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Theoretical uncertainties of the elastic nucleon-deuteron scattering observables
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Theoretical uncertainties of various types are discussed for the nucleon-deuteron elastic scattering observables
at incoming-nucleon laboratory energies up to 200 MeV. We are especially interested in the statistical errors arising
from uncertainties of parameters of a nucleon-nucleon interaction. The obtained uncertainties of the differential
cross section and numerous scattering observables are in general small, grow with the reaction energy, and
amount up to a few percent at 200 MeV. We compare these uncertainties with the other types of theoretical
errors like truncation errors, numerical uncertainties, and uncertainties arising from using the various models
of nuclear interaction. We find the latter ones to be dominant source of uncertainties of modern predictions for
the three-nucleon scattering observables. To perform above mentioned studies we use the One-Pion-Exchange
Gaussian potential derived by the Granada group, for which the covariance matrix of its parameters is known,
and solve the Faddeev equation for the nucleon-deuteron elastic scattering. Thus besides studying theoretical
uncertainties we also show a description of the nucleon-deuteron elastic scattering data by the One-Pion-Exchange
Gaussian model and compare it with results obtained with other nucleon-nucleon potentials, including chiral N4LO
forces from the Bochum-Bonn and Moscow(Idaho)-Salamanca groups. In this way we confirm the usefulness
and high quality of the One-Pion-Exchange Gaussian force.
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I. INTRODUCTION

One of the main goals of nuclear physics is to establish the
properties of nuclear interactions. After many years of inves-
tigations we are now in a position to study details of nuclear
forces both from the theoretical as well as the experimental
sides. It has been found that the three-nucleon (3N ) system,
which allows one to probe also the off-energy-shell properties
of the nuclear potential, is especially important for such studies.
Moreover, to obtain a precise description of the 3N data one
has to supplement the two-nucleon (2N ) interaction by a 3N
force acting in this system. Currently the structure of 3N force
is still unclear and many efforts are directed to fix 3N force
properties. However, in order to obtain trustable and precise
information from a comparison of 3N data with predictions
based on theoretical models it is necessary to take into account,
or at least to estimate, in addition to the uncertainties of data
also the errors of theoretical predictions.

The precision of the experimental data has significantly
increased, and has achieved in recent measurements a high
level; see, e.g., Refs. [1–5] for examples of state-of-the-art
experimental studies in the three-nucleon sector. Precision
of these and other experiments has become so high that the
question about the uncertainties of the theoretical predictions
is very timely [6]. In the past the theoretical uncertainties
for observables in three-nucleon reactions were estimated by
comparing predictions based on various models of nuclear
interactions [7] or by performing benchmark calculations using
the same interaction but various theoretical approaches [8–12].
Such a strategy was dictated by (a) a common belief that
a poor knowledge about the nuclear forces, reflected by the
existence of very different models of nuclear interaction, is
a dominant source of the theoretical uncertainty; (b) lack of

knowledge about the correlations between nucleon-nucleon
(NN ) potential parameters; (c) using inconsistent models of
2N and 3N forces; and last but not least (d) a magnitude
of uncertainties of experimental data available at the time.
Nowadays these arguments, at least partially, are no longer
valid due to the above mentioned progress in experimental
techniques, progress in the derivation of consistent 2N and
3N interactions, e.g., within the chiral effective field theory
(χEFT) [13–17], and due to availability of new models of
nuclear forces, where free parameters are fixing by performing
a careful statistical analysis [18,19]. As a consequence, the
estimation of theoretical uncertainties has become again an
important issue in theoretical studies.

An extensive introduction to an error estimation for theo-
retical models was given in Ref. [20], followed by a special
issue of Journal of Physics G: Nuclear and Particle Physics
[21]. In the latter reference many applications of the error
estimation to nuclear systems and processes are discussed.
However, omitting the few-nucleon reactions, the authors focus
mainly on models used in direct fitting to data or on models
used in nuclear structure studies. Among the other papers
focused on the estimation of theoretical uncertainties of NN
interaction we refer the reader to works by Ekström et al. [22],
Navarro Pérez et al. [19,23,24], and to a recent work by Reinert
et al. [25]. Simultaneously, the Bayesian approach to estimate
uncertainties in the 2N system was derived in Ref. [26] with
some applications shown again in Ref. [21]. Beyond the 2N
system, the uncertainty of theoretical models has been recently
studied in the context of nuclear structure calculations, for
which such an evaluation is important also from a practical
point of view. Namely, predictions for many-nucleon systems
require not only a huge amount of advanced computations
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but also rely, e.g., in the case of the no-core shell model
[27], on extrapolations to large model spaces. A knowledge
of precision of the theoretical models is important for efficient
use of available computer resources.

Studies of theoretical uncertainties in few-nucleon reactions
are less advanced. Besides the above mentioned attempts to es-
timate their magnitudes by means of benchmark calculations,
most efforts in the field were orientated to estimate uncertain-
ties present in the χEFT approach [13]. In this case three
sources of theoretical uncertainties have been investigated:
the truncation of the chiral expansion at a finite order (which
results in the so-called truncation errors), the introduction of
regulator functions (which results in a cutoff dependence),
and the procedure of fixing values of low-energy constants. A
simple prescription of how to estimate the truncation errors was
proposed by Epelbaum and collaborators for the 2N system
[28] and adopted also for 3N systems, for the case where
predictions were based on a two-body interaction [29] only. It
was found that both for pure nuclear systems [29] as well as for
electroweak processes [30] the magnitude of truncation errors
strongly decreases with the order of chiral expansion, and at the
fifth order (N4LO) it becomes relatively small. The prescription
of Ref. [28] is in agreement with the Bayesian approach [26];
see also the recent work [31] for a discussion of the Bayesian
truncation errors for the NN observables. The dependence of
the chiral predictions on used regulator functions and their
parameters has been studied since the first applications of
chiral potentials to the 2N and 3N systems [32–34]. The
regulator dependence of chiral forces was broadly discussed
in the past (see, e.g., [35]) and various regulator functions
were proposed. The nonlocal regularization in the momentum
space was initially used and estimations of the theoretical
uncertainties of the 2N and many-body observables related to
regulators were made by comparing predictions obtained with
various values of regularization parameters. It was found that
the nonlocal regularization leads to an unwanted dependence
of observables on the parameters used. This dependence was
especially strong for predictions for the nucleon-deuteron (Nd)
elastic scattering based on 2N and 3N forces at the next-
to-next-to-next-to leading order (N3LO) of chiral expansion
[36] and for the electromagnetic processes in the 3N systems
when also the leading meson-exchange currents were taken
into account [37,38]. These results were one of the reasons for
introducing another method, the so-called semilocal method
of regularization of chiral forces. Such an improved method
was presented and applied to the NN system in Refs. [28,39],
leading to weak cutoff dependence of predictions in two-body
system at chiral orders above the leading order. A similar
picture of weak dependence of predictions based on the chiral
forces of Refs. [28,39] was found for Nd elastic scatter-
ing [29] and for various electroweak processes [30]. Also
the nuclear structure calculations confirmed this observation
[40,41].

The estimation of the theoretical uncertainties arising from
an uncertainty of the potential parameters (which we will call in
the following also a statistical error) has not been studied yet, to
the best of our knowledge, in Nd scattering. Within this paper
we investigate how such statistical uncertainties propagate
from the NN potential parameters to the Nd scattering observ-

ables. We also compare them with the remaining theoretical
uncertainties for the same observables. To this end we use, for
the first time in Nd scattering, the One-Pion-Exchange (OPE)
Gaussian NN interaction derived recently by the Granada
group [19]. Knowledge of the covariance matrix of the OPE-
Gaussian potential parameters is a distinguishing feature of
this interaction. This is also crucial for our investigations as
we use a statistical approach to estimate theoretical uncertain-
ties. Namely, given the covariance matrix for the potential
parameters, we sample 50 sets of the potential parameters
and, after calculating for each set the 3N observables, we
study statistical properties of the obtained predictions. The
OPE-Gaussian interaction is described briefly in Sec. II and
our method to obtain statistical errors is discussed step by step
in Sec. III. The OPE-Gaussian force has been already used,
within the same method, to estimate the statistical uncertainty
of the 3H binding energy [42], which was found to be around
15 keV (≈0.16%).

The paper is organized as follows: in Sec. II we show the
essential elements of our formalism, describe its numerical
realization and give some more information on the OPE-
Gaussian potential and the chiral models used. In Sec. III we
present predictions for the Nd elastic scattering observables
obtained with the OPE-Gaussian force and compare them
with predictions based on the AV18 NN potential [43]. We
also discuss various estimators of uncertainties in hand for
the 3N scattering observables. In Sec. IV we compare, for a
few chosen observables, the theoretical uncertainties arising
from various sources, including the truncation errors and
the regulator dependence. Here, beside the OPE-Gaussian
potential and other semiphenomenological NN forces, we also
use the chiral interaction of Ref. [28,39] and, for the first
time in Nd scattering, the chiral N4LO interaction recently
derived by the Moscow(Idaho)-Salamanca group [17]. Finally,
we summarize in Sec. V.

II. FORMALISM

The formalism of the momentum space Faddeev equation
is one of the standard techniques to investigate 3N reactions
and has been described in detail many times; see, e.g., [44,45].
Thus we only briefly remind the reader of its key elements.

For a given NN interaction V we solve the Lippmann-
Schwinger equation t = V + V G̃0t to obtain matrix elements
of the 2N t operator, with G̃0 being the 2N free propagator.
These matrix elements enter the 3N Faddeev scattering equa-
tion which, neglecting the 3N force, takes the following form:

T |φ〉 = tP |φ〉 + tPG0T |φ〉. (2.1)

The initial state |φ〉 is composed of a deuteron and a momen-
tum eigenstate of the projectile nucleon; G0 is the free 3N
propagator and P is a permutation operator.

The transition amplitude for the elastic Nd scattering
process 〈φ′|U |φ〉 contains the final channel state |φ′〉 and is
obtained as

〈φ′|U |φ〉 = 〈φ′|PG−1
0 |φ〉 + 〈φ′|PT |φ〉, (2.2)
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from which observables can be obtained in the standard way
[44].

Equation (2.1) is solved in the partial wave basis com-
prising all 3N states with the two-body subsystem total
angular momentum j � 5 and the total 3N angular momentum
J � 25

2 .
Since we obtained the bulk of our results with the OPE-

Gaussian interaction [19], we now briefly remind the reader
of the structure of this potential. A basic concept at the heart
of this force is analogous to the one stated behind the well-
known AV18 interaction [43]. The OPE-Gaussian potential
V (�r) is composed of the long-rangeVlong(�r) and the short-range
Vshort(�r) parts,

V (�r) = Vshort(�r)θ (rc − r) + Vlong(�r)θ (r − rc), (2.3)

where rc = 3 fm and the Vlong(�r) part contains the OPE force
and the electromagnetic corrections. The Vshort(�r) component
is built from 18 operators Ôn, among which 16 are the same as
in the AV18 model. Each of them is multiplied by a linear com-
bination of the Gaussian functions Fk(r) = exp (−r2/(2a2

k )),
with ak = a

1+k
, and the strength coefficients Vk,n:

Vshort(�r) =
18∑

n=1

Ôn

[
4∑

k=1

Vk,nFk(r)

]
. (2.4)

The free parameter a present in the Fk(r) functions together
with the parameters Vk,n have been fixed from the data. It is
worth noting that to this end the “3σ self-consistent database”
[18] was used. It incorporates 6713 proton-proton and neutron-
proton data, gathered within the years 1950 to 2013, in the
laboratory energy range Elab up to 350 MeV. The careful
statistical revision of data and the fitting procedure allowed
the authors of Ref. [19] to confirm good statistical properties
of their χ2 fit, e.g., by checking the normality of residuals. The
χ2/data for the OPE-Gaussian force is 1.06 as fitted to data
enumerated in Ref. [18]. We have been provided by the authors
of Ref. [19] with 50 sets of parameters {Vk,n,a} obtained by a
correlated sampling from the multivariate normal distribution
with a known covariance matrix (see [46] for details). The
OPE-Gaussian model, having a similar structure to the AV18
force but being fitted to the newer data, can be regarded
as a refreshed version of the standard AV18 model. In the
NN sector these two potentials lead to a slightly different
description of phase shifts, especially at energies above 150
MeV in the 3F2 and 3D3 partial waves [19]. Thus it seems to
be interesting to compare predictions for Nd scattering given
by both potentials.

Besides the OPE-Gaussian and the AV18 models, we show
in Sec. IV predictions based on two chiral forces at N4LO,
derived by Machleidt and collaborators [17] and by Epelbaum
and collaborators [28,39]. In the case of the first of these forces
the nonlocal regularization, applied directly in momentum
space, was used. The regulator function is taken as f (p′,p) =
exp [−( p′

�
)2n − ( p

�
)2n], where n depends on the regarded oper-

ators (e.g., n = 4 for the one-pion exchange potential). Three
values of the cutoff parameter � (450, 500, and 550 MeV) were
suggested for this potential and are also used in this paper. In the
case of the N4LO potential and � = 500 MeV, χ2/data = 1.15
for the combined neutron-proton and proton-proton data in the

energy range 0–290 MeV [17]. In this paper we show for the
first time the predictions of this new chiral potential at N4LO
for the Nd elastic scattering observables. As mentioned above,
in the approach of Refs. [28,39] the semilocal regularization
of nuclear forces is performed in coordinate space with the
regulator function f (r) = {1 − exp [ − ( r

R
)2]}6, where r is the

distance between nucleons and R is the regulator parameter.
The authors of Ref. [28] suggested five values of the regulator,
R = 0.8, 0.9, 1.0, 1.1, and 1.2 fm. The best description of the
NN observables is achieved with R = 0.9 fm and R = 1.0 fm,
and leads to χ2/data ≈ 1.14 at R = 0.9 fm for the N4LO
force [25] when using the “3σ self-consistent database” from
Ref. [18]. This value is comparable with the ones obtained for
the semiphenomenological potentials.

III. THE OPE-GAUSSIAN PREDICTIONS FOR Nd
SCATTERING AND THEIR STATISTICAL ERRORS

A. Determination of statistical uncertainty in a 3N system

To determine the theoretical uncertainty arising from the
2N potential parameters we took the following steps:

(1) We prepared various sets of the potential parameters.
Actually, this step had been already taken by the
Granada group as a part of their study of the statistical
uncertainty of the 3H binding energy. They provided
us with 50 sets (Si with i = 1, . . . ,50) of 42 potential
parameters (drawn from the multivariate normal distri-
bution with known expectation values and covariance
matrix) and one set of expectation values of potential
parameters (S0). Such a relatively big sample of 51 sets
allows us to obtain statistically meaningful conclusions.

(2) For each set Si (i = 0,1, . . . ,50) we calculated the
deuteron wave function and the t matrix, solved, at
each considered energy, the Faddeev equation (2.1),
calculated the scattering amplitude [Eq. (2.2)], and
finally computed observables. As a result the angular
dependence of various scattering observables is known
for each set of parameters Si .

The predictions obtained in such a way allow us to study

(a) for a given energy E, an observable O, and a scattering
angle θ , the empirical probability density function of
the observable O(E,θ ) resulting when various sets
Si,(i = 1, . . . ,50) are used;

(b) for a given observable O, both the angular and energy
dependencies of results based on various sets Si .

Based on these studies, we can conclude on the measure of
statistical uncertainties and quality of the elastic Nd scattering
data description. This is a content of the next two subsections.

B. Measure of statistical uncertainty

Our first task is to choose an estimator of the theoretical
uncertainties in question. Due to the high complexity of
calculations required to obtain the 3N scattering observables,
we are not able a priori to determine analytically the prob-
ability distribution function of the resulting 3N predictions
and consequently to choose the best estimator to describe the
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FIG. 1. The histograms and the P values for the Shapiro-Wilk
test for the elastic Nd scattering differential cross section dσ/d� (mb
sr−1) at the incoming-nucleon laboratory energy E = 13 MeV and the
scattering angles (a) θc.m. = 30◦, (b) θc.m. = 75◦, (c) θc.m. = 120◦, and
(d) θc.m. = 165◦, obtained with 50 sets of the OPE-Gaussian potential
parameters.

dispersion of results. In Figs. 1 and 2 we show the empirical
distributions (histograms) of the cross section dσ/d� and the
nucleon analyzing power Ay at the nucleon laboratory energy
E = 13 MeV and at four center-of-mass (c.m.) scattering
angles: θc.m. = 30◦, 75◦, 120◦, and 165◦. The same observables
at the same θc.m. angles but at E = 200 MeV are shown in
Figs. 3 and 4, respectively. It is clear that the distribution of
the predictions cannot be regarded as the normal distribution.
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FIG. 2. The histograms and the P values for the Shapiro-Wilk
test for the nucleon analyzing power Ay in Nd elastic scattering at the
incoming-nucleon laboratory energy E = 13 MeV and the scattering
angles (a) θc.m. = 30◦, (b) θc.m. = 75◦, (c) θc.m. = 120◦, and (d) θc.m. =
165◦, obtained with 50 sets of the OPE-Gaussian potential parameters.
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FIG. 3. The same as in Fig. 1 but at E = 200 MeV.

To obtain quantitative information on the distribution we have
performed the Shapiro-Wilk test [47], which belongs to the
strongest statistical tests of normality. As is seen from the
obtained P values (the smaller the P value, the more unlikely
the predictions are normally distributed) given in Figs. 1–4,
in many cases the resulting distributions of the cross section
and the nucleon analyzing power cannot be regarded with high
confidence as normal distributions. This restricts a choice of the
dispersion estimators: neither the commonly used confidence
interval nor the usual estimators for the standard deviation can
be used directly as they are tailored to the normal distribution.
Thus we considered the following estimators for the statistical
error of the observable O(E,θ ) (at a given energy and a
scattering angle):
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FIG. 4. The same as in Fig. 2 but at E = 200 MeV.
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TABLE I. The differential cross section dσ/d� obtained with the expectation values of the OPE-Gaussian potential parameters (set S0),
various estimators of its dispersion (see text), and mean values taken from 50 (M100%) or 34 (M68%) predictions. In case of the sample
standard deviation σ (dσ/d�) also the relative magnitude σ (dσ/d�)/[dσ/d�(S0)] × 100% is shown in parentheses. All predictions are given
in mb sr−1.

E (MeV) θc.m. (deg) dσ /d�(S0) 1
2 �100%

1
2 �68%

1
2 IQR σ (dσ/d�) M100% M68%

13.0 30 134.9970 0.1780 0.1025 0.0635 0.0954 (0.132%) 135.0040 135.0100
75 51.3274 0.0315 0.0153 0.0110 0.0149 (0.061%) 51.3283 51.3295

120 9.7437 0.0347 0.0181 0.0118 0.0179 (0.356%) 9.7421 9.7420
165 103.1210 0.1085 0.0420 0.0230 0.0462 (0.105%) 103.1190 103.1190

65.0 30 23.7000 0.1785 0.0812 0.0569 0.0824 (0.753%) 23.7137 23.7092
75 2.3630 0.0134 0.0060 0.0040 0.0057 (0.568%) 2.3630 2.3630

120 0.7787 0.0035 0.0015 0.0011 0.0016 (0.451%) 0.7786 0.7785
165 4.7537 0.0174 0.0076 0.0060 0.0075 (0.366%) 4.7532 4.7535

200.0 30 3.7626 0.0351 0.0164 0.0097 0.0162 (0.325%) 3.7634 3.7625
75 0.2088 0.0018 0.0008 0.0005 0.0008 (0.839%) 0.2087 0.2087

120 0.0585 0.0006 0.0004 0.0003 0.0003 (1.069%) 0.0589 0.0589
165 0.1645 0.0022 0.0009 0.0007 0.0009 (1.356%) 0.1647 0.1647

(1) 1
2�100% ≡ 1

2 [maxi(Oi) − mini(Oi)], where the mini-
mum and maximum are taken over all predictions based
on different sets of the NN potential parameters Si ,
i = 1,2, . . . ,50.

(2) 1
2�68% ≡ 1

2 [maxi(Oi) − mini(Oi)], where the mini-
mum and maximum are taken over 34 (68% of 50)
predictions based on different sets of the NN potential
parameters. The set of 34 observables is constructed by
disposing of the 8 smallest and the 8 biggest predictions
for the observable O(E,θ ).

(3) 1
2 IQR: half of the standard estimator of the interquartile
range being the difference between the third and the first
quartile IQR = Q3 − Q1. For the sample of size 50 this
corresponds to taking half of the difference between
the predictions on 37th and 13th positions in a sample
sorted in ascending order. The flexibility in applying
this measure to the nonnormal distribution is a great
asset of the IQR.

(4) σ (O): the sample standard deviation σ (O) =√
1

n−1

∑n
i=1(xi − x̄)2, where x̄ is the usual mean

value. The disadvantage of this estimator is that on
formal grounds it cannot be applied to samples from
an arbitrary probability distribution.

The estimators 1
2�100% and σ (O) are sensitive to possible

outliers in the sample, and thus taking them as estimators of
dispersion can lead to overestimation of the statistical error.
On the other hand the IQR is calculated using only half of the
elements in the sample and thus can lead to underestimation
of the theoretical uncertainty. Thus we decided to adapt
1
2�68% as an optimal measure of predictions’ dispersion and
consequently as an estimator of the theoretical uncertainty
in question. The same choice was made in a study of the
statistical error of the 3H binding energy in Ref. [46]. The
similarity to the standard deviation is one more advantage of
1
2�68% since the comparison of the theoretical errors with the
experimental (statistical) uncertainties, delivered usually in the
form of standard deviations, is finally unavoidable.

However, in Table I we compare values of the above
mentioned estimators for the Nd elastic scattering differential
cross section at three energies of the incoming nucleon and at
four c.m. scattering angles. By definition 1

2 IQR � 1
2�68% �

1
2�100% and indeed this is observed in Table I. The magnitudes
of 1

2�68% are very close to the measure based on the sample
standard deviation σ (dσ/d�) and in practice it does not matter
which of these estimators is used. The relative uncertainty
(exemplified in Table I for the sample standard deviation)
remains below 1% for all scattering angles at E = 13 MeV
and E = 65 MeV, and only slightly exceeds it at E = 200
MeV. In Table I we also show values of the differential cross
section obtained with the central values of the OPE-Gaussian
potential parameters and mean values of predictions calculated
separately for the 50 (M100%) or 34 (M68%) sets of parameters
Si . Also here in most of the cases dσ/d�(S0) ≈ M100% ≈
M68%, which shows that the predictions based on sets Si for
i 
= 0 cluster around dσ/d�(S0) evenly. The other observables
behave in a similar way.

C. Nucleon-deuteron elastic scattering observables
from the OPE-Gaussian model

In the following we present predictions obtained with the
OPE-Gaussian NN interaction for various observables in
the elastic neutron-deuteron scattering process at incoming-
nucleon laboratory energies E = 13, 65, and 200 MeV. We
will focus on the elastic scattering cross section dσ/d�, the
nucleon vector analyzing power Ay , the nucleon-to-nucleon

spin transfer coefficients K
y ′
y , and the spin correlation coef-

ficients Cy,y . However, we will also give examples for other
observables.

The Nd cross section is shown in Fig. 5. Apart from the solid
line which represents predictions based on the OPE-Gaussian
force when the expectation values of its parameters (set S0)
are used, we also show a red band representing the range
of predictions obtained with the same 34 sets Si as used to
calculate 1

2�68%, and a blue dashed curve showing results
obtained with the AV18 interaction. The nucleon-deuteron data
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FIG. 5. The Nd elastic scattering cross section dσ/d� (mb sr−1) at the incoming-nucleon laboratory energies (a) E = 13 MeV, (b) E = 65
MeV, and (c) E = 200 MeV as a function of the c.m. scattering angle θc.m.. The black curve represents predictions obtained with the central
values of the OPE-Gaussian parameters, the red band reflects statistical uncertainty discussed in this subsection, and the blue dashed curve
represents predictions based on the AV18 force. The data are in (b) from Ref. [50] (pd black pluses) and [51] (nd orange circles) and in (c) from
Ref. [52] (pd , E = 198 MeV, violet squares), Ref. [53] (pd , E = 180 MeV, orange ×’s), and Ref. [54] (pd , E = 198 MeV, black circles).

(at the same or nearby energies) are also added for the sake
of comparison. The predictions based on the OPE-Gaussian
force are in agreement with the predictions based on the AV18
potential. Only small (≈3.9% at E = 13 MeV and ≈3.5%
at E = 200 MeV) differences are seen in the minimum of
the cross section. Similarly to the AV18, the OPE-Gaussian
model clearly underestimates the data at two higher energies,
reflecting the known fact of growing importance of a 3N force
[48,49]. The statistical error arising from the uncertainty of the
NN force parameters is in all cases very small, and red bands
are hardly visible in Fig. 5.

The OPE-Gaussian force delivers predictions which are
very close to the AV18 results also for the most of the
polarization observables at the energies studied here. Likewise
the dispersion of predictions remains small for most of the
polarization observables. Below we discuss a few of them,
choosing mainly ones with the largest statistical uncertainties.

Let us start, however, with the nucleon analyzing power Ay ,
shown in Fig. 6. Here the uncertainties remain negligible at all
energies and also the differences between predictions based on
the OPE-Gaussian force and the ones obtained with the AV18
potential are tiny. Thus we see that the OPE-Gaussian model
does not deliver any hint on the nature of the Ay puzzle at
E = 13 MeV.

We have chosen the nucleon-to-nucleon spin transfer co-
efficient K

y ′
y and the spin correlation coefficient Cy,y to

demonstrate, in Figs. 7 and 8, respectively, changes of the
statistical errors when increasing the reaction energy. For
both observables dispersion of the results grows with energy,
and while at lowest energy E = 13 MeV it is negligible, at
E = 200 MeV its size is bigger, although it remains small
( 1

2�68% < 0.5%). In the case of Cy,y comparison with the
data reveals that the spread of the OPE-Gaussian results is
still smaller than uncertainties of experimental results.
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FIG. 6. The nucleon analyzing power Ay for Nd elastic scattering at the same energies as used in Fig. 5 as a function of the c.m. scattering
angle θc.m.. Curves and band as in Fig. 5. The data are in (a) are from Ref. [55] (nd black pluses), in (b) from Ref. [50] (pd black pluses)
and Ref. [51] (nd orange circles), and in (c) from Ref. [52] (pd violet squares), Ref. [3] (pd E = 200 MeV orange circles), Ref. [56]
(pd E = 197 MeV black up-triangles), and Ref. [57] (pd blue ×’s).
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FIG. 7. The nucleon to nucleon spin transfer coefficient Ky′
y at the incoming-nucleon laboratory energies (a) E = 13 MeV, (b) E = 65 MeV,

and (c) E = 200 MeV as a function of the c.m. scattering angle θc.m.. See Fig. 5 for a description of band and curves.

In Fig. 9 we show two observables for which the difference
between the AV18 predictions and the OPE-Gaussian results
is especially big already at the two lower energies. They are
the spin correlation coefficient Cxx,y-Cyy,y at E = 13 MeV
and the deuteron-to-nucleon spin transfer coefficient Kx ′

yz at
E = 65 MeV. The difference between the two predictions
amounts to ≈19% at the minimum of Cxx,y-Cyy,y , while the
statistical error of the OPE-Gaussian results is only ≈2%. For
Kx ′

yz these differences amount to ≈23% and ≈3%, respectively.
We see that even in these two cases the statistical uncertainty
remains much smaller than the uncertainty related to using
various models of the NN interaction.

The statistical errors grow with the reaction energy. Thus
in Fig. 10 we show for E = 200 MeV a few observables with
the largest uncertainties. Besides the spin transfer coefficient
K

y ′
y already shown in Fig. 7, they are the deuteron tensor

analyzing powers T21 and T22 and the nucleon to deuteron spin
transfer coefficient Kx ′x ′

y -Ky ′y ′
y . While the bands representing

the theoretical uncertainties are clearly visible, they still remain
small compared to the experimental errors for both analyzing

powers. The differences between predictions based on the
AV18 potential and the OPE-Gaussian force are small. This is
true also for the other Nd elastic scattering observables both at
E = 200 MeV and at the lower energies, so we conclude that
the OPE-Gaussian force yields a description of this process
similar to the AV18 potential.

IV. COMPARISON OF VARIOUS THEORETICAL
UNCERTAINTIES IN Nd SCATTERING

It is interesting to compare the statistical error 1
2�68%

obtained in the previous section with the other uncertainties
(like the uncertainty arising from using the various models of
nuclear interaction, the uncertainty introduced by the partial
wave decomposition approach, the truncation errors of chiral
predictions, and the uncertainties originating in the cutoff de-
pendence of chiral forces) present in the elastic Nd scattering
studies and specifically in our approach.

The accuracy of predictions arising from the algorithms
used in our numerical scheme, which comprises, among others,
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FIG. 8. The spin correlation coefficient Cy,y at the incoming-nucleon laboratory energies (a) E = 13 MeV, (b) E = 65 MeV, and (c)
E = 200 MeV as a function of the c.m. scattering angle θc.m.. See Fig. 5 for a description of band and curves. In (c) data are from Ref. [56]
(pd E = 197 MeV, orange circles) and Ref. [3] (pd E = 200 MeV, black pluses).
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FIG. 9. The spin correlation coefficient Cxx,y-Cyy,y at the incoming-nucleon laboratory energy E = 13 MeV (a) and the deuteron to nucleon
spin transfer coefficient Kx′

yz at the incoming-nucleon laboratory energy E = 65 MeV (b) as a function of the c.m. scattering angle θc.m.. Curves
and band are as in Fig. 5.

numerical integrations, interpolations, and series summations,
is well under control. This has been tested, e.g., by using
various grids of mesh points, or more generally by benchmark
calculations involving different methods to treat Nd scattering
[9–12]. The main contribution to theoretical uncertainties
comes in our numerical realization from using a truncated
set of partial waves. Typically we restrict ourselves to partial
waves with the two-body total orbital momentum j � 5.
Predictions for observables converge with increasing j , as
was documented, e.g., in [44]. In the following we compare
the OPE-Gaussian predictions, shown in the previous section,
based on all two-body channels up to j = 5 with the predictions
based on all channels up to j = 4 only to remind the reader of
some facts about the convergence of our approach. However,
since the differences between (not shown here) predictions
based on all channels up to j = 6 and those with jmax =
5 are, based on results with other NN potentials, smaller

than this for jmax = 5 and jmax = 4 predictions, the latter
difference very likely overestimates the uncertainty arising
from our computational scheme. A recent work [58] compares
predictions for the elastic Nd scattering, based however only
on the driving term of Eq. (2.1), obtained within the partial
wave formalism with the ones from the “three-dimensional”
approach, i.e., the approach which totally avoids the partial
wave decomposition and uses momentum vectors. A very good
agreement between the partial waves based results and the
“three-dimensional” ones confirms that neglecting the higher
partial waves in the calculations presented here practically does
not affect our predictions.

Next, we would like to focus on the truncation errors
and the cutoff dependence present in the chiral calculations
and last but not least on the differences between predic-
tions based on various models of the nuclear two-body
interaction.
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FIG. 10. The deuteron tensor analyzing powers T21 (a) and T22 (b) and the nucleon-to- deuteron spin transfer coefficient Kx′x′
y -Ky′y′

y (c) for
E = 200 MeV as a function of the center-of-mass scattering angle θc.m.. See Fig. 5 for a description of bands and curves. The T21 and T22 data
are from Ref. [1] (pd E = 186.6 MeV turquoise squares) and Ref. [3] (pd E = 200 MeV black circles).
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FIG. 11. The Nd elastic scattering differential cross section and various theoretical uncertainties at four scattering angles: θc.m. = 30◦ [first
column (a)], 75◦ [second column (b)], 120◦ [third column (c)], and 165◦ [fourth column (d)] and at three scattering energies: E = 13 MeV [the
upper row (A)], E = 65 MeV [the middle row (B)], and E = 200 MeV [the bottom row (C)]. The x axis at the bottom shows the values of the
cross section and the x axis at the top shows the relative difference of predictions with respect to the OPE-Gaussian results. The vertical lines show
the position of the cross section obtained with the AV18 force (black line), the OPE-Gaussian force (red line), the E-M-N N4LO � = 500 MeV
force (green line), the CD-Bonn potential (blue line), the E-K-M N4LO R = 0.9 fm force (magenta solid line), and the E-K-M N4LO R = 1.0
fm force (magenta dashed line). The horizontal lines represent (from the bottom) the statistical error (red line), the difference between the
OPE-Gaussian predictions with jmax = 5 and jmax = 4 (orange line), the regulator dependence for the E-K-M force (magenta solid line), the
truncation error for the E-K-M force (magenta dashed line), the regulator dependence for the E-M-N force (green solid line), and, at the top,
the truncation error for the E-M-N potential (green dashed line); see text for details.

To estimate two types of theoretical uncertainties present
when chiral potentials are used, we calculated the elastic Nd
scattering observables using two NN interactions at the N4LO:
one delivered by Epelbaum et al. [39] (E-K-M force) and the
other derived by Entem et al. [17] (E-M-N force). In the case
of the E-K-M model a semilocal regularization with a cutoff
parameter R in the range between 0.8 and 1.2 fm is used and
the breakdown scale of the χEFT is 0.4–0.6 GeV [39]. The
E-M-N model uses a chiral breaking scale of 1 GeV, and the
cutoff parameter � for nonlocal regularization lies between
450 and 550 MeV [17].

The truncation errors δ(O)(i) of an observable O at ith order
of the chiral expansion, with i = 0,2,3, . . . , when only two-
body interaction is used, can be estimated as [29]

δ(O)(0) � max(Q2|O(0)|,|O(i�0) − O(j�0)|),
δ(O)(2) = max(Q3|O(0)|,Q|�O(2)|,|O(i�2) − O(j�2)|),
δ(O)(i) = max(Qi+1|O(0)|,Qi−1|�O(2)|,Qi−2|�O(3)|),

for i � 3, (4.1)

where Q denotes the chiral expansion parameter, �O(2) ≡
O(2) − O(0), and �O(i) ≡ O(i) − O(i−1) for i � 3. In addition

conditions δ(O)(2) � Qδ(O)(0) and δ(O)(i) � Qδ(O)(i−1) for
i � 3 are imposed on the truncation errors δ(O)(i) in the case
when, at higher orders, 3N force is not included in calculations
[29].

The uncertainty arising from the cutoff dependence can
be easily quantified: we just take the difference between
the minimal and the maximal predictions, separately for the
E-K-M force and for the E-M-N model. However, one has to
be aware that in the case of the E-K-M force cutoff values
between R = 0.9 fm and R = 1.0 fm are preferred in the 2N
system. Thus in the following we separately discuss the whole
range of regulator values (0.8 � R � 1.2 fm) and the range
restricted to 0.9 � R � 1.0 fm only.

To estimate the uncertainty arising from using various
models of nuclear forces, we do not introduce any separate
measure but just show the differences between predictions
obtained with various interactions. Admittedly, the authors of
Ref. [20] suggest in such a case to calculate the estimator of
standard deviations, but this is valid only under assumptions
of the same quality of all interaction models, which is not clear
in the case of the calculations presented here.

A systematical review of various uncertainties for the
differential cross section dσ/d�, the nucleon analyzing power
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FIG. 12. The same as in Fig. 11 but for the nucleon analyzing power Ay .

Ay , the deuteron tensor analyzing power T22, and the spin cor-
relation coefficient Cy,y is given in Figs. 11–14, respectively. In
these figures, in each subplot, the predicted value of the observ-
able is given at the bottom horizontal axis and the vertical lines
are used to mark predictions based on different NN forces; the
length of these lines has no meaning. The top horizontal axis
shows the percentage relative difference N (O) with respect
to the OPE-Gaussian prediction and its ticks are calculated
as x̃ = ( x−OOPE-Gaussian

OOPE-Gaussian
) × 100 × sgn(OOPE-Gaussian), where x are

the tick values shown at the bottom axis. In addition, for the
sake of figures’ clarity, the x̃’s are rounded to the two digits
only. Note that the magnitude of such a relative difference
depends on the magnitude of the OPE-Gaussian prediction
and can increase to infinity as the OPE-Gaussian prediction
approaches zero. The OPE-Gaussian results (at the central
values of the parameters) are represented by vertical red lines,
the AV18 ones by the black line, the CD-Bonn predictions
by the blue line, the E-K-M N4LO R = 0.9 fm results by the
magenta solid line, the E-K-M N4LO R = 1.0 fm ones by the
magenta dashed line, and the E-M-N N4LO � = 500 MeV
ones by the green line. Horizontal lines represent magnitudes of
various theoretical uncertainties and, starting from the bottom,
they are statistical error for the OPE-Gaussian model (the
red line), difference between OPE-Gaussian predictions based
on the jmax = 5 and jmax = 4 calculations (the orange line),
regulator dependence for the E-K-M N4LO force in range
R = 0.8–1.2 fm (the solid magenta line), the truncation error
for the E-K-M N4LO R = 0.9 fm model (the dashed magenta
line), regulator dependence for the E-M-N N4LO force in the
range � = 450–550 MeV (the solid green line), and truncation
error for the E-M-N N4LO � = 500 MeV potential (the dashed

green line). Further, subplots in various rows in Figs. 11–14
show predictions at different incoming-nucleon laboratory
energies, which areE = 13 MeV (top), E = 65 MeV (middle),
and E = 200 MeV (bottom). Finally, the various columns
show predictions at different scattering angles: 30◦, 75◦, 120◦,
and 165◦ moving from the left to the right.

An analysis of Figs. 11–14 leads to the following conclu-
sions:

(1) In general, all models investigated here provide sim-
ilar results, which differ only by a few percent at
lower energies, but differences between predictions
grow with the increasing energy. There is no single
model which gives systematically the smallest or the
biggest value. There are also no two models whose
predictions for all the cases lie close to each other.
Note, the above statements describe general trends but
exceptions from this pattern for specific observables
and angles are possible.

(2) At all energies the dominant theoretical uncertainty
is the one arising from using various models of the
nuclear interaction.

(3) The statistical errors for the OPE-Gaussian predic-
tions are small (and with no practical importance) for
all the considered observables and energies.

(4) The difference between jmax = 5 and jmax = 4 pre-
dictions, as expected, grows with energy; however, it
remains small when compared to other uncertainties,
even at E = 200 MeV (with the only exceptions of
the T22 at 200 MeV and Cy,y at 65 MeV). Thus the
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FIG. 13. The same as in Fig. 11 but for the deuteron tensor analyzing power T22.

uncertainty bound with partial wave decomposition
and numerical performance is also negligible.

(5) The OPE-Gaussian predictions based on the central
values are always inside the range given by the
statistical errors. The E-K-M results show monotonic
behavior of the predicted observables with the regu-
lator value. In the case of the E-M-N force the middle
value of regulator (� = 500 MeV) delivers extreme
(among the E-M-N ones) predictions in many cases.

(6) The difference between predictions based on the two
chiral N4LO models used (E-K-M and E-M-N) is not
smaller than the difference between any other pair of
predictions based on different NN potentials. This
suggests that there are substantial differences in the
construction of each of these models. Thus it seems
mandatory to regard these models independently, as
two different models of nuclear forces.

(7) In numerous cases the two chiral approaches deliver
results separated from each other by more than the
estimated uncertainty for their predictions. This again
points to differences between the two chiral potentials
(and/or to an underestimation of the corresponding
total theoretical uncertainties).

(8) In the case of both chiral models, the dominant
uncertainty at lower energies arises from the cutoff
dependence. This uncertainty is much bigger than
the remaining types of errors, except for differ-
ences between various models. At higher energies
the truncation errors are also important in some
specific cases, e.g., the differential cross section at
θc.m. = 120◦ at E = 200 MeV. In the case of Ay

at E = 200 MeV and smaller angles, the truncation

errors exceed the regulator dependence for the E-K-M
potential.

(9) In the case of the N4LO E-K-M potential, the differ-
ence between predictions for R = 0.9 fm and R = 1.0
fm (i.e., at the two preferred values of the regulator
in the NN system) is of the same size as the typical
difference between any other pair of predictions, what
shows strong sensitivity of the observables to the
regulator parameter.

(10) Comparing the cutoff dependence of both chiral
models we can conclude that the dispersion of their
predictions behaves for the two models in a correlated
way; i.e., a big cutoff dependence for the E-M-N force
usually appears together with a big cutoff dependence
for the E-K-M potential.

(11) The truncation errors for the E-M-N force are smaller
than these for the E-K-M interaction. The reason
for this is the bigger value of the chiral breaking scale
in the E-M-N approach, which results in different
values of Q parameter in Eq. (4.1).

Next, it is interesting to compare the size of the theoretical
errors presented in Figs. 11–14 to experimental errors of avail-
able data. In order not to leave the reader with the impression
that the modern theoretical models of nuclear interactions
yield a chaotic description of the Nd scattering observables, in
Fig. 15 we compare, in a few examples, previously presented
predictions with the experimental results. This establishes an
absolute scale in which one should examine the problem of
discrepancies between various theoretical models.

Examples given in Fig. 15 show various possible locations
of theoretical predictions and data. The differential cross
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FIG. 14. The same as in Fig. 11 but for the spin correlation coefficient Cy,y .

section at E = 65 MeV and E = 200 MeV at the scattering
angle θc.m. = 120◦ is shown in the upper row and the analyzing
power Ay for the same angle and energies is displayed below.
In the case of the cross section we see that at E = 65 MeV
there are discrepancies between various theoretical predictions
and the data of different measurements. While the theoretical
predictions are close one to each other, the data are scat-
tered. One experimental point overlaps within its statistical
error with some of the predictions, another one would be
in agreement with predictions within 3σ distance, and the
remaining experimental point is further from the data by more
than its 3σ uncertainty. At E = 200 MeV a clear discrepancy
between all predictions, which again are close together, and
all data is observed. This discrepancy can be traced back to
action of 3N force at higher energies [48,49]. The picture is
more complex for the analyzing power. Here, at E = 65 MeV
the experimental data and predictions differ by more than
experimental error but they already agree within the 2σ range.
At E = 200 the experimental statistical error is much smaller
than the distances between various theoretical predictions,
and the uncertainties related to the chiral forces. Such a
mixed pattern clearly calls for further work to reduce both the
theoretical and experimental uncertainties to avoid misleading
conclusions about the properties of nuclear interactions. The
examples presented here at one scattering angle only show
that it is much more reliable to draw conclusions based on
a comparison of predictions with data in a wider range of
scattering angles and at different energies. Especially, these
examples do not contradict strong effects of the 3N force
in the minimum of the differential cross section at higher
energies [48,49]. Such conclusions are based on a systematic

comparison of predictions with the data at numerous scattering
angles and energies.

V. SUMMARY

We have employed the OPE-Gaussian potential of the
Granada group to describe the elastic Nd scattering at energies
up to 200 MeV. The OPE-Gaussian potential is one of the first
models of nuclear forces for which the covariance matrix of its
free parameters is known. This gives an excellent opportunity
to study the propagation of uncertainties from the 2N potential
parameters to 3N observables. Therefore, for the same process,
we also studied the statistical errors of our predictions.

The description of data delivered by the OPE-Gaussian
force is in quantitative agreement with the picture obtained
using other NN potentials, especially the AV18 model, which
resembles by construction the OPE-Gaussian potential. We
found only small discrepancies between predictions of these
forces, especially at the highest energy investigated here,
E = 200 MeV, which can very probably originate from a
slightly different behavior of the phase shifts for the AV18 and
the OPE-Gaussian potentials at energies above ≈150 MeV. It
should be noted that the procedure of fixing free parameters for
the OPE-Gaussian force has been performed with great care
for statistical correctness and covers new 2N data not included
when fixing the AV18 parameters.

In order to obtain the theoretical uncertainty of our pre-
dictions arising from the uncertainty of the NN potential
parameters, we employed the statistical approach: we com-
puted the Nd scattering observables using 50 sets of the
OPE-Gaussian potential parameters obtained from a suitable
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FIG. 15. The same as in Fig. 11 (dσ/d�, the upper row) and Fig. 12 (Ay , the bottom row) at θc.m. = 120◦ for E = 65 MeV (left) and
E = 200 MeV (right) but supplemented by the experimental points at angles near θc.m. = 120◦. Vertical and thin horizontal lines are as in
Fig. 11, and filled rectangles represent experimental data and their statistical errors, as in Figs. 5 and 6.

multivariate probability distribution. Next, we investigated a
distribution of our results and adopted one of estimators of their
dispersion, 1

2�68%, as a measure of the theoretical statistical
uncertainty. We also compared such statistical uncertainties for
different observables with various types of theoretical errors,
including the truncation errors and a dispersion due to using
various models of the nuclear interaction. A comparison of
uncertainties for the Nd elastic scattering cross section and
a few polarization observables for the OPE-Gaussian model
with other types of theoretical uncertainties leads to important
conclusions about currently used models of 2N forces. First,
all models of the NN interaction considered here deliver
qualitatively and quantitatively similar predictions for the Nd
elastic scattering observables. None of the interactions yields
predictions systematically different from others and also no
systematic grouping of predictions is observed. Second, we
have found that in the case of the chiral forces, at small
and medium energies, which are their natural domain of
applicability, the dependence of predictions on the values of
regulators dominates over other types of theoretical errors.
At the highest investigated energy E = 200 MeV, which is
at the limit of applicability of chiral forces, the truncation
errors become important. It follows, that during a derivation
of the chiral models, constant attention should be paid to the
regularization methods applied. Current attempts to solve this
problem result in a range of regulator parameters too broad

to make the chiral forces such a precise tool in studies of
nuclear reactions as desired and expected. It would be very
interesting to check if this conclusion remains valid after taking
into account also consistent 3N interaction at the order of chiral
expansion investigated here (N4LO).

Altogether, the presented results clearly show that modern
nuclear experiments and theoretical approaches for the Nd
scattering achieved similar precision. Having in mind that
many investigations are currently focused on studying subtle
details of underlying phenomena, there is a need to further
improve precision both in theoretical as well as in experimental
studies. From the theoretical side, continuous progress in
deriving consistent NN and 3N forces from the χEFT gives
hope that this goal will be achieved.
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