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It has recently been reported [G. W. Bailey et al., Phys. Rev. Lett. 117, 162502 (2016)] that (d,p) cross sections
can be very sensitive to the n-p interactions used in the adiabatic treatment of deuteron breakup with nonlocal
nucleon-target optical potentials. To understand to what extent this sensitivity could originate in the inaccuracy
of the adiabatic approximation we have developed a leading-order local-equivalent continuum-discretized
coupled-channel model that accounts for nonadiabatic effects in the presence of nonlocality of nucleon optical
potentials. We have applied our model to the astrophysically relevant reaction 26mAl(d,p) 27Al using two different
n-p potentials associated with the lowest and the highest n-p kinetic energy in the short-range region of their
interaction. Our calculations reveal a significant reduction of the sensitivity to the high n-p momenta thus
confirming that it is mostly associated with theoretical uncertainties of the adiabatic approximation itself. The
nonadiabatic effects in the presence of nonlocality were found to be stronger than those in the case of the local
optical potentials. These results argue for extending the analysis of the (d,p) reactions, measured for spectroscopic
studies, beyond the adiabatic approximation.
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Introduction. One-nucleon transfer in (d,p) reactions is
an important source of information about the single-particle
strength in atomic nuclei, quantified by spectroscopic factors
and asymptotic normalization coefficients. They are obtained
from a comparison of experimental and theoretical cross
sections calculated using direct transfer reaction theory and,
therefore, are influenced by its uncertainties. The uncertainties
arising due to the input optical potentials and the shape of the
mean field that binds the transferred neutron have been known
for a very long time. Recently, new theoretical uncertainties
have been identified in Ref. [1], associated with the n-p
interaction used in the adiabatic treatment of deuteron breakup
with nonlocal nucleon optical potentials. This work studied the
26Al(d,p) 27Al reaction, measured in [2] to pin down the 26Al
destruction by the (p,γ ) reactions in novae explosions, and
used several deuteron models: Hulthén model [3], AV18 [4],
Reid soft core [5], CD-Bonn [6], and the chiral effective field
theory at N4LO with five different regulators [7]. All these
models produce exactly the same deuteron wave functions φd

and the vertex functions Vnpφd , where Vnp is the n-p potential,
at the n-p separations r larger than than 2 fm. However, the
model predictions for these quantities at 0 < r < 2 fm are very
different. This sensitivity to the short-range n-p wave functions
(and the corresponding sensitivity to the high n-p momenta)
seems puzzling given the relatively low deuteron incoming
energies, about 10 MeV, for which the (d,p) calculations have
been done in [1]. Such sensitivity may indicate that other
important effects, associated with (d,p) reaction mechanisms,
are missing in these calculations.

In this paper, we show that most of the sensitivity of
the A(d,p)B cross sections to the high n-p momenta goes
away when deuteron breakup is treated beyond the adiabatic

distorted-wave approximation (ADWA). The latter is based
on the dominant term in the Weinberg state expansion of the
A + n + p wave function, calculated neglecting the couplings
to all the other Weinberg components [8]. In ADWA with local
n-A and p-A optical potentials, the adiabatic potential UdA(R),
given by the sum UnA(R) + UpA(R) [9], does not depend on
the deuteron model. However, the nonlocal adiabatic potential
explicitly depends on the average n-p kinetic energy over the
(short) range of their interaction, given by the matrix element
〈Tnp〉V ≡ 〈φd |VnpTnp|φd〉/〈φd |Vnp|φd〉 [1,10–12]. This matrix
element is very sensitive to high n-p momenta, which is
reflected in the ADWA cross sections.

We choose the continuum-discretized coupled-channel
(CDCC) approach [13,14] to treat deuteron breakup in
A(d,p)B reactions beyond the adiabatic approximation. The
CDCC, developed and used for local nucleon-target optical
potentials only, in some cases predicts significantly different
cross sections than the ADWA does [15–17]. Extending the
CDCC to the case of nonlocal n-A and p-A potentials, in
principle, could be done on the basis of the exact nonlocal
ADWA formalism of Ref. [12]. However, it would involve
time-consuming calculations of nonlocal kernels when the
d-wave component in deuteron is included, making the whole
task difficult. For this reason, based on ideas of [10,11]
we have developed a leading-order local-equivalent CDCC
approximation to have a quick assessment of the role of the
high n-p momenta in (d,p) reactions. In the ADWA, the
leading-order solution deviates from the exact one by about
10% but the sensitivity to the deuteron model is present
in both of them in the same proportions [12], which justi-
fies using the leading-order local-equivalent CDCC for our
purposes.
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Nonlocal CDCC model. In the CDCC, the wave function
�(R,r) of the A + n + p system includes expansion over the
n-p continuum bins φi(r). To begin with, we assume that the
bins represent only the s-wave motion and that all spins are
neglected. In this case,

�(R,r) =
∑
i=0

χi(R)φi(r) (1)

and channel function χi are found from the three-body nonlocal
Schrödinger equation given by Eq. (9) of Ref. [11]. In Eq. (1)
and everywhere below we assume that φ0 is the deuteron bound
state wave function φd . We assume that nonlocal potentialsUnA

and UpA have the Perey-Buck form [18],

UNA(r,r ′) = H (r − r ′)UNA[(r + r ′)/2], (2)

with the nonlocality factor H of the (small) range β,

H (x) = π−3/2β−3 e−(x/β)2
, (3)

and the form factor UNA is given by usual Woods-Saxon form.
Following the reasoning of [11] it is easy to show that χi can
be found from the nonlocal coupled equations

[TR + UC(R) − Ed ]χi(R)

= −
∑

i ′

∫
ds H (s)Vii ′(s,R)χi ′

(α2s
2

+ R
)
, (4)

where TR is the kinetic energy operator, UC is the Coulomb
potential energy, and Ed is the center-of-mass beam energy of
the d-A system,

Vii ′ (s,R) =
∑
N

∫
dx φ∗

i (x + α1s)UNA

( x
2

− R
)
φi ′(x),

(5)

N is n or p, α1 = A/(A + 1), and α2 = (A + 2)/(A + 1). Be-
cause of the short range of H (s) the wave function χi ′ (

α2s
2 + R)

can be represented by the leading-order expansion that retains
only spherical components in s [11],

χi ′
(α2s

2
+ R

)
≈

nmax∑
n=0

s2n

β2n
γnT

n
R χi ′(R), (6)

in which

γn = (−)n

n!(2n + 1)!!

(
μdα

2
2β

2

4h̄2

)n

, (7)

where μd is the reduced mass of A + d. Then Eq. (4) becomes

(TR + UC(R) − Ed )χi(R)

= −
nmax∑
n=0

γn

∑
i ′

U
(n)
ii ′ (R)T n

R χi ′(R), (8)

with the coupling potentials

U
(n)
ii ′ (R) =

∫
dx

[
φ̄

(n)
i (x)

]∗
[∑

N

UNA

( x
2

− R
)]

φi ′(x) (9)

that contain the modified-by-nonlocality functions

φ̄
(n)
i (x) =

∫
ds H (s)

(
s

β

)2n

φi(x + α1s). (10)

To solve the coupled equations (8) we use the local energy
approximation. In the case of a single channel, this approx-
imation means TR ≈ E − UC − Uloc(R) with Uloc obtained
from a transcendental equation [18]. For the multichannel
CDCC case we introduce a generalization of the local-energy
approximation,

TRχi(R) =
∑

k

{
[E − UC(R)]δik − U loc

ik (R)
}
χk(R). (11)

We apply it nmax times to the right-hand side of Eq. (8) neglect-
ing commutators between TR and U loc

ii ′ . For the one-channel
case, the corrections beyond this assumption, determined by
β4, are very small [11]. Imposing the requirement that the
local-equivalent coupling potentials U loc

ii ′ satisfy

[TR + UC(R) − Ed ]χi(R) = −
∑

i ′
U loc

ii ′ (R)χi ′(R), (12)

we obtain a system of the transcendental matrix equations

f
(0)
ii ′ − (Ej − UC)δij +

∑
k

(
f

(1)
ii ′ + δik

)
Xki ′

+
∑
kl

f
(2)
ii ′ XklXli ′ + · · · = 0, (13)

for

Xii ′ = (Ei ′ − UC)δii ′ − U loc
ii ′ , (14)

in which f
(n)
ij = γnU

(n)
ii ′ . We solve Eqs. (13) using the Newton

method and then read U loc
ii ′ into the CDCC reaction code, which

in our case was FRESCO [19].
The scheme described above remains unchanged when all

spins are included. We will assume in the following that the
target has spin 0, although it can be proved that a nonzero
target spin simply introduces an overall factor in the coupling
potentials. In the coupling scheme, consistent with FRESCO

(l + sn = jn, jn + sp = I and L + I = J), the bin functions
φα are labeled by a set of quantum numbers α = {i,l,jn}, where
i includes both the bin energy and its total angular momentum
I , l is the n-p orbital momentum, and jn is the total momentum
of the neutron. The channel functions χiLJ depend on the
d-A relative orbital momentum L and total momentum J .
We require that the local-equivalent coupling potentials U loc

ii ′λ
satisfy

[TR + UC(R) − Ed ]χiLJ (R)

= −
∑
i ′L′λ

CLIJ
I ′L′λ U loc

ii ′λ(R) χi ′L′J (R), (15)

where the (un)primed quantities correspond to the (initial) final
state,

CLIJ
I ′L′λ = (−)I+L+J

{
L I J
I ′ L′ λ

}
L̂′〈L′0λ0|L0〉, (16)

and â = √
2a + 1. The U loc

ii ′λ are also found from a system of
transcendental matrix equations

g
(0)
ii ′λ − (Ei ′ − UC)Î δii ′δλ0

+
∑

k1l1l2j1

(
g

(1)
ik1l1

+ Î δik1δl10
) λ̂

l̂2
CλII ′

j1l2l1
X

(l2)
k1i ′
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FIG. 1. Differential cross sections of 26mAl(d,p) 27Al at Elab
d =

9.2 MeV for population of the 27Al(5/2+) ground state and the excited
1/2+ states at Ex = 0.84, 6.8, and 10.2 MeV. In the cases with
experimental data [20] all calculations have been multiplied by the
spectroscopic factor obtained for the RSC-CDCC calculation.

+
∑

k1k2j1j2

l1l2l3�1

g
(2)
ik1l1

�̂1

l̂2
C�1Ij2

j1l2l1
DλII ′

j2l3�1
X

(l2)
k1k2

X
(l3)
k2i ′

+
∑

k1k2k3j1j2j3

l1l2l3l4�1�2

g
(3)
ik1l1

�̂1

l̂2
C�1Ij2

j1l2l1
D�2Ij3

j2l3�1
DλII ′

j3l4�2
X

(l2)
k1k2

×X
(l3)
k2k3

X
(l4)
k3i ′ + · · · = 0, (17)

withDLIJ
I ′L′λ = (−)I

′−I L̂L̂′−1CLIJ
I ′L′λ and ji being the spin of state

ki , written for

X
(λ)
ii ′ = (Ei ′ − UC)Î ′δii ′δλ0 − U loc

ii ′λ. (18)

Equations (17) now include all necessary angular momentum
couplings. They contain functions

g
(n)
ii ′λ(R) = γn

∑
ll′jnj ′

n

(−)l+sn+sp+jn+j ′
n+I ′

Î Î ′ĵnĵ
′
n

λ̂2 l̂

4π

×
{
jn j ′

n λ

I ′ I sp

}{
jn j ′

n λ

l′ l sn

}
U

(n)
αα′λ(R),

(19)

determined by the multipoles of the coupling potentials folded
between the original φi and modified φ̄i functions:

U
(n)
αα′λ(R) =

∫ ∞

0
dx x2[φ̄(n)

α (x)
]∗

[∑
N

U
(λ)
NA(x,R)

]
φα′(x),

U
(λ)
NA(x,R) = 2π

∫ 1

−1
du UNA

(
x
2

− R
)

Pλ(u), (20)

0 10 20 30 40 50 60
θ(deg)

10
-1

10
0

10
1

dσ
/d

Ω
 (

m
b/

sr
ad

)

0 10 20 30 40 50
θ(deg)

10
-1

10
0

10
1

10
2

dσ
/d

Ω
 (

m
b/

sr
ad

)

0 10 20 30 40 50 60
θ(deg)

10
-2

10
-1

10
0

10
1

10
2

dσ
/d

Ω
 (

m
b/

sr
ad

)

0 10 20 30 40 50
θ(deg)

10
-2

10
-1

10
0

10
1

10
2

dσ
/d

Ω
 (

m
b/

sr
ad

)

RSC ADWA
Hulthen ADWA
Hulthen CDCC
RSC CDCC

0.00 MeV, 5/2
+

0.84 MeV, 1/2
+

6.8 MeV, 1/2
+

(a) (b)

10.2 MeV, 1/2
+(c) (d)

FIG. 2. Same as Fig. 1, but for Elab
d = 50 MeV.

with u being the cosine between x and R and Pλ(u) the
Legendre polynomial.

Application to the 26mAl(d,p)27Al reaction. We apply the
newly developed local-equivalent CDCC model to the (d,p)
reaction recently measured in inverse kinematics with an
isomeric 26mAl beam [20]. Because of the 0+ spin of this
isomer, transfers to the final 27Al states will involve only one
orbital momentum, thus facilitating extraction of spectroscopic
factors.

We have performed the CDCC calculations for three in-
cident deuteron energies, 9.2, 25, and 50 MeV, typical for
the TRIUMF, GANIL and RIKEN facilities. We used the
Gianinni-Ricco systematics of energy-independent nonlocal
nucleon optical potentials for N = Z targets [21] and two
nucleon-nucleon (NN) potentials: Hulthén and RSC. In Ref. [1]
the calculations with these potentials gave the lowest and the
highest 26gAl(d,p) 27Al cross sections, respectively. Both s- and
d-wave continuum bins were used in the calculations. For the
reaction at 9.2 MeV three bins were taken for each component
considered equispaced for proton-neutron energies from 0 to 6
MeV (closed channels start at 6.3 MeV). At 25 MeV, five bins
were taken from 0 to 20 MeV (closed channels at 20.97 MeV)
and at 50 MeV, four bins from 0 to 44 (closed channels at 44.18
MeV). Convergence with bin mesh was checked in calculations
with local potentials at all energies and with nonlocal potentials
at 9.2 MeV. We were also made aware that contributions from
the closed channels at low Ed are negligible [22].

We have calculated the local-equivalent coupling poten-
tials U loc

ijλ(R) at each point R from 0 to 50 fm by solving
Eq. (17) using the Newton method. The choice of nmax = 3
was sufficient for U loc

ijλ to converge, similar to findings in the
one-channel study [11]. For some d-wave channels, nmax = 2
was sufficient. The U loc

ijλ have been read into FRESCO which
calculated the channel functions χi and then the finite range
transfer cross sections using the same NN potentials in the
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TABLE I. Various ratios of the 26mAl(d,p) 27Al cross sections calculated in the ADWA and CDCC with two different NN potentials, RSC
and Hulthén, for Elab

d = 9.2, 25, and 50 MeV and for four final states in 27Al. The ratios were calculated at the maxima of cross sections. All
energies are given in MeV.

Ex σ ADWA
RSC /σ ADWA

H σ CDCC
RSC /σ CDCC

H σ ADWA
H /σ CDCC

H σ ADWA
RSC /σ CDCC

RSC

9.2 25 50 9.2 25 50 9.2 25 50 9.2 25 50

0.00 1.17 1.38 1.76 1.04 1.08 1.05 1.71 1.80 1.55 1.81 2.35 2.60
0.84 1.03 1.12 2.24 1.01 0.97 1.14 1.64 1.29 1.78 1.67 1.50 3.54
6.8 1.21 0.86 2.09 1.00 0.96 1.07 1.57 1.28 1.37 1.89 1.14 2.68
10.2 1.24 0.81 1.69 1.00 0.96 1.05 1.52 1.27 1.10 1.89 1.08 1.76

transfer vertex. In the case of the RSC, both the s- and
d-wave deuteron vertex functions were used. The 〈26mAl|27Al〉
overlap function was represented by the neutron single-particle
wave function, calculated for the Woods-Saxon potential well
with the standard radius r0 = 1.25 fm and diffuseness a =
0.65 fm.

The leading-order nonlocal CDCC and ADWA calculations
are shown in Figs. 1 and 2 for deuteron incident energies
of 9.2 and 50 MeV, respectively, and for four final 27Al
states: the ground Jπ = 5/2+ state and three astrophysically
relevant excited Jπ = 1/2+ states. In all cases, the CDCC
cross sections are significantly lower than the ADWA ones.
Their ratio in the maximum, shown in Table I, in most cases is
higher than an average value of 1.25 reported for local optical
potentials in [17]. The ratio seems to correlate with the neutron
separation energy in the final state: for l = 0 transfer to the final
1/2+ state it decreases with excitation energy.

The ADWA cross sections, obtained with Hulthén and RSC,
differ up to a factor of 2 in the maximum (see Table I),
which is related to the small and large values of the matrix
element 〈Tnp〉V associated with these potentials [1]. The
Hulthén-ADWA calculations effectively include only s-wave
continuum while RSC-ADWA includes the d-wave continuum
as well. To check to what extent the difference between
these calculations is due to the missing s-wave continuum we
performed the Hulthén-CDCC calculations with s-wave bins
only for one selected case, Jπ = 5/2+ at Elab

d = 9.2 MeV.
The cross sections were 10% lower, thus indicating that the
n-p model dependence in ADWA partially originates from a
different d-wave content of continuum associated with these
models.

The CDCC calculations show that the sensitivity to the n-p
model is significantly reduced. It is less than 4% for Elab

d =
9.2 MeV but can understandably increase with the deuteron
incident energy up to 14%.

Although our main aim is the comparison of ADWA and
CDCC calculations, given the existence of experimental data
for 27Al(1/2+) [20], we deduced spectroscopic factors from

these data using both ADWA and CDCC and both NN poten-
tials. They are presented in Table II and compared to previous
ADWA calculations with local optical potentials. Both CDCC
calculations and the Hulthén-ADWA reproduce the shape of
experimental data but RSC-ADWA overestimates the data at
larger angles for the states at Ex = 0.84 and 6.8 MeV. The
spectroscopic factors extracted with CDCC are larger than
those determined in [20], but this difference decreases with
the excitation energy.

Understanding reduced sensitivity. The strong sensitivity
of the ADWA cross sections to the NN model comes from
the coefficient M0 in the transcendental equation for the local-
equivalent adiabatic potential U loc,

U loc = M0(UnA + UpA) exp[−γ (E − UC − U loc)], (21)

where γ is a constant [11]. This coefficient is given by

M0 = N

∫
ds dx H (s)φ∗

d (x + α1s)Vnp(x)φd (x), (22)

with N = 〈φd |Vnp|φd〉−1 (see [11] for the link between M0

and 〈Tnp〉V ). Because of the short range of Vnpφd , M0 is highly
sensitive to the details of φd at small x. In the CDCC, the main
channel corresponds to the folding model with the U loc found
from Eq. (21) and M0 generated by Eq. (22) with N = 1 and
without Vnp [23]:

M0 =
∫

dx φ̄∗
d (x)φd (x). (23)

Because of the small deuteron binding energy, this M0 is
determined by the large values of x, corresponding to small
n-p momenta, where all the NN models agree. Also, because
of the small range of nonlocality β, in this range φ̄d ≈ φd [see
Fig. 3(a)] and, therefore, M0 ≈ 1. The same statements are
relevant for low-energy continuum bins which are affected by
the nonlocality and differences in the NN potentials only at
small x [Fig. 3(b)] thus explaining the reduced sensitivity to
the deuteron model in the (d,p) calculations with CDCC. The

TABLE II. Spectroscopic factors obtained from the 26mAl(d,p) 27Al(1/2+) cross sections calculated with ADWA and CDCC with two
different NN potentials, RSC and Hulthén, for Elab

d = 9.2 MeV. All energies are in MeV.

Ex ADWA Hulthén ADWA RSC CDCC Hulthén CDCC RSC Ref. [20]

0.84 0.07 0.13 0.11 0.08
6.8 0.14 0.14 0.14 0.11
10.2 0.13 0.08 0.18 0.18 0.16
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FIG. 3. Original φi and modified-by-nonlocality φ̄i deuteron (a)
and J π = 1+ bin [(b) and (c)] wave functions obtained with RSC
and Hulthén potentials. The low-energy bin has an average energy
Ē = 1.6 MeV with a spread of E = 2 MeV, while the high-energy
bin corresponds to Ē = 34.375 MeV and E = 19.25 MeV. For both
energies, the bins with incoming s and d waves are presented.

differences in the NN model affect high-energy bins [Fig. 3(c)]
where modifications due to nonlocality are stronger. As a result,
the sensitivity to the high n-p momenta is stronger for a large
deuteron incident energy, as seen from Table I.

The ADWA could be corrected by including more Weinberg
states in the expansion of �(R,r) [8,24]. This would involve
calculations of nondiagonal local-equivalent coupling poten-
tials U loc

ii ′ that depend on the coefficients given by Eq. (22) but
with Weinberg states φW

i instead of φd . Such coefficients [and,
therefore, the U loc

ii ′ and the corresponding (d,p) cross sections]
would be determined by the model-dependent short-range
behavior of VnpφW

i . It was shown in [25] that continuum
bins could be expanded over Weinberg states. Therefore,

sufficient number of NN-dependent Weinberg states should
recover the almost-NN-independent CDCC calculations. It
is worth mentioning that for local optical potentials the
nonadiabatic corrections explicitly depend on the same NN
model-dependent matrix element 〈Tnp〉V [26] that features in
the nonlocal ADWA.

Conclusions. Based on our newly developed local-
equivalent CDCC model with nonlocal optical potentials, we
have shown that the previously reported strong sensitivity of
the adiabatic (d,p) cross sections, calculated with nonlocal
nucleon optical potentials, is significantly reduced. For low
deuteron incident energies it is now less than 4% but can
increase up to 14% for higher energies.

We have also found that nonadiabatic effects are much
stronger than those in the case of local optical potentials. To
confirm this finding, the nonlocal CDCC should be extended
beyond the leading order. Exact ADWA cross sections with
nonlocal potentials are smaller than the leading-order cross
sections [12], but this tendency may not necessarily be the
same in the CDCC case. It is conceivable that the difference
between exact nonlocal CDCC and nonlocal ADWA can be
smaller than that obtained in this work.

The sensitivity to high n-p momenta due to uncertainties of
the adiabatic approximation suggests that theoretical analysis
of (d,p) experiments should be extended beyond the adiabatic
approximation when nonlocal optical potentials are used. This
is an important message given the current interest of other
groups in ADWA with nonlocal potentials, such as in [27,28].
Full nonlocal CDCC calculations could help to refine the spec-
troscopic factors and asymptotic normalization coefficients
obtained from (d,p) reactions. We note that present results
were obtained with energy-independent optical potentials. A
proper treatment of energy dependence within the three-body
context is a challenge, in particular in the CDCC formalism,
where the energy between nucleon and target is not well
defined in the considered final states. Whether approximate
prescriptions to take this dependence into account could result
in additional NN-model dependence of (d,p) cross sections
remains to be investigated.

Note added. We have recently become aware that
strong sensitivity to the n-p force model, reported in
[1], also disappears in exact three-body Faddeev-type
calculations [29].
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