by brackets to
the total 4N angular momentum J4 = 0 and isospin T4 = 0.
Below, we refer to these basis states as 2+2 coordinates.
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TABLE II. Binding energy E, expectation values of the Hamiltonian 〈H 〉, the kinetic energy 〈T 〉, the potential energy 〈V 〉, and the
contribution of the mass difference of proton and neutron to the kinetic energy 〈TCSB〉 for 3H at order N4LO. The calculated norm of the wave
function and probabilities for S-, P -, and D-states are also shown. Finally, we also list results for the point proton and neutron rms radii rp and
rn. Energies are given in MeV (except for the 〈TCSB〉 which is given in keV), radii in fm and probabilities in %.

R [fm] E 〈H 〉 〈T 〉 〈V 〉 〈TCSB〉 〈�|�〉 P (S ) P (P ) P (D) rp rn

0.8 −7.489 −7.499 53.59 −61.08 −9.48 0.9989 93.95 0.033 6.02 1.675 1.849
0.9 −7.600 −7.608 48.45 −56.05 −8.45 0.9993 93.91 0.034 6.06 1.669 1.838
1.0 −7.642 −7.649 44.30 −51.94 −7.70 0.9995 93.70 0.035 6.27 1.670 1.838
1.1 −7.630 −7.637 40.74 −48.37 −7.08 0.9996 93.16 0.040 6.80 1.678 1.845
1.2 −7.580 −7.587 37.57 −45.15 −6.52 0.9998 92.58 0.046 7.37 1.689 1.858

AV18 −7.620 −7.626 46.71 −54.34 −6.75 0.9988 91.43 0.066 8.51 1.653 1.824
CDBonn −7.981 −7.987 37.59 −45.57 −5.85 0.9996 92.93 0.047 7.02 1.614 1.775
N2LO [21] −7.867 −7.872 31.85 −39.72 −5.11 0.9995 93.43 0.039 6.53 1.624 1.787
Idaho N3LO [20] −7.840 −7.845 34.52 −42.36 −5.52 0.9998 93.65 0.037 6.32 1.653 1.812

We again use 64 mesh points for the discretization of the
momenta up to 15 fm−1. The only exception is theq momentum
where 48 mesh points were sufficient to get binding energies
with a accuracy better than 10 keV and the expectation value of
the Hamiltonian with an accuracy of better than 50 keV. Again
the two-body angular momentum is restricted to jmax

12 = 7. We
also restrict all orbital angular momenta to 8 and the sum of
all angular momenta to 16. For the four-body calculations,
we assume that the 4He system is a pure T4 = 0 state. The
neutron/proton mass difference does not contribute in this case.
More details on the computational aspects can again be found
in [82]. Results for the binding energies of the ground state are
summarized in Table III. Notice that we predict a bound excited
state for the leading order interactions. The binding energies
for these excited states vary between −12.6 and −10.4 MeV
depending on the regulator parameter R. This second bound
state disappears at higher orders.

For N4LO, we also show expectation values of the Hamil-
tonian, the kinetic energy, the potential and the point proton
rms radius in Table IV. We again compare our results to
AV18, CD-Bonn and the two older chiral interactions. The
Yakubovsky components, as the Faddeev component for the 3N
system, converge much faster with respect to partial waves than
the wave function. Therefore, we normalize the wave function
using the relation 12〈ψ1|�〉 + 6〈ψ2|�〉 = 1 and calculate the
kinetic energy using a corresponding overlap of the wave
function and the Yakubovsky components in the coordinates
natural for the Yakubovsky component involved. The wave

TABLE III. Calculated 4He binding energies using chiral NN
interactions at different orders of the chiral expansion and at five
different values of R. Energies are given in MeV.

R [fm] LO NLO N2LO N3LO N4LO

4He
0.8 −50.14 −26.50 −26.68 −23.93 −23.43
0.9 −48.39 −27.52 −27.28 −23.93 −24.02
1.0 −45.46 −28.55 −28.13 −23.77 −24.29
1.1 −42.34 −29.72 −29.11 −23.73 −24.30
1.2 −39.43 −30.92 −30.16 −23.64 −24.13

function itself can be expanded in 3+1 or 2+2 coordinates.
We therefore give two values for the expectation value of
H and V in the table. The first ones are obtained using the
wave function expressed in 3+1 coordinates. The second ones
are based on 2+2 coordinates. Especially for H , we observe
small deviations of the results that indicate that higher partial
wave contributions are not completely negligible when small
cutoffs R are used. The deviation of the binding energy and
the expectation values is partly due to the missing angular
momentum states but also due to the restriction to isospin
T = 0 states. Generally, the wave function seems to be better
represented in 3+1 coordinates. Nevertheless, even in 2+2
coordinates, the agreement of expectation values and binding
energies is excellent. This is a nontrivial confirmation of our
results. We note that the N4LO results are the numerically
most demanding ones since they required denser momentum
grids and more partial waves for convergence. Finally, Table IV
gives results for the point proton radii that, in our T4 = 0
approximation, exactly agree with the point neutron radii.
Again we find that there is no strict correlation of the radii
and binding energies. The radii are remarkably independent
of the cutoff parameter R. In the following section, we extend
these calculations towards more complex systems using the
no-core configuration interaction (NCCI) approach.

B. No-core configuration interaction calculations

For larger nuclei, A > 4, we use NCCI methods to solve
the many-body Schrödinger equation. These methods have
advanced rapidly in recent years and one can now accurately
solve fundamental problems in nuclear structure and reaction
physics using realistic interactions; see, e.g., Ref. [84] and
references therein. In this section we follow Refs. [85,86],
where for a given interaction, we diagonalize the resulting
many-body Hamiltonian in a sequence of truncated harmonic-
oscillator (HO) basis spaces. The basis spaces are characterized
by two parameters: Nmax specifies the maximum number
of total HO quanta beyond the HO Slater determinant with
all nucleons occupying their lowest-allowed orbitals and h̄ω
specifies the HO energy. The goal is to achieve convergence
as indicated by independence of these two basis parameters,
either directly or by extrapolation [85,87–90].
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TABLE IV. Binding energy E, expectation values of the Hamiltonian in 3+1 (2+2) coordinates 〈H 〉1 (〈H 〉2), the kinetic energy 〈T 〉, the
potential energy in 3+1 (2+2) coordinates 〈V 〉1 (〈V 〉2) for 4He at order N4LO. We also give results for the point proton rms radii rp . Energies
are given in MeV and radii in fm.

R [fm] E 〈H 〉1 〈H 〉2 〈T 〉 〈V 〉1 〈V 〉2 rp

0.8 −23.43 −23.39 −23.37 112.9 −136.2 −136.2 1.557
0.9 −24.02 −24.00 −23.99 101.4 −125.3 −125.3 1.545
1.0 −24.29 −24.27 −24.27 91.9 −116.1 −116.2 1.546
1.1 −24.30 −24.28 −24.29 83.7 −108.0 −108.0 1.554
1.2 −24.13 −24.11 −24.12 76.5 −100.6 −100.6 1.568

AV18 −24.25 −24.21 −24.16 97.7 −121.9 −121.9 1.515
CDBonn −26.16 −26.08 −26.07 77.6 −103.6 −103.6 1.457
N2LO [21] −25.60 −25.58 −25.59 62.58 −88.16 −88.16 1.478
Idaho N3LO [20] −25.38 −25.37 −25.37 69.18 −94.55 −94.55 1.518

To improve the convergence behavior of the many-body
calculations we employ a consistent unitary transformation of
the chiral Hamiltonians. Specifically, we use the Similarity
Renormalization Group (SRG) [91–94] approach that provides
a straightforward and flexible framework for consistently
evolving (softening) the Hamiltonian and other operators,
including three-nucleon interactions [95–98]. In particular, at
N3LO and N4LO this additional “softening” of the chiral NN
potential is necessary to obtain sufficiently converged results
on current supercomputers.

In the SRG approach, the unitary transformation of an
operator, e.g., the Hamiltonian, is formulated in terms of a
flow equation,

d

dα
Hα = [ηα,Hα], (18)

with a continuous flow parameter α. The initial condition for
the solution of this flow equation is given by the “bare” chiral
Hamiltonian. The physics of the SRG evolution is governed by
the anti-hermitian generator ηα . A specific form widely used
in nuclear physics [94] is given by

ηα = m2
N [Trel,Hα], (19)

where mN is the nucleon mass and Trel is the intrinsic kinetic-
energy operator

Trel ≡ 2

3

(
( �p12)2

2 μ
+ ( �p13)2

2 μ
+ ( �p23)2

2 μ

)
, (20)

where �pij = ( �pi − �pj )/2 are relative momenta of the nucleons
and μ = m/2 is the reduced two-nucleon mass. This generator
drives the Hamiltonian towards a diagonal form in a basis
of eigenstates of the intrinsic kinetic energy, i.e., towards a
diagonal in momentum space.

Along with the reduction in the coupling of low-momentum
and high-momentum components by the Hamiltonian, the SRG
induces many-body operators beyond the particle rank of the
initial Hamiltonian. In principle, all induced terms up to the A-
body level should be retained to ensure that the transformation
is unitary and the spectrum of the Hamiltonian is independent
of the flow parameter. Here, we truncate the evolution at the
three-nucleon level, neglecting four- and higher multinucleon
induced interactions, which formally violates unitarity. For
consistency, we check that for A = 3 we recover the exact

results (for a given input potential); and for A � 4 we perform
our calculations at two different values of α and compare our
results with calculations without SRG evolution.

The flow equation for the three-body system is solved
using a HO Jacobi-coordinate basis [98]. The intermediate
sums in the three-body Jacobi basis are truncated at Nmax =
40 for channels with J � 7/2, Nmax = 38 for J = 9/2, and
Nmax = 36 for J � 11/2. The SRG evolution and subsequent
transformation to single-particle coordinates were performed
on a single node using an efficient OpenMP parallelized code.

For the NCCI calculations we employ the code MFDn
[99,100], which is highly optimized for parallel computing
on current high-performance computing platforms. The size
of the largest feasible basis space is constrained by the total
number of three-body matrix elements required as input, as
well as by the number of many-body matrix elements that are
computed and stored for the iterative Lanczos diagonalization
procedure. We can perform 4He calculations up to Nmax = 14
with 3N interactions, but calculations of A = 6 and 7 nuclei
are restricted to Nmax = 12, and for A > 10 we can only go
up to Nmax = 8 with (induced) 3N interactions. Note that with
bare NN interactions, i.e., without the SRG evolution and the
induced 3N terms, we can go to significantly larger basis
spaces, namely Nmax = 20 for 4He; Nmax = 18 for A = 6;
Nmax = 16 for A = 7; Nmax = 14 for A = 8; Nmax = 12 for
A = 9 and 10; and Nmax = 10 for A = 16. The larger basis
spaces achievable with NN-only interactions arise due to the
significantly smaller memory footprint of the input Hamilto-
nian matrix element files and the smaller memory footprint of
the many-body Hamiltonian itself which is stored completely
in our calculations. The latter issue has been reported as
approximately a factor of 40 reduction in memory footprint
with NN-only interactions compared to NN+3N interactions
[101]. The many-body calculations were performed on the
Cray XC30 Edison at NERSC and the IBM BG/Q Mira at
Argonne National Laboratory.

Finally, compared to the few-body bound state calcula-
tions presented above, we use the following simplifications
in our many-body calculations: we employ the same (aver-
age) nucleon mass for the protons and the neutrons, mN =
938.92 MeV. Also, we do add the two-body Coulomb potential
between (pointlike) protons, but we do not take any higher-
order electromagnetic effects into account. Furthermore, here
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FIG. 10. Ground-state energies of 4He and 6Li at or just above the variational minimum in h̄ω as a function of the basis truncation parameter
Nmax for LO to N4LO chiral NN potentials: without SRG evolution (black dots) at R = 1.0 fm; and for NN potentials at R = 0.9 fm (open
squares and open diamonds), R = 1.0 fm (plusses and crosses), and R = 1.1 fm (solid squares and solid diamonds), SRG evolved to 0.04 fm4

(red) and 0.08 fm4 (blue), including induced 3NF. Dotted (R = 1.1 fm), solid (R = 1.0 fm), and dashed (R = 0.9 fm) lines are exponential fits
to the highest three Nmax points for cases where convergence is not well-established by direct calculation.

and in what follows we restrict ourselves to the intermediate
values of the coordinate-space regulator of R = 0.9, 1.0 and
1.1 fm. The smallest available cutoff choice of R = 0.8 fm
leads to highly nonperturbative NN potentials [25,83], which
cannot be employed in many-body calculations without SRG
evolution or similar softening approaches. However, the softest
regulator choice of R = 1.2 fm is known to lead to large
finite-regulator artifacts [13,37,38], and for this reason we do
not consider it in the following calculations.

C. Results for ground-state energies

In Fig. 10 we show our results for the ground-state energies
of 4He and 6Li at LO to N4LO, both without SRG evolution
(for R = 1.0 fm only) and with SRG evolution (for R =
0.9, 1.0, and 1.1 fm), including the induced 3N terms as
mentioned above. (Note that, starting at N2LO, there are also
3NFs in the chiral expansion, which are not incorporated
in the calculations presented here.) Before examining these
results in detail, we first make several qualitative observations:

(1) The overall trends are the same for the different chiral cut-
offs: significant overbinding at LO, close to the experimental
values at NLO and N2LO, and underbinding at N3LO and
N4LO. (2) The dependence on the chiral cutoff R decreases
with increasing chiral order, as expected. (3) The conver-
gence rate changes dramatically with the chiral order – in
particular when going from N2LO to N3LO, as anticipated
by the Weinberg eigenvalue analysis of Ref. [83]. However,
after applying the SRG evolution, convergence is reasonable,
and the dependence of the converged energies on the SRG
parameter α is negligible on the scale of these plots.

Based on the results in finite basis spaces, we can use
extrapolations to the complete (infinite-dimensional) basis.
Here we use a three parameter fit at fixed h̄ω at or just above
the variational minimum

E(Nmax) ≈ E∞ + a exp (−bNmax), (21)

which seems to work well for a range of interactions and
nuclei [85,86]. The lines in Fig. 10 correspond to the
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TABLE V. Calculated 4He and 6Li ground-state energies (in MeV) using chiral NN interactions at three different values of R, SRG evolved
to α = 0.04 fm4 (including induced 3NFs). The first theoretical error is the extrapolation uncertainty estimate following Ref. [86], whereas the
second is an estimate of the SRG error, based on the difference between results at α = 0.04 fm4 and α = 0.08 fm4, due to omitting the induced
multi-nucleon interactions at and above 4NFs.

R [fm] LO NLO N2LO N3LO N4LO

4He
0.9 −48.284 ± 0.002 ± 0.17 −27.49 ± 0.01 ± 0.03 −27.23 ± 0.01 ± 0.01 −23.71 ± 0.01 ± 0.01 −23.85 ± 0.01 ± 0.01
1.0 −45.407 ± 0.001 ± 0.12 −28.542 ± 0.004 ± 0.03 −28.113 ± 0.006 ± 0.01 −23.59 ± 0.01 ± 0.01 −24.14 ± 0.01 ± 0.01
1.1 −42.312 ± 0.001 ± 0.07 −29.723 ± 0.002 ± 0.02 −29.102 ± 0.003 ± 0.01 −23.59 ± 0.01 ± 0.01 −24.18 ± 0.01 ± 0.01
6Li
0.9 −48.7 ± 0.4 ± 0.2 −30.5 ± 0.1 ± 0.1 −30.2 ± 0.1 ± 0.1 −26.2 ± 0.2 ± 0.1 −26.3 ± 0.2 ± 0.1
1.0 −46.7 ± 0.3 ± 0.2 −31.6 ± 0.1 ± 0.1 −31.0 ± 0.1 ± 0.1 −26.3 ± 0.2 ± 0.1 −26.9 ± 0.3 ± 0.1
1.1 −44.4 ± 0.3 ± 0.1 −32.8 ± 0.1 ± 0.1 −32.0 ± 0.1 ± 0.1 −26.4 ± 0.2 ± 0.1 −27.1 ± 0.3 ± 0.1

extrapolating function fitted to the highest available Nmax

values. Our estimate of the extrapolation uncertainty is based
on the difference with smaller Nmax extrapolations, as well as
the basis h̄ω dependence over an 8 to 12 MeV span in h̄ω values
around the variational minimum [86]. As a consistency check,
we first performed calculations for A = 3: including induced
3N contributions the results with and without SRG evolution
are in agreement with each other, to within the estimated
convergence or extrapolation uncertainty. Furthermore, they
also agree with the Faddeev binding energies of Table I to
within the estimated accuracy. Our results with SRG evolution
to α = 0.04 fm4 for the ground-state energies of 4He and 6Li
are summarized in Table V. In addition to the extrapolation
uncertainty, we also give, as a second (systematic) contribution
to the uncertainties, the difference between the ground-state

energies at α = 0.04 fm4 and at α = 0.08 fm4, which may
serve as an indication of the “error” made by neglecting
induced many-body forces.

The 4He results of Table V agree within the estimated
uncertainties with the binding energies presented in Table III,
at least at LO, NLO, and N2LO. However, at N3LO and N4LO
there are systematic differences: at N3LO these differences
are between 140 and 220 keV, depending on R, and at N4LO
between 120 and 170 keV. These differences are an order of
magnitude larger than the estimated numerical uncertainties
and are largest for R = 0.9 fm and smallest at R = 1.1 fm. That
is, these difference are smallest for the softest interactions. A
possible explanation for this discrepancy could be induced 4N
forces, which we have neglected in the SRG evolution. This
suggests that the difference between the ground-state energies

TABLE VI. Calculated 4He, 6Li, 10B, and 16O ground-state energies (in MeV) using chiral NN interactions at R = 1.0 fm without SRG
evolution, and SRG evolved to α = 0.04 fm4 and α = 0.08 fm4 (including induced 3NFs). The theoretical error is the extrapolation uncertainty
estimate following Ref. [86], adjusted to be at least 20% of the difference with the variational minimum.

α [fm4] LO NLO N2LO N3LO N4LO

4He, J P = 0+

0 −45.453 ± 0.006 −28.533 ± 0.004 −28.11 ± 0.01 −23.7 ± 0.1 −24.2 ± 0.1
0.04 −45.407 ± 0.001 −28.542 ± 0.004 −28.113 ± 0.006 −23.59 ± 0.01 −24.14 ± 0.01
0.08 −45.289 ± 0.001 −28.566 ± 0.001 −28.119 ± 0.001 −23.582 ± 0.002 −24.145 ± 0.002
6Li, J P = 1+

0 −46.7 ± 0.1 −31.6 ± 0.2 −31.0 ± 0.2 −24.4 ± 2.3 −25.7 ± 1.9
0.04 −46.7 ± 0.3 −31.6 ± 0.1 −31.0 ± 0.1 −26.3 ± 0.2 −26.9 ± 0.3
0.08 −46.9 ± 0.3 −31.7 ± 0.1 −31.1 ± 0.1 −26.3 ± 0.2 −26.9 ± 0.3
10B, J P = 1+

0 −93.9 ± 0.8 −64.9 ± 1.8 −63.1 ± 1.9
0.04 −94.0 ± 1.5 −64.5 ± 0.8 −63.1 ± 0.8 −55 ± 2 −55 ± 2
0.08 −94.9 ± 0.9 −64.3 ± 0.8 −63.1 ± 0.6 −52.2 ± 0.8 −53.3 ± 0.7
10B, J P = 3+

0 −88.1 ± 1.2 −64.6 ± 1.5 −62.3 ± 1.7
0.04 −88.2 ± 1.6 −64.1 ± 0.7 −62.1 ± 0.8 −51 ± 4 −52 ± 3
0.08 −88.8 ± 1.0 −64.1 ± 0.6 −61.9 ± 0.6 −50.1 ± 1.0 −51.2 ± 0.9
16O, J P = 0+

0 −224 ± 2 −156 ± 5 −149 ± 5
0.04 −223.2 ± 0.4 −152.0 ± 1.3 −146.2 ± 0.9 −121 ± 4 −121 ± 4
0.08 −220.9 ± 0.2 −150.1 ± 0.8 −144.8 ± 0.6 −113 ± 2 −114 ± 2
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TABLE VII. Calculated NCCI ground state energies, in MeV, using chiral NN interactions at R = 1.0 fm (without
SRG evolution). Results are compared with experimental data in the last column. The quoted theoretical errors are due to
extrapolation uncertainties following Ref. [86], adjusted to be at least 20% of the difference with the variational minimum.

Nucleus J P LO NLO N2LO Expt.

3H 1
2

+ −11.30 ± 0.01 −8.38 ± 0.01 −8.28 ± 0.01 −8.482
4He 0+ −45.453 ± 0.006 −28.533 ± 0.004 −28.11 ± 0.01 −28.296
6He 0+ −43.2 ± 0.2 −28.7 ± 0.2 −27.9 ± 0.2 −29.27
6Li 1+ −46.7 ± 0.1 −31.6 ± 0.2 −31.0 ± 0.2 −31.99
7Li 3

2

− −57.1 ± 0.2 −38.7 ± 0.3 −38.0 ± 0.4 −39.24
8He 0+ −39.8 ± 0.6 −29.7 ± 0.5 −27.8 ± 0.6 −31.41
8Li 2+ −55.7 ± 0.5 −40.3 ± 0.7 −39.0 ± 0.8 −41.28
8Be 0+ −87.7 ± 0.4 −56.0 ± 0.7 −55.4 ± 0.9 −56.50
9Li 3

2

− −57.1 ± 0.4 −43.9 ± 0.7 −41.7 ± 0.8 −45.34
9Be 3

2

− −84.7 ± 0.7 −58.0 ± 1.4 −56.4 ± 1.5 −58.16
10B 1+ −93.9 ± 0.8 −64.9 ± 1.8 −63.1 ± 1.9 −64.03
10B 3+ −88.1 ± 1.2 −64.6 ± 1.5 −62.3 ± 1.7 −64.75
16O 0+ −224 ± 2 −156 ± 5 −149 ± 5 −127.62

at α = 0.04 fm4 and at α = 0.08 fm4, may indeed serve as an
indication of the “error” made by neglecting induced many-
body forces up to N2LO, but is likely to underestimate the effect
of neglected many-body forces at N3LO and N4LO. Note that
without the SRG evolution the many-body calculation of the
binding energy does agree with the Yakubovsky calculation,
though the extrapolation uncertainty is significantly larger; see
Table VI below.

As already mentioned, at LO we find considerable overbind-
ing for all three values of the chiral cutoff R. This overbinding
depends significantly on R and is strongest for R = 0.9 fm. At
NLO (and N2LO), the R-dependence is reduced by a factor
of about two to three. Furthermore, the pattern is reversed
compared to the LO results: At NLO and N2LO, R = 0.9 fm
leads to a slight underbinding, whereas R = 1.1 fm gives slight
overbinding for 4He and 6Li. At N3LO the R-dependence is
further reduced by about an order of magnitude compared to
NLO and N2LO, and for 6Li becomes of the same order as the
many-body extrapolation uncertainty. Interestingly, at LO in
the chiral expansion, 6Li is not actually bound with respect to
the α + d breakup, whereas at NLO and N2LO it is bound by
about 0.7 to 0.9 MeV (and it appears to remain bound at higher
orders as well).

In Table VI we summarize our results with and without
SRG evolution for several representative p-shell nuclei at LO
through N4LO for R = 1.0 fm. The errors listed in Table VI
are our estimates of the extrapolation uncertainties, adjusted
to be at least 20% of the difference with the variational
minimum. Again, induced 3N contributions to the SRG-
evolved interaction are included, but induced 4N and higher
multi-nucleon induced interactions neglected. The differences
between results without SRG evolution and at SRG values
of α = 0.04 fm4 and at α = 0.08 fm4 tend to be of the
same order as (or smaller than) the extrapolation uncertainties,
except at leading order. When compared with the results at
α = 0.04 fm4, the results at α = 0.08 fm4 generally do have
smaller extrapolation uncertainties (i.e., are more converged
in the many-body basis expansion) as one would expect,

but are slightly further away from the results without SRG
renormalization, where available.

At N3LO and N4LO, we have to rely on SRG evolution
(or other renormalization schemes) for p-shell nuclei. For 6Li
we can do an extrapolation of the bare interaction results, but
the extrapolation uncertainty is large, whereas the results at
α = 0.04 fm4 and α = 0.08 fm4 differ by less than 100 keV.
For the upper half of the p-shell, SRG evolution also becomes
beneficial at NLO and N2LO.

In Table VII and Fig. 11 we summarize our results for the
ground-state energies of A = 3 to A = 16 nuclei based on
extrapolations of the chiral LO, NLO, and N2LO interactions
without applying any further SRG renormalization. With the
exception of 7Li at LO, and of 10B, the ground-state spins
all agree with the experimental spin of the ground state. The
results with SRG evolution, through the limited range that we
investigate, (including induced 3NFs) are very similar, and fall
within the quoted uncertainty estimates for all cases. Given
this similarity of results with and without SRG evolution we
do not present here the results with SRG evolution.

The ground-state energies of all nuclei in Table VII follow
similar patterns: significantly overbound at LO, closer to the
experimental values at NLO, and then shifted towards less
binding at N2LO. E.g., the Jπ = 3

2
−

ground state of 7Li follows
the same overall pattern as that of 4He and 3H, and is actually
bound with respect to breakup into 4He plus 3H at LO, NLO
and N2LO. However, at A = 8 (and to a lesser extend also
at A = 9) we see that the difference between LO and NLO
results decreases significantly with increasing isospin: it is
much smaller for the 8He than it is for 8Be. Also note that
the deviation from experiment at N2LO is largest for 8He, and
smallest for 8Be. (Similar effects can be seen for 9Li and 9Be.)
Neither 8He nor 8Be are bound at LO (8He is about 5.5 MeV
above 4He, and 8Be is about 3.3 MeV above two α-particles,
and the applicability of the HO basis is rather questionable
for these states). However, at NLO 8He does become bound,
whereas 8Be remains unbound, both in qualitative agreement
with experiment. Whether or not 6He (and 8He) are bound
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FIG. 11. Calculated (red dots) ground-state energies in MeV using chiral LO, NLO, and N2LO NN interactions at R = 1.0 fm (without
SRG evolution) based on the NN forces only in comparison with experimental values (blue levels). Red error bars indicate NCCI extrapolation
uncertainty and shaded bars indicate the estimated truncation error at each chiral order as defined in the Introduction.

at N2LO (and higher orders) depends crucially on the chiral
3NFs – without these, they are not bound. Note that 9Be is also
not bound at LO: despite the enormous overbinding compared
to experiment, it is not bound with respect to breakup into two
α-particles plus a neutron, and its ground-state energy is even
above that of 8Be. Only at NLO does 9Be become bound and it
may remain bound at N2LO but the uncertainties do not allow
us to make a definite statement.

Finally, the level ordering of the lowest states of 10B is
known to be sensitive to the details of the interaction [102],
and typically one finds a Jπ = 1+ ground state with NN-only
potentials, instead of a 3+ ground state. With a 3NF one can
obtain the correct Jπ = 3+ ground-state spin for 10B, but the
convergence pattern of the lowest 1+ is different than that of the
lowest 3+ state; furthermore, the splitting between these two
states appears to be very sensitive both to the parameters of the
interaction and to the SRG evolution [97]. In our calculations,
the 1+ is the ground state at LO, and about 6 MeV below the 3+
state, but at NLO and at N2LO the level splitting between these
two states is less than our estimated extrapolation uncertainties.

We show the chiral truncation error estimate for the ground-
state energies of light nuclei up to A = 10 using the methods
reviewed in Sec. I but limited to N2LO in Fig. 11. We remind
the reader that the shown results at N2LO are incomplete
as the corresponding 3NF are not included. Accordingly,
at leading order, the chiral error estimate appears to be
given by δE(0) = |E(3) − E(0)|, and at NLO and N2LO by
QδE(0) and Q2δE(0), respectively, for all 10 nuclei. As in
Ref. [43], the expansion parameter for these light nuclei is
estimated here as Q = Mπ/�b (see Sec. IV C). Note that if

we were to include results up to N4LO without including
3NFs (and possibly 4NFs), all chiral error estimates following
this prescription would increase noticeably, because the N3LO
and N4LO results without consistent 3NFs leads to a larger
max(|E(i) − E(0)|) that appears in Eq. (6). Alternative chiral
truncation error estimates for these results are discussed in
Sec. V below.

Looking further into the results in Fig. 11, one notices
that at N2LO, where omitted 3NFs may have an impact, we
see significant differences between the current results and
experiment that go beyond the estimated chiral truncation
uncertainty. These differences are easily visible for 6He, 8He,
8Li, and 9Li. Future work that includes the 3NFs is needed
to discern their role and to understand if they resolve these
differences while not creating significant differences in the
cases where little difference is currently found.

D. Magnetic moments

In addition to binding energies we also calculated the
magnetic moments for the ground states of p-shell nuclei
up to A = 10. In contrast to long-range observables such as
radii, magnetic moments tend to converge rapidly in a HO
basis. Indeed, the magnetic moments for the ground states of
6Li, 7Li, and 7Be are very well converged. Furthermore, the
dependence on the chiral order is very weak, and the results
are remarkably close to the experimental values. For A = 8
and 9, the convergence is not as good, and there is a stronger
dependence on the chiral order, but the magnetic moment of
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the ground state of 10B is again very well converged, and only
very weakly dependent on the chiral order.

Note that here we only used the canonical one-body current
operator and we defer to a future effort the development and
application of consistent chiral current operators at each order.
Our preliminary results with 3NFs at N2LO indicate that the
inclusion of consistent 3NFs at N2LO does not change the
magnetic moments significantly. We expect that with such
improved current operators, including meson-exchange cur-
rents [103–108], the calculated magnetic moments (as well as
magnetic transition matrix elements) will be in good agreement
with experimental values—the deviation with experimental
magnetic moments that we find here are of the same sign
and magnitude as suggested by phenomenological meson-
exchange contributions [107].

IV. MEDIUM-MASS NUCLEI

Over the past few years, several ab initio methods have been
developed to address ground states of nuclei in the medium-
mass regime, beyond the reach of standard NCCI calculations.
Already the simplest observables, like ground-state energies
and radii for medium-mass nuclei, e.g., the doubly magic
calcium isotopes, provide a valuable testing ground for chiral
interactions, far away from the few-body domain that was used
to constrain the Hamiltonians.

For a first characterization of the new generation of chiral
NN interactions in the medium-mass regime, we employ the
most advanced coupled-cluster (CC) formulations and state-of-
the-art in-medium similarity renormalization group (IM-SRG)
calculations for ground-state observables of 16,24O and 40,48Ca.
We mirror the discussion of the previous section and analyze
the order-by-order behavior and the theoretical uncertainties.
In addition, we compare to results with other, widely used
chiral forces.

A. Coupled-cluster theory

Single-reference CC theory expresses the exact many-body
state as |�〉 = eT |�〉, where |�〉 is a single-Slater-determinant
reference state based on a Hartree-Fock calculation
[109–118]. Correlations are introduced by the action of
the exponential eT of the particle-hole excitation operator
T = T1 + T2 + · · · + TA on the reference state. In practical
calculations, the cluster operator T is truncated at some low
n-particle-n-hole (npnh) excitation level, such as the 2p2h
excitations, T ≈ T1 + T2. This constitutes the very popular
CC with singles and doubles excitations (CCSD) approach.
Due to the exponential ansatz, all powers of T1, T2 and mixed
products of these are present in the description of the wave
function, resulting in the facility to describe many-body
correlations of considerable complexity that may be difficult
to achieve in alternative many-body methods.

The essential ingredient in CC theory is the similarity-
transformed Hamiltonian H̄ = e−T HeT . In terms of H̄ , one
can solve for the T amplitudes by projecting from the left with
particle-hole excited reference states |�ab...

ij ... 〉 to obtain the set
of equations 0 = 〈�ab...

ij ... |H̄ |�〉 which determines the cluster

amplitudes. The energy is obtained from calculating the closed
diagrams of H̄ according to E = 〈�|H̄ |�〉 [119].

Going beyond the singles and doubles approximation in CC
calculations leads to an increased complexity of the equations
to be solved and to increased computational cost. Therefore,
the current approach in nuclear structure theory to incorporate
higher-than-doubles excitations in ground-state CC calcula-
tions is by a noniterative inclusion of triples excitation effects
to the ground-state energy (but not the wave function) via the
CCSD(T) [120], �CCSD(T) [121,122], or the CR-CC(2,3)
[123] method.

Three-body interactions can be included in CC calcula-
tions using the normal-ordering approximation at the two-
body level (NO2B) [109,124]. Alternatively, the CC method
can straightforwardly be extended to the full treatment of
three-body Hamiltonians, however, often at prohibitively large
computational cost [111,113]. In this work, we will work
with the CCSD approach combined with the CR-CC(2,3)
energy correction including 3N interactions in the NO2B
approximation.

B. In-medium similarity renormalization group

The IM-SRG aims at decoupling an A-body reference
state |�〉 from all particle-hole excitations or, equivalently, at
suppressing a specific “off-diagonal” part of the Hamiltonian
[125–128]. This decoupling at the A-body level can be imple-
mented using the concepts of the similarity renormalization
group, that we already exploited in few-body spaces (cf.
Sec. III B). We formulate a continuous unitary transformation
of the Hamiltonian H (s) = U †(s)H (0)U (s) in A-body space,
where s denotes the flow parameter of the IM-SRG. This trans-
formation is rewritten into the following operator differential
equation:

dH

ds
(s) = [η(s) , H (s)], (22)

where η(s) refers to the so-called generator of the transfor-
mation. The Hamiltonian H (s) and the generator η(s) are
normal-ordered with respect to the reference state |�〉 and
truncated at the normal-ordered two-body level, e.g.,

H (s) = E(s) +
∑
pq

f p
q (s){a†

paq}

+ 1

4

∑
pqrs

�pq
rs (s){a†

pa†
qaras}, (23)

where normal-ordered products of single-particle creation and
annihilation operators appear. Evaluating the right-hand side of
Eq. (22) via Wick’s theorem, one can derive the flow equations
for the matrix elements of the normal-ordered zero-, one-, and
two-body part, i.e., E(s), f

p
q (s), and �

pq
rs (s), respectively, of

the Hamiltonian. As an example, the flow equation for zero-
body part, which represents energy expectation value in the
reference state, reads

dE(s)

ds
=

∑
pq

(np − nq ) ηp
q (s) f q

p (s) + 1

4

∑
pqrs

(
ηpq

rs (s)

×�rs
pq (s) npnq (1 − nr )(1 − ns ) − [η ↔ �]

)
, (24)
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FIG. 12. Calculated (red dots) ground-state magnetic moments of light nuclei up to A = 10 at LO, NLO, and N2LO with R = 1.0 fm in
comparison with experimental values (blue horizontal lines). Red error bars indicate NCCI extrapolation uncertainty and shaded bars indicate
the estimated truncation error at each chiral order as defined in the Introduction.

where np is the occupation number w.r.t. the reference state
|�〉. Formally, the flow equations of the IM-SRG are a coupled
system of first-order ordinary differential equations which
can be solved numerically as an initial value problem until
decoupling is reached.

A great advantage of the IM-SRG is the simplicity and
flexibility of its basic concept. Through different choices for
the generator η(s), we obtain different decoupling patterns,
numerical characteristics and efficiencies. As a consequence,
we can tailor the IM-SRG for specific applications, e.g., the
derivation of valence-space shell model interactions [129–
131]. Furthermore, it is straightforward to use the formalism of
the IM-SRG for a consistent evolution of observables since the
flow equation for an observable is similar to the one given in
Eq. (22). The IM-SRG was first applied for the study of ground-
state energies of closed-shell nuclei but can be easily extended
to open-shell nuclei via multi-reference generalizations of
normal ordering and Wick’s theorem [132–134].

C. Chiral truncation error

To quantify the truncation errors in nuclear ground-state
energies at various chiral orders, we recall the approach
introduced in Ref. [43], see the discussion in Sec. I, and employ
Eqs. (5) and (6) at LO and NLO and Eq. (8) at N2LO and higher
chiral orders. In Ref. [43], the expansion parameter Q of the
chiral expansion defined in Eq. (7), which enters Eqs. (5), (6),
and (8), was estimated for 3H, 4He, and 6Li as Q = Mπ/�b.
While this is reasonable for very light nuclei as seen in the
discussion of chiral truncation errors in light nuclei in Sec. III,

one may expect the typical momentum to increase in heavier
systems due to the increased role of Pauli blocking.

To estimate these effects, we employ two different methods
to evaluate a nucleus-dependent characteristic momentum
scale: the Hartree-Fock (HF) approximation and the NCCI
method. We use the resulting ground-state wave function, in
each case, to evaluate the expectation value of the relative
kinetic energy operator 〈Trel〉 given by

Trel ≡
∑
i<j

( �pi − �pj )2

2 Am
= 2

A

∑
i<j

( �pij )2

2 μ
, (25)

in terms of the relative momenta �pij = ( �pi − �pj )/2 and the
reduced two-nucleon mass μ = m/2. Based on this expecta-
tion value, we define the average relative momentum scale as
follows:

pavg =
√

2μ

(A − 1)
〈Trel〉 =

√√√√ 2

A(A − 1)

〈∑
i<j

( �pij )2

〉
. (26)

As the last expression shows, this simply corresponds to the
root-mean-square relative momentum of all nucleon pairs, i.e.,
the square root of the expectation value of the squared relative
momenta summed over all particle pairs and divided by the
number of pairs. Thus, this quantity reflects a characteristic
scale for relative two-body momenta in the nucleus, which
will depend on the nucleus under consideration and on the
underlying interaction.

The results for pavg obtained in HF and NCCI are sum-
marized by Tables X and XI in the appendix. For HF,
we employ the SRG-evolved Hamiltonian with the SRG
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FIG. 13. Ground-state energies and charge radii for the ground state of 16,24O and 40,48Ca obtained from CC and IM-SRG based on HF
reference states. The different columns correspond to different initial interactions, starting with the SCS chiral NN interaction from LO to N4LO
with the cutoff R = 0.9 fm, followed by the N2LO-SAT NN+3N interaction [135], chiral NN interaction at N3LO by Entem and Machleidt
[20] without (EM-ind) and with (EM-full) an additional local chiral 3N interaction at N2LO [136] with reduced cutoff �3N = 400 MeV [124].
Solid symbols refer to a free-space SRG parameter α = 0.08 fm4 whereas open symbols refer to α = 0.04 fm4. The gray bars indicate the
estimated theoretical uncertainties at various chiral orders.

parameter α = 0.08 fm4 and evaluate the expectation value
of the SRG-transformed relative kinetic energy operator for
input to the calculation of pavg. We also employ the spherical
HF approximation and the filling fraction approximation for
open shell nuclei. For NCCI, we extrapolate the expectation
value of the relative kinetic energy to the infinite basis limit
using NCCI results from currently attainable Nmax values.

The HF results are available for all chiral orders and show a
systematic decrease in pavg with increasing order. Pronounced
changes appear from LO to NLO and from N2LO to N3LO.
This general trend can be explained in a simple mean-field type
picture, keeping the behavior of the ground-state charge radii in
mind. With increasing chiral order the radius of a given nucleus
shows a systematic increase (including the more pronounced
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FIG. 14. Same as Figure 13 but for the cutoff value of R = 1.0 fm.

changes, cf. Figs. 13 and 14), which translates into a decrease
of the Fermi energy and the associated momentum scale in a
mean-field picture. The pavg scale evaluated at the HF level
captures exactly this mean-field or low-momentum physics.

It is interesting to compare this to the NCCI calculations,
which converge to the exact solution of the many-body prob-
lem, including all correlations beyond the mean-field level.
These results are available up to N2LO for the p-shell nuclei and
up to N4LO for s-shell nuclei (both from Faddeev-Yakubovsky
and NCCI calculations). Up to N2LO the pavg scales extracted
from the NCCI kinetic energies for the bare Hamiltonian agree
surprisingly well with scales extracted from HF expectation

values based on SRG-evolved operators. This indicates the
the SRG transformation does capture the main beyond-HF
correlations such that the kinetic energy expectation values are
very similar to the full NCCI values. Still, even with the SRG
transformation, not all correlations are covered and the HF
ground-state energies differ significantly from the converged
NCCI result.

This difference becomes apparent at N3LO and N4LO,
where the SCS NN interactions are significantly harder and
much more difficult to converge in the NCCI than at lower
orders (see, e.g., Fig. 10). This is the reason why no NCCI
scales can be extracted for p-shell nuclei beyond N2LO. For
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TABLE VIII. Ground-state energies per nucleon, in MeV, using SRG-evolved SCS NN interactions from LO to N4LO at R = 0.9 fm and
R = 1.0 fm obtained form CCSD, CR-CC(2,3) and IM-SRG calculations. For each isotope, method and chiral truncation two numbers are
given, where the first corresponds to an SRG-flow parameter α = 0.04 fm4 and the second to α = 0.08 fm4. If no result is quoted, then the CC or
IM-SRG equations did not provide a stable solution, because the initial HF single-particle spectrum does not exhibit the correct shell closures.

Nucleus Method LO NLO N2LO N3LO N4LO Exp.

R = 0.9 fm
16O CCSD −13.92; −13.84 −8.81; −8.76 −8.74; −8.71 −6.97; −6.90 −6.74; −6.69 −7.98

CR-CC(2,3) −13.97; −13.86 −8.93; −8.82 −8.88; −8.79 −7.10; −6.97 −6.87; −6.77
IM-SRG −13.96; −13.86 −8.96; −8.83 −8.94; −8.82 −7.17; −7.01 −6.96; −6.81

24O CCSD −10.11; −10.33 −8.05; −7.93 −8.09; −8.03 −5.80; −5.68 −5.48; −5.40 −7.04
CR-CC(2,3) −10.59; −10.89 −8.17; −8.00 −8.23; −8.11 −5.94; −5.76 −5.63; −5.48

IM-SRG —;— −8.19; −8.00 −8.26; −8.12 −5.99; −5.78 −5.70; −5.52
40Ca CCSD −16.78; −16.30 −10.69; −10.37 −12.19; −12.01 −7.79; −7.42 −7.27; −6.99 −8.55

CR-CC(2,3) −16.83; −16.33 −10.84; −10.44 −12.37; −12.10 −7.94; −7.49 −7.44; −7.07
IM-SRG −16.82; −16.32 −10.86; −10.46 −12.40; −12.12 −7.96; −7.50 −7.48; −7.09

48Ca CCSD —; — −10.77; −10.35 −13.05; −12.82 −7.03; −6.52 −6.59; −6.17 −8.67
CR-CC(2,3) —; — −10.92; −10.42 −13.21; −12.89 −7.19; −6.59 −6.75; −6.25

IM-SRG —; — −10.93; −10.43 −13.20; −12.89 −7.20; −6.59 −6.78; −6.26
R = 1.0 fm
16O CCSD −13.84; −13.75 −9.36; −9.30 −8.98; −8.95 −7.00; −6.93 −7.06; −7.02 −7.98

CR-CC(2,3) −13.88; −13.77 −9.45; −9.36 −9.10; −9.02 −7.14; −7.01 −7.20; −7.10
IM-SRG −13.87; −13.76 −9.47; −9.36 −9.15; −9.05 −7.25; −7.06 −7.29; −7.14

24O CCSD —; −10.53 −8.59; −8.47 −8.34; −8.27 −5.72; −5.64 −5.78; −5.72 −7.04
CR-CC(2,3) —; −10.97 −8.69; −8.53 −8.45; −8.33 −5.87; −5.72 −5.92; −5.80

IM-SRG —; — −8.70; −8.53 −8.46; −8.34 −5.95; −5.76 −5.99; −5.83
40Ca CCSD −17.07; −16.68 −11.81; −11.46 −12.69; −12.47 −7.34; −7.12 −7.45; −7.25 −8.55

CR-CC(2,3) −17.10; −16.69 −11.91; −11.52 −12.81; −12.53 −7.49; −7.18 −7.58; −7.31
IM-SRG −17.10; −16.69 −11.92; −11.52 −12.83; −12.54 −7.51; −7.18 −7.60; −7.31

48Ca CCSD —; −13.82 −11.87; −11.42 −13.59; −13.27 −4.37; — −4.91; −4.51 −8.67
CR-CC(2,3) —; −14.13 −11.98; −11.48 −13.70,; −13.32 −4.53; — −5.10; −4.58

IM-SRG —; — −11.98; −11.48 −13.68; −13.31 —; — —; —

s-shell nuclei the pavg scales obtained from NCCI at N3LO
and N4LO are significantly larger than for the lower orders,
in contrast to the mean-field trend shown by the HF-based
scale estimates. At this point, short-range or high-momentum
physics explicitly affects the momentum scales extracted from
NCCI wave functions, which is absent in the HF treatment.
Such short-range correlation effects are regulator scale and
scheme dependent and represent specific high-momentum
aspects of the wave function and not a gross momentum scale
corresponding to the Fermi-momentum in a homogeneous
system. We do not have a strong physics reason for preferring
one or another approach to estimating the nucleus-dependent
momentum scale pavg. In the following, we adopt the HF-based
scale estimate as input for the uncertainty quantification out
of convenience.

Given that the pavg values show significant variations at
different chiral orders, we average over the available results
from LO to N4LO to arrive at a single nucleus-dependent
and R-dependent value for pavg quoted in the last column in
Tables X and XI. Then, for a given nucleus, the expansion
parameter Q is estimated as

Q = max(pavg, Mπ )

�b

, (27)

where pavg is the result in the last column of Tables X and XI.

Another feature of the results in Tables X and XI is the
increase in pavg with increasing A. For very heavy nuclei,
the relevant momentum scale should be closer to the Fermi
momentum pF ∼ 260 MeV corresponding to the saturation
density of nuclear matter. The trend in the results of the
last column of Tables X and XI appears consistent with that
expectation. However, for light nuclei pavg is within a few
percent of of Mπ , at least up to A = 9 for R = 1.0fm. Since the
chiral uncertainty estimates shown in Figs. 11 and 12 would
change only minimally by adopting pavg for the definition of
Q, we do not show them for light nuclei. However, for the
following discussion of ground-state observables of medium-
mass nuclei, we will adopt the nucleus-dependent momentum
scales pavg for the order-by-order uncertainty quantification.
Furthermore, as already described in the previous sections,
the considered properties of light nuclei based on NN in-
teractions only tend to show significant jumps when going
from N2LO to N3LO, which are probably artifacts of our
calculations being incomplete and are expected to dissappear
upon inclusion of the consistent 3N forces. To avoid overesti-
mating the theoretical uncertainties, Eq. (6) is replaced in this
paper by

δX(i) � max(|X(j�i) − X(k�i)|), i, j, k ∈ {0, 1, 2}. (28)
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TABLE IX. Charge radii, in fm, using SRG-evolved SCS NN interactions from LO to N4LO at R = 0.9 fm and R = 1.0 fm obtained form
CCSD and IM-SRG calculations. For each isotope, method, and chiral truncation, two numbers are given, where the first corresponds to an
SRG-flow parameter α = 0.04 fm4 and the second to α = 0.08 fm4. If no result is quoted, then the CC or IM-SRG equations did not provide a
stable solution, because the initial HF single-particle spectrum does not exhibit the correct shell closures.

Nucleus Method LO NLO N2LO N3LO N4LO Exp.

R = 0.9 fm
16O CCSD 1.72; 1.78 2.18; 2.22 2.25; 2.28 2.50; 2.52 2.55; 2.57 2.70

IM-SRG 1.72; 1.78 2.20; 2.23 2.26; 2.29 2.51; 2.54 2.57; 2.59
24O CCSD 1.77; 1.84 2.15; 2.19 2.20; 2.22 2.52; 2.54 2.60; 2.63 —

IM-SRG —; — 2.16; 2.20 2.20; 2.23 2.53; 2.55 2.62; 2.65
40Ca CCSD 2.00; 2.07 2.60; 2.65 2.53; 2.55 2.94; 2.97 3.09; 3.11 3.48

IM-SRG 2.00; 2.07 2.63; 2.68 2.55; 2.57 2.95; 2.97 3.11; 3.13
48Ca CCSD —; — 2.58; 2.64 2.41; 2.43 2.89; 2.91 3.06; 3.08 3.48

IM-SRG —; — 2.61; 2.67 2.43; 2.44 2.91; 2.92 3.08; 3.10
R = 1.0 fm
16O CCSD 1.77; 1.83 2.12; 2.16 2.21; 2.24 2.54; 2.56 2.54; 2.56 2.70

IM-SRG 1.77; 1.83 2.13; 2.17 2.22; 2.25 2.55; 2.57 2.55; 2.57
24O CCSD —; 1.88 2.08; 2.12 2.14; 2.17 2.56; 2.58 2.57; 2.59 —

IM-SRG —; — 2.09; 2.13 2.15; 2.18 2.57; 2.60 2.59; 2.61
40Ca CCSD 2.07; 2.14 2.48; 2.54 2.43; 2.47 2.98; 3.00 3.03; 3.05 3.48

IM-SRG 2.07; 2.13 2.50; 2.55 2.45; 2.48 2.99; 3.01 3.04; 3.06
48Ca CCSD —; 2.19 2.46; 2.51 2.31; 2.35 2.84; — 2.91; 2.93 3.48

IM-SRG —; — 2.48; 2.54 2.32; 2.36 —; — —; —

D. Results

Using CC and IM-SRG we explore the ground-state ener-
gies and charge radii of the doubly magic nuclei 16,24O and
40,48Ca with the SCS NN interactions from LO to N4LO.
The focus of these calculations is the investigation of the
order-by-order behavior of the chiral expansion in the medium-
mass regime and the theory uncertainties derived from it.

For all calculations presented in this section we use SRG-
evolved interactions including the induced three-nucleon con-
tributions. We use two different SRG flow parameters, α =
0.04 fm4 and 0.08 fm4, to probe the contributions of higher-
order induced forces that are not explicitly included. For the
specific interaction and nucleus under consideration, we first
perform a Hartree-Fock calculation for the full Hamiltonian
in a HO basis truncated with respect to the maximum single-
particle principal quantum number emax = (2n + l)max. The
HF solution defines the reference state and an optimized single-
particle basis, which eliminates the dependence of the subse-
quent many-body solutions on the oscillator frequency. The full
Hamiltonian is normal-ordered with respect to the reference
Slater determinant and residual normal-ordered three-body
terms are discarded. We have explored the accuracy of the
normal-ordered two-body approximation in the medium-mass
regime, e.g., through direct comparisons of CC calculations
with and without the residual three-body terms and found
agreement at the 1% level or better [111,124].

With these inputs, we perform CC calculations at the level
of CCSD and CR-CC(2,3), which provide a direct way to
quantify the residual uncertainty due to the cluster truncation.
In addition, we perform single-reference IM-SRG(2) calcu-
lations. The results for the ground-states energies and the
charge radii of 16,24O and 40,48Ca are summarized in Fig. 13
for the sequence of SCS NN interaction at cutoff R = 0.9 fm

and in Fig. 14 for R = 1.0 fm. For comparison each panel
also shows the corresponding results with established chiral
interactions, i.e., the N2LO-sat NN+3N interaction by Ekström
et al. [135], the N3LO NN interaction by Entem and Machleidt
[20] without (EM-ind) and with (EM-full) a supplementary
local 3N interaction at N2LO with cutoff 400 MeV [124,136].
The numerical values for the ground-state energies and charge
radii obtained with the SCS NN interactions at cutoff values of
R = 0.9 fm and R = 1.0 fm can be found in Tables VIII and
IX, respectively.

The different symbol shapes and colors distinguish the three
many-body methods while solid and open symbols indicate the
two SRG flow-parameters we use. The variation within the set
of six calculations for any given chiral interaction and nucleus
provides an estimate for the uncertainties in the solution of the
many-body problem, including the free-space SRG evolution
and the many-body truncations.

These many-body uncertainties can be compared to the
uncertainties inherent to the chiral interaction at any given
order, which are quantified using the protocol discussed in
Sec. IV C. We use the intrinsic kinetic energy expectation value
obtained in HF calculations with SRG transformed operators
to define a momentum scale. The uncertainties for the ground-
state energies and the charge radii are then determined from
Eqs. (5) and (28) for LO and NLO and Eq. (8) from N2LO on.
The gray bands in Figs. 13 and 14 indicate these uncertainties
extracted from the IM-SRG results as representatives for the
three different many-body approaches. For the neutron-rich
isotopes 24O and 48Ca, the LO interaction does not reproduce
the correct shell closures at the Hartree-Fock level and, thus,
the closed-shell formulations of CC and IM-SRG typically fail
to converge. In these cases we simply use the HF ground-state
energy for the uncertainty quantification.
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Generally we find a systematic decrease of the uncertainties
with increasing chiral order, as expected. For the lower orders
up to N2LO, the interaction uncertainties are significantly
larger than the many-body uncertainties. Only at N3LO and
N4LO the interaction and many-body uncertainties are of com-
parable size. We conclude from this observation that the many-
body methods and their truncation uncertainties are sufficiently
well controlled to address nuclei in the medium-mass regime
with chiral interactions. Even at the highest available order of
the chiral expansion, the different sources of uncertainties are
comparable in size, so that a significant improvement on the
total uncertainty would require improvements on all aspects of
the calculation.

The sequence of ground-state energies from LO to N4LO
for these medium-mass nuclei shows the same systematic
pattern observed in light nuclei: The LO interactions for both
cutoffs produce drastic overbinding and unrealistic ground
states. Going to NLO the energy jumps and the overbinding
is reduced significantly. The step to N2LO does not affect the
ground-state energies for the oxygen isotopes, but lowers the
ground-state energies for the calcium isotopes again. Going to
N3LO the ground-state energies exhibit another jump leading
to a moderate underbinding compared to experiment. From
N3LO to N4LO the energies remain stable for all nuclei.

As repeatedly emphasized, one has to keep in mind that the
3N interactions, which appear from N2LO on, are not included
in these calculations. Therefore, we cannot draw rigorous
conclusions about the convergence of the chiral expansion
at this stage. It will be very interesting to explore how the
inclusion of a consistent 3N interaction fitted in the few-body
sector for N2LO and beyond will change the observed trends
in ground-state energies of medium-mass nuclei. This is the
prime goal of our ongoing research program.

The charge radii mirror the pattern observed for the ground-
state energies. As the ground-state energy increases and the
binding decreases, the charge radii increase as expected from
a naive mean-field picture. For N3LO and N4LO the charge
radii for 16O are close to the experimental value, however, for
40,48Ca the radii are underestimated by about 0.4 fm although
the nuclei are underbound. It remains to be seen, how the
3N contributions affect the radii, but it is unlikely that the
inclusion of the consistent 3N interactions alone will resolve
this discrepancy.

V. ALTERNATIVE APPROACHES FOR UNCERTAINTY
QUANTIFICATION

As explained in the introduction, our simple and universal
approach to estimating truncation errors assumes that the
chiral expansion of the nuclear forces translates into a similar
expansion for the calculated observables; see Eq. (4). While
this assumption holds true for the scattering amplitude in
a perturbative regime, it is violated in the near-threshold
kinematics if the corresponding scattering lengths take large
values [137], as is the case for the NN 1S0 and 3S1 partial waves.
The large S-wave NN scattering lengths also result in the strong
cancellations between the kinetic and potential energies when
calculating the spectra of light nuclei [4]. Instead of trying
to account for all relevant dynamically generated fine-tuned

scales in all partial waves and for all kinematical conditions,
we use a simplistic, universal approach to uncertainty quantifi-
cation by incorporating the information about the actual pattern
of the chiral expansion for a given observable to account for the
above-mentioned departures from naive dimensional analysis.
In the following, we address the reliability of the resulting
error estimations, discuss the robustness of our approach and
consider two alternative formulations.

Alternative approach 1

We first explore the possibility of relaxing the constraints
in Eq. (28). To retain a realistic estimation of the trunca-
tion error especially at low orders of the chiral expansion,
we still make use of the information about the explicit
size of the order-Qi contributions to an observable of
interest for all available chiral orders. Specifically, we
replace Eqs. (5) and (28) by

δX(0) = max
i�2

(Q2|X(0)|, Q2−i |�X(i)|),

δX(j ) = Qj−1δX(0), for j � 2 (29)

for the case of complete calculations. Such an approach
may be expected to provide a more realistic estimation
of uncertainties at lower orders in the chiral expansion
as compared to the standard method. For incomplete
calculations based on two-nucleon forces only, we rather
estimate δX(0) via

δX(0) = max
i�3

(Q2|X(0)|, |�X(2)|,Q−1|�X(i)|),

δX(j ) = Qj−1δX(0), for j � 2. (30)

In practice, the above modifications are found
to lead to very small changes in the estimated
theoretical uncertainties. For example, using
Eq. (29), we obtain for the neutron-proton total
cross section at Elab = 143MeV for the cutoff of
R = 0.9 fm,

52.5 ± 11.8[Q0] → 49.1 ± 5.1[Q2] → 54.2 ± 2.2[Q3]

→ 53.7 ± 1.0[Q4] → 53.9 ± 0.4[Q5],

(31)

which has to be compared with the estimation based on
the original approach using Eqs. (5) and (28):

52.5 ± 9.8[Q0] → 49.1 ± 5.1[Q2] → 54.2 ± 2.2[Q3]

→ 53.7 ± 1.0[Q4] → 53.9 ± 0.4[Q5].

(32)

Thus, in this particular case, the modification only
amounts to a slight increase of the theoretical uncertainty
at LO. Similarly, we find very minor changes when using
Eq. (30) instead of Eq. (8) to estimate truncation errors in
incomplete few-body calculations based on two-nucleon
interactions only; see Fig. 15 for representative examples.

Alternative approach 2

Furthermore, we consider a minimalistic approach for
uncertainty quantification of calculated ground-state
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FIG. 15. Predictions for the differential cross section, and deuteron tensor analyzing powers Ayy , Axz, and Axx at the laboratory energy of
200 MeV based on the NN potentials of Refs. [13,14] for R = 0.9 fm without including the 3NF. The bands of increasing width show estimated
theoretical uncertainty at N4LO (red), N3LO (blue), N2LO (green), and NLO (yellow). The theoretical uncertainties in the upper and lower
rows are estimated using Eq. (8) and (30), respectively. The dotted (dashed) lines show the results based on the CD Bonn NN potential (CD
Bonn NN potential in combination with the Tucson-Melbourne 3NF). Open circles are proton-deuteron data from Refs. [138].

energies that does not rely on the knowledge of con-
tributions beyond the leading order by assigning the
uncertainties as

δE(0) = Q2|〈V 〉(0)|, δE(i�2) = Qi+1|〈V 〉(0)|. (33)

without any further constraints. Also the momentum scale
Q is based on the calculated pavg at leading order given in

Table X, whereas in the original approach and Alternative
1 we used the average of pavg over all available chiral
orders. Thus, the uncertainties are estimated entirely
based on the leading order information.
Notice that using the expectation value of the potential
energy rather than the binding energy as done in the
original approach and Alternative 1 is crucial to account
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FIG. 16. Results from Fig. 11 showing chiral uncertainties as presented in the Introduction (gray bars) compared with the two alternative
uncertainty estimates (green and pale red bars), discussed in the text. The red error bars indicate the many-body uncertainties. For comparison,
the experimental ground-state energies are also shown as the blue bars.
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for the fine-tuning associated with the NN interaction
being close to the unitary limit (large S-wave scattering
lengths). While the ignorance of the fine-tuned nature
of the binding energies in the other two approaches is,
to a large extent, effectively corrected by employing the
available information about the actual pattern of the chiral
expansion, an attempt to use the binding energy instead
of 〈V 〉(0) in Eq. (33) will yield drastically underestimated
truncation errors.
This simple minimalistic approach has an appealing
feature that the estimated uncertainties for the energies
beyond the leading order do not involve any information
on the specific behavior at higher orders as it only
builds upon the expected suppression of higher-order
contributions of the chiral EFT expansion. However, this
method is less universal than the other two approaches
since it is defined specifically for the bound state energy.

In Fig. 16 we show the results for light nuclei along
with the uncertainty estimates presented in Fig. 11 and the un-
certainty estimates from these alternative approaches. Overall,
Alternative 1 produces very similar uncertainty estimates as the
original approach for these calculations which are truncated
at N2LO, but there are some significant differences in the
error estimates with Alternative 2. One of the most notable
differences is for 10B, where Alternative 2 produced the largest
chiral uncertainty, and in general, Alternative 2 suggests larger

chiral uncertainties than the original approach or Alternative
1 as A increases. Another significant difference is for A = 8
(8He, 8Li, and 8Be), where the original error estimates increase
significantly as one proceeds towards N = Z at fixed A, but
this does not happen as strongly with Alternative 2.

In Fig. 17 we show the results for ground-state energies per
nucleon of light and medium nuclei with closed (sub)shells
up to N4LO with the different chiral error estimates. Overall,
Alternative 2 produces very similar uncertainty estimates as
the original approach for these calculations, but there are
significant differences in the error estimates with Alternative
1. In particular, for the medium-mass nuclei 24O, 40Ca, and
48Ca, Alternative 1 produces very large uncertainties at LO.
This can be traced back to the large differences between
the N2LO results and N3LO and N4LO results for these
nuclei. We emphasize, that the original error estimates and
Alternative 1 are significantly influenced by the missing 3N
(and possibly 4N) forces at N3LO and N4LO. Clearly the role
of 3N (and possibly 4N) forces becomes more important for
these medium-mass nuclei, not only for the actual ground-
state energies, but also for the chiral truncation uncertainty
estimates.

We interpret the differences in the estimated truncation
errors, emerging from using the considered schemes, as an
intrinsic uncertainty of our approach to error analysis. It would
be interesting to see if it can be reduced by performing a more
refined analysis using Bayesian methods, which would also
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FIG. 17. Results for ground-state energies per nucleon of closed (sub)shell nuclei, showing chiral uncertainties as presented in the
Introduction (gray bars) compared with the two alternative uncertainty estimates (green and pale red bars), discussed in the text. No numerical
many-body uncertainties are shown. All results correspond to R = 1.0 fm and SRG α = 0.08 fm4 except for 48Ca at N3LO, where the results
for α = 0.04 fm4 were taken due to the unavailability of the ones for α = 0.08 fm4. For comparison, the experimental values are also shown
as the blue bars.
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provide a statistical interpretation of the theoretical error bars
[37,38].

VI. SUMMARY AND CONCLUSIONS

In this paper, we performed a comprehensive study of
few- and many-nucleon observables based on the SCS chiral
NN potentials of Refs. [13,14]. The pertinent results of our
calculations can be summarized as follows:

(1) We have analyzed various nd elastic scattering and
breakup observables and estimated truncation errors
at different orders of the chiral expansion. Similarly
to other calculations, we observe a considerable un-
derprediction of the nd elastic scattering analyzing
power Ay at low energy starting from N2LO, the
feature commonly referred to as the Ay-puzzle. At
intermediate energies, the discrepancies between the
calculated elastic scattering observables based on NN
forces only and experimental data are, in many cases,
significantly larger than the theoretical uncertainty at
N3LO and N4LO and agree well with the expected size
of the 3NF contributions. This makes elastic nucleon-
deuteron scattering in this energy range a particularly
promising testing ground for the chiral 3NF. However,
the considered breakup observables are well repro-
duced, leaving little room for possible 3NF effects
except for the symmetric space star configuration at low
energy, where large deviations are observed. For these
observables, known to represent another low-energy
puzzle, our calculations agree with the ones based on
other phenomenological and chiral EFT nuclear forces,
and the truncation errors turn out to be very small.

(2) We have calculated various properties of A = 3, 4
nuclei in the framework of the Faddeev-Yakubovsky
equations and studied light p-shell nuclei using the
NCCI method. In the latter case, we were able to
perform calculations at all chiral orders without SRG
transformations for A � 6 using the cutoffs R = 0.9,
1.0, and 1.1 fm. For heavier nuclei, we had to rely
on SRG evolution starting from N3LO to achieve
converged results. We found a qualitatively similar
convergence pattern in all considered cases, namely
a significant overbinding at LO, results close to the
experimental values at NLO and N2LO and under-
binding at N3LO and N4LO. We have also calculated
ground-state magnetic moments of light nuclei based
on the single-nucleon current operator and estimated
the corresponding NCCI extrapolation and truncation
errors.

(3) To obtain results for medium-mass nuclei, we have
performed state-of-the-art calculations within the
coupled-cluster and in-medium similarity renormaliza-
tion group frameworks. The obtained results for the
ground-state energies of 16,24O and 40,48Ca show a
similar pattern to that for light nuclei with the amount
of overbinding (underbinding) at LO, NLO, and N2LO
(N3LO and N4LO) tending to increase with the number
of nucleons A. The slower convergence of the chiral

expansion for heavier nuclei is to be expected and
reflects the increasing sensitivity to higher-momentum
components of the interaction. The calculated charge
radii of the considered medium-mass nuclei show a
systematic improvement with the chiral order, but
remain underestimated at N4LO.

(4) Finally, we have addressed the reliability of our error
analysis by exploring alternative approaches for uncer-
tainty quantifications. We found, in general, a satisfac-
tory agreement between all considered methods.

Our results demonstrate that the SCS chiral NN potentials
are well suited for ab initio few- and many-body calculations
and provide a natural reference point for systematic studies
of 3NF effects and specific details of the NN interactions
such as the choice of the basis of contact interactions and
regularization schemes. It would be interesting to perform
similar calculations using the new SMS chiral NN potentials
of Ref. [25], which provide an outstanding description of
neutron-proton and proton-proton scattering data below Elab =
300 MeV and are considerably softer than the SCS potentials
starting from N3LO. Such a study would, in particular, bring
insights into the role of the redundant contact interactions at
N3LO. Notice that the new SMS interactions also provide the
flexibility to propagate statistical uncertainties of the NN LECs
and to quantify the error from the uncertainty in the πN LECs
and the choice of the energy range used in the determination
of the NN contact interactions. Finally, and most importantly,
the calculations should be extended by the inclusion of the
consistent 3NFs [27,59,139–143]. Work along these lines is in
progress by the LENPIC Collaboration [144].
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TABLE X. Hartree-Fock results (rows without asterisk) and
NCCI results (rows with asterisk) for the average relative momentum
(in MeV/c) between a pair of nucleons in 3H, 3,4,6,8He and 6,8,9Li as
defined in Eq. (26). The first five columns of results correspond to
the chiral orders from LO to N4LO,xht while the last column is the
average over the five columns of results. The rows are labeled by the
value of the regularization parameter R. Hartree-Fock results are from
the expectation value of the SRG-transformed kinetic energy operator
with the SRG parameter α = 0.08 fm4. The first two rows for each
nucleus are obtained with spherical Hartree-Fock using the filling
fraction approximation appropriate to the specified nucleus. Rows
with results from an NCCI calculation (labeled with an asterisk) use
the bare NN interaction and the bare relative kinetic energy operator,
extrapolated to the infinite matrix limit. We quote the Yakubovsky
results for 4He at N3LO and N4LO for their higher precision.

R [fm] p
(0)
avg p

(2)
avg p

(3)
avg p

(4)
avg p

(5)
avg pavg

3H
0.9 158.3 125.2 123.0 116.7 116.8 128.0
1.0 149.8 123.8 121.5 111.6 112.9 123.9
1.0* 144.0 126.0 124.0
3He
0.9 157.3 123.9 121.6 115.4 115.6 126.8
1.0 148.7 122.5 120.1 110.4 111.7 122.7
4He
0.9 192.9 147.9 145.8 132.8 133.1 150.5
1.0 180.6 146.3 144.0 126.7 128.4 145.2
1.0* 180.0 147.0 145.0 176.8 169.6 163.6
6He
0.9 163.8 141.4 135.1 124.0 123.7 137.6
1.0 156.3 139.6 133.9 119.0 120.4 133.8
1.0* 157.0 137.0 132.0
8He
0.9 153.3 146.8 136.0 124.0 123.1 136.6
1.0 148.1 144.4 135.1 118.9 120.1 133.3
1.0* 150.0 141.0 131.0
6Li
0.9 166.6 143.5 137.1 125.6 125.3 139.6
1.0 159.4 141.8 135.9 120.4 121.9 135.9
1.0* 160.0 140.0 136.0
8Li
0.9 165.9 151.7 141.9 128.3 127.3 143.0
1.0 159.5 149.5 140.9 122.9 124.3 139.4
1.0* 163.0 148.0 140.0
9Li
0.9 166.5 155.8 144.4 129.8 128.4 145.0
1.0 160.2 153.5 143.4 124.1 125.4 141.3
1.0* 163.0 152.0 142.0

TABLE XI. Same as table X but for 8,9Be, 16,24O, and 40,48Ca.

R [fm] p
(0)
avg p

(2)
avg p

(3)
avg p

(4)
avg p

(5)
avg pavg

8Be
0.9 174.8 150.3 142.2 128.7 127.8 144.8
1.0 166.7 148.7 141.2 123.2 124.6 140.9
1.0* 176.0 149.0 144.0
9Be
0.9 175.5 156.7 146.7 131.5 130.2 148.1
1.0 167.8 154.7 145.7 125.6 127.0 144.2
1.0* 173.0 153.0 146.0
16O
0.9 223.1 177.2 169.2 148.3 145.0 172.5
1.0 210.3 176.5 167.6 140.6 141.0 167.2
1.0* 209.0 173.0 164.0
24O
0.9 211.7 186.1 179.8 153.6 147.9 175.8
1.0 201.3 185.4 178.7 145.2 144.4 171.0
40Ca
0.9 249.5 196.1 203.5 168.0 159.0 195.2
1.0 234.4 198.2 203.2 158.5 155.7 190.0
48Ca
0.9 244.8 203.8 222.4 178.1 167.1 203.2
1.0 230.9 206.2 221.9 174.2 169.8 200.6

provided under the INCITE award “Nuclear Structure and
Nuclear Reactions” from the U.S. Department of Energy,
Office of Advanced Scientific Computing Research. Further
computing resources were provided by the TU Darmstadt
(lichtenberg) and on JUQUEEN and JURECA of the Jülich
Supercomputing Centre, Jülich, Germany.

APPENDIX: EXPECTATION VALUES OF THE KINETIC
ENERGY IN LIGHT- AND MEDIUM-MASS NUCLEI

In this appendix we provide some details on the estimation
of the expansion parameter used to quantify the theoretical
uncertainties for the ground-state properties of light- and
medium-mass nuclei. As explained in Sec. III, this is achieved
by inferring the relevant momentum scale from the expectation
values of the SRG-transformed kinetic energy operator T . In
Tables X and XI, we list our Hartree-Fock results for all nuclei
considered in this paper for the cutoff values of R = 0.9 fm
and R = 1.0 fm. The resulting values of the momentum scale
given in the last column of this table are obtained by taking the
average over all chiral orders i of the quantity

√
2mN 〈T 〉(i)/A.
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