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Intertwined effects of pairing and deformation on neutron halos in magnesium isotopes
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Matter radii of the 34–40Mg nuclei are investigated by self-consistent Hartree-Fock-Bogolyubov calculations
assuming the axial symmetry. With the semirealistic M3Y-P6 interaction, the N dependence of the matter radii
observed in the experiments is reproduced excellently. Both the pairing and the deformation play significant roles
in an intertwined manner. The 35Mg nucleus has a smaller radius than the neighboring even-N nuclei, which is
attributed to its smaller deformation. On the other hand, a neutron halo is obtained in 37Mg. We point out that,
in contrast to the pairing antihalo effect that may operate on the even-N nuclei, the pair correlation enhances
halos in odd-N nuclei, owing to the new mechanism which we call unpaired-particle haloing. The halo in 37Mg is
predicted to have a peanut shape in its intrinsic state, reflecting p-wave contribution as in 40Mg. The N dependence
of the deformation is significant again, by which the single-particle level dominated by the p-wave component
comes down.
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Introduction. Nuclear radii are physical quantities which
are accessible by experiments and carry basic information
of nuclear structure. One of the exotic nuclear properties
disclosed by radioactive beams is halos near the neutron
drip line [1]. Nuclear halos have often been detected via
enhancement of nuclear radii [2]. While neutron halos had
been observed in several light nuclei, they come more difficult
to access experimentally for heavier nuclei. Relatively recently,
significant enhancement in reaction cross sections (σR’s) was
discovered in 37Mg [3,4]. This is good evidence for a neutron
halo because σR (and the interaction cross section) well
correlates to the matter radius [2,5,6]. 37Mg is the heaviest
halo nucleus observed so far. Moreover, as it is likely well
deformed, 37Mg could exemplify a deformed halo [7,8].

It is remarked as well that irregular neutron-number (N )
dependence of σR’s has been observed in this region, which
should be important to investigate the halos. The measured
reaction cross section in 35Mg σR (35Mg) seems suppressed
compared to those in 34,36Mg. In contrast, σR (37Mg) is larger
than σR (36Mg) and σR (38Mg). It was insisted [9], by phe-
nomenological studies using the deformed Woods-Saxon (WS)
potential, that the staggering in 36–38Mg may be ascribed to
the pairing antihalo effect [10] in 38Mg and to quenching of
the pair correlation in 37Mg. However, for deformed nuclei
near the neutron drip line, effects of the deformation and the
pairing could be intertwined [11]. Moreover, suppression of
σR (35Mg) has not been explored sufficiently, although some
Skyrme Hartree-Fock (HF) plus BCS calculations predicted a
relatively small matter radius [12]. It should also be kept in
mind that the pair correlation does not always reduce nuclear
radii. In Refs. [13,14], it was shown that the pair correlation
can enhance halos via coupling to the continuum. Capable
of handling these effects in a single framework, studies by
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fully self-consistent mean-field calculations including both the
pairing and the deformation are highly desired. It is noted that
fully self-consistent calculations including the pair correlation
are able to describe nuclear halos if an appropriate effective
interaction or energy density functional is applied [15].

In this Rapid Communication we have implemented the ax-
ial Hartree-Fock-Bogolyubov (HFB) calculations in 34–40Mg,
applying the semirealistic interaction M3Y-P6 [16]. This is
the first application of the M3Y-type semirealistic interaction
[17] to deformed HFB calculations, following the application
to the deformed HF calculations in Ref. [18]. As will be
shown, the N dependence of the matter radii is in excellent
agreement with the data deduced from σR’s. The results reveal
that both the pairing and the deformation play significant roles,
cooperatively in certain cases. A new mechanism of nuclear
haloing will be pointed out, which works for odd-N nuclei.

Calculations and theoretical aspects. For computation, we
use the Gaussian expansion method as detailed and tested for
the Gogny interaction in Ref. [8]. The single-particle (s.p.) or
the quasiparticle (q.p.) functions are expressed by superposi-
tion of the spherical basis functions, whose radial parts are
Gaussians with various ranges. The results are insensitive to
the range parameters of the radial part if they are appropriately
chosen. The basis functions are truncated by the orbital angular
momentum �. We here adopt �max = 7, where �max is the
maximum of � in the model space. It has been confirmed, up to
normally deformed cases, that error due to this truncation is not
significant if �max is taken to be greater by four than the highest
� of the occupied level at the spherical limit. In investigating
halos, it is important to treat energy-dependent asymptotics of
s.p. wave functions at a distance. The present numerical method
enables it in the self-consistent mean-field theory in an efficient
manner even with finite-range interactions [19,20]. Coupling to
the continuum is taken into account substantially [20,21]. The
M3Y-P6 semirealistic nucleonic interaction [16] is adopted
here, which reasonably describes the pair correlations, as
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well as the shell structure and its dependence on Z and N
[22,23] in a wide range of the nuclear chart. In odd-N nuclei,
the ground state (g.s.) should have one q.p. on top of the
HFB vacuum. The blocking due to the q.p. is handled by the
interchange (U,V ) ↔ (V ∗, U ∗) for the q.p. state [24], and
the energy minimization is carried out under the equal-filling
approximation [25].

Many of the Mg nuclei have been known to be well
deformed. It has been predicted that the neutron-rich Mg
isotopes are also deformed [26]. As well as halos, nuclear
deformation influences nuclear radii. However, it is not obvious
whether and how we can separate these two effects. We here
assume the following relations [6]:

〈r2〉 = r̄2
0

3

[
exp

(
2

√
5

4π
β

)
+ 2 exp

(
−

√
5

4π
β

)]
,

q0

A
= r̄2

0

3

[
2 exp

(
2

√
5

4π
β

)
− 2 exp

(
−

√
5

4π
β

)]
, (1)

where 〈r2〉 and q0 are the mean-square matter radius and
the intrinsic mass quadrupole moment, respectively. The pa-
rameters r̄0 and β on the right-hand side correspond to the
root-mean-square (rms) matter radius at the spherical limit and
the deformation parameter. Note that, for small β, we have [27]

〈r2〉 ≈ r̄2
0

(
1 + 5

4π
β2

)
, (2)

indicating enhancement of the matter radius when the nucleus
is deformed. With Eq. (1), r̄0 and β are extracted from the HFB
results of 〈r2〉 and q0 for individual nuclei. Then effects of the
deformation may be recognized from the β values, and other
effects should be contained in r̄0.

Nuclear halos are identified from the density distribution
ρ(r) at large r , for which the s.p. or q.p. wave functions near the
Fermi level are responsible within the mean-field framework.
At sufficiently large r , the nuclear force becomes negligible,
and the HFB equation for a neutron q.p. is approximated by
[28] (

− 1

2M

d2

dr2
− λ

)
[rUk (r)] ≈ εk[rUk (r)],

(
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2M
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)
[rVk (r)] ≈ −εk[rVk (r)]. (3)

In Eq. (3), k represents an individual q.p. state, whose energy
is denoted by εk (>0), and λ (<0) is the chemical potential.
Vk (Uk ) is the wave function for the occupied (unoccupied)
component of k at the HFB vacuum. From Eq. (3), the
following asymptotic forms are derived:

rVk (r) ≈ exp(−ηk+r ),

rUk (r) ≈
{

exp(−ηk−r ) for − |λ| + εk < 0,

cos(pkr + θk ) for − |λ| + εk > 0,
(4)

where ηk± = √
2M (|λ| ± εk ), pk = √

2M (−|λ| + εk ), and
θk is an appropriate real number. Whereas we have neglected
the centrifugal potential in Eq. (3) that is relevant to the

spin-angular parts of Uk (r) and Vk (r), halos are contributed
primarily by the s- and p-wave components [29].

The asymptotic behavior of ρ(r) is derived from Eq. (4)
[20,28]. The density distribution is given by

ρ(r) =
∑

k

|Vk (r)|2 (5)

for an even-even nucleus. Let us denote the smallest q.p. energy
by εmin and define ηmin

± =
√

2M (|λ| ± εmin) correspondingly.
The asymptotic form of ρ(r) is then obtained as

r2ρ(r) ≈ exp(−2ηmin
+ r ). (6)

Since ηmin
+ >

√
2Mεmin and εmin is comparable to or larger than

the pairing gap, halos could be hindered, apart from effects of
coupling to the continuum [13,14]. This is known as the pairing
antihalo effect [10]. In contrast, the density distribution of an
odd-N nucleus is

ρ(r) =
∑

k( �=k1 )

|Vk (r)|2 + |Uk1 (r)|2, (7)

where k1 stands for the q.p. state which is occupied in the
g.s., usually satisfying εmin = εk1 . This leads to the asymptotic
behavior of ρ(r) as

r2ρ(r) ≈ exp(−2ηmin
− r ), (8)

instead of Eq. (6). Unlike the even-N case, ρ(r) may decay
very slowly for increasing r , possibly producing a halo if
εmin ≈ |λ|. Remark that this mechanism, which we will call
unpaired-particle haloing, works even for the nonvanishing
λ and the pairing gap. Although the pair correlation could
diminish for small |λ| [30], the unpaired-particle haloing starts
its action earlier at sizable |λ|. Whereas a similar broadening
mechanism for excited states was pointed out in Ref. [31], it
may be responsible for density distributions of g.s. in odd-N
nuclei.

The role of the pair correlation in the unpaired-particle
haloing will be further clarified if we use the HF + BCS
scheme as an approximation of the HFB.1 In the HF +
BCS, the q.p. energy is expressed by εk =

√
(εHF

k − λ)2 + �2
k ,

where εHF
k is the s.p. energy in the HF and �k is the pairing

gap. We reasonably assume εmin = εk1 ≈ |�k1 | because εHF
k1

≈
λ, yielding ηmin

± ≈
√

2M (|εHF
k1

| ± |�k1 |). Compared with the
asymptotics in the HF, which corresponds to the �k1 → 0
limit, ρ(r) damps more slowly for increasing r with Eq. (8)
whereas more quickly with Eq. (6). Thus, opposite to the
pairing antihalo effect in the even-N cases, the pair correlation
may enhance a halo when an unpaired particle is present. The
asymptotics of Eq. (8) is in harmony with the energy of the
q.p. state −(|λ| − εmin) = λ + εk1 ≈ εHF

k1
+ |�k1 |. Therefore,

1Although the HF + BCS scheme does not give correct asymptotics
as typically known as the neutron-gas problem, it is here used only
for assessing the q.p. energy εk . As in Ref. [10], a similar argument is
applicable with the canonical-basis representation of the HFB under
a certain approximation.
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FIG. 1. Upper panel: Rms matter radii
√

〈r2〉 in 34–40Mg. The
crosses connected by the solid line represent the HFB results with
M3Y-P6, and the dots with error bars are experimental values
extracted from σR’s [6]. For reference, r̄0 values [see Eq. (1)] are
plotted by the dashed line. Lower panel: Deformation parameter β.
The crosses are obtained from the present HFB results with M3Y-P6
via Eq. (1). The pluses are the AMD results quoted from Ref. [6].

it can be interpreted as the pairing leads to loose binding of
q.p. states, and it gives rise to the unpaired-particle haloing.

Results. It has been disclosed via σR’s [3] that the rms
matter radii

√
〈r2〉 in the neutron-rich isotopes 34–38Mg have

quite irregular dependence on N ;
√

〈r2〉(35Mg) seems smaller
than the average of the neighboring even-N nuclei, i.e.,
[
√

〈r2〉(34Mg) +
√

〈r2〉(36Mg)]/2, whereas
√

〈r2〉(37Mg) is
clearly enhanced [6]. This enhancement of

√
〈r2〉(37Mg) in-

dicates a halo formed by a p-wave neutron as experimentally
confirmed in Ref. [4]. In Refs. [3,6], matter radii of a long
chain of the Mg isotopes calculated within the antisymmetrized
molecular dynamics (AMD) were shown in which the Gogny-
D1S interaction [32] was adopted. Although the AMD calcula-
tion successfully reproduces an overall trend, it fails to describe
the N dependence in 34–38Mg. The discrepancy in 37Mg seems
to support its halo nature because the AMD wave functions in
Refs. [3,6] contain no long-tailed components. In Ref. [9], the
staggering of σR’s in 36–38Mg was investigated via the HFB
calculation but on top of the deformed WS potential. The
staggering was accounted for as the pairing antihalo effect in
38Mg, whereas the halo in 37Mg is attributed to the conventional
s.p. picture with quenched pair correlation.

Self-consistent HFB calculations with the M3Y-P6 interac-
tion have been implemented in the present Rapid Communi-
cation. The calculated rms matter radii in 34–40Mg are shown
in Fig. 1 in comparison with the experimental values extracted

from σR’s [6]. No data are available for 40Mg, and 39Mg is
predicted to be unbound. It is found that the present calculations
excellently reproduce the N dependence of

√
〈r2〉 in 34–38Mg,

although the absolute values are slightly underestimated.
To examine the relevance of neutron halos, we depict the

calculated density distributions in terms of the equidensity
lines on the zx plane. The z axis is taken to be the symmetry
axis here, and the x coordinate in the figure represents the
distance from the z axis. In addition to the symmetry about the
rotation around the z axis, we have the reflection symmetry
with respect to the xy plane. The equidensity lines are drawn
for exponentially decreasing values of ρ(r) except the highest
value of 0.1 fm−3. The almost constant interval of the lines for
large r (=√

x2 + z2) implies that the exponential asymptotics
as in Eqs. (6) and (8) are well described. It is obvious from Fig. 2
that the present calculation predicts halos in 37Mg and 40Mg.
These halos have peanut shapes in the intrinsic states as a result
of the p-wave contribution. In practice, the unpaired particle in
37Mg occupies an �π = (1/2)− level, [N n3 ��] = [3 1 0 1

2 ]
in terms of the Nilsson asymptotic quantum number, which
consists mainly of the p3/2 component. The shape of the halo
in 40Mg is analogous as will be discussed later.

In the result of Ref. [9], the g.s. of 37Mg stayed in the normal
fluid phase. In contrast, 37Mg contains pair correlation in the
present result, having the neutron pair energy of ∼3 MeV.
Moreover, the neutron chemical potential is −2.25 MeV, not
small enough to account for the halo structure if the pair
correlation is fully ignored. However, the pairing in 37Mg
enhances a halo through the unpaired-particle haloing, not
preventing it. We now have εmin = 2.02 MeV. If ρ(r) fol-
lowed the asymptotics with ηmin

+ [Eq. (6)], no halo should be
produced because |λ| + εmin ≈ 4.3 MeV. On the other hand,
the unpaired-particle haloing, i.e., the asymptotics with ηmin

−
[Eq. (8)], well accounts for the broad density distribution with
|λ| − εmin ≈ 0.2 MeV.

In the present calculations, deformation is determined self-
consistently, depending on N . It deserves noting that the
deformation parameter β, which has been extracted through
Eq. (1), is larger in 37Mg than in the neighboring isotopes.
This larger β might not look essential in the enhancement of√

〈r2〉(37Mg) since the larger r̄0(37Mg) already accounts for
most of the enhancement in Fig. 1. However, it is noted that
r̄0 and β contribute cooperatively to the enhancement. In order
for the last neutron to occupy the �π = (1/2)− level in 37Mg,
there should be a level crossing between this level and the
�π = (5/2)− level dominated by the 0f7/2 component (i.e.,
[3 1 2 5

2 ]) on the prolate side. As discussed in Ref. [9], relatively
large deformation is needed for this crossing. In 36,38Mg, the
occupation probability on the �π = (1/2)− q.p. level is lower
than that on the �π = (5/2)− level. This indicates that the
larger deformation in 37Mg is important for the one q.p. state
with �π = (1/2)− to be its g.s. by which the large r̄0 and the
halo become possible. In this respect, the deformation assists
the unpaired-particle haloing to operate. Conversely, the halo
drives the larger deformation so as to gain energy.

As well as the enhancement of
√

〈r2〉(37Mg), the present
calculation reproduces the reduction of

√
〈r2〉(35Mg). Because

there is no visible reduction of r̄0, this is attributed to the smaller
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FIG. 2. Contour plot of ρ(r) on the zx plane for 34–40Mg, obtained by the HFB calculations with the M3Y-P6 interaction. Positions of
ρ(r) = 0.1, 2 × 10−2, 2 × 10−3, 2 × 10−4, 2 × 10−5, and 2 × 10−6 fm−3 are presented.

β in 35Mg than in 34,36Mg as shown in the lower panel of Fig. 1.
Note that such N dependence of the deformation is hard to be
realized without self-consistent calculations. It is commented
that the β values in the AMD results in Ref. [6] have quite
different N dependence, which seems to be a source of the
discrepancy in

√
〈r2〉(34–38Mg).

For 40Mg, the pair correlation is quenched. Therefore, this
nucleus is free from the pairing antihalo effect and from the
direct influence of the continuum. The highest occupied s.p.
level has �π = (1/2)− dominated by the p-wave components,
corresponding to [3 1 0 1

2 ] again and accounting for the peanut-
shape halo in Fig. 2. This result is consistent with the HFB
result with the Gogny-D1S interaction in Ref. [8].

It should be mentioned that, based on the relativistic
Hartree-Bogolyubov calculations, neutron halos up to more
neutron-rich Mg isotopes (42–46Mg) have been argued, al-
though restricted to even N [11,13,33,34]. We here note
that the Mg nuclei beyond N = 28 are not bound in the
present calculation using the M3Y-P6 interaction as in the
HFB calculations with the Gogny-D1S interaction [35]. In
Fig. 1(b) of Ref. [11], we find a peanut shape for the predicted
halo in 44Mg as a result of the p-wave dominance. Another
notable point for 44Mg in Ref. [11] would be that, although
the core is deformed with a prolate shape, the halo has an
oblate shape. This is traced back to the � value (i.e., the
z component of the orbital angular momentum) of the halo
orbitals in addition to the p-wave dominance; deformation
of the halo depends on quantum numbers of the s.p. orbits
[7,11]. In the present calculations for 37,40Mg, the halo orbit
is predominantly composed of the � = 0 component (see the
discussion in Ref. [8] for 40Mg), yielding prolate deformation
as the core.

Summary and outlook. The irregular N dependence of the
matter radii in 34–38Mg has been investigated via self-consistent

axial HFB calculations with the semirealistic M3Y-P6 interac-
tion. The staggering is reproduced excellently in which the
pairing and the deformation affect in an intertwined manner.
The results do not indicate halos in 34–36,38Mg, whereas
deformed halos with the peanut shape are predicted for 37,40Mg.
The deformation is reduced in 35Mg, which yields the smaller√

〈r2〉(35Mg) compared to the average of
√

〈r2〉(34Mg) and√
〈r2〉(36Mg). In relevance to the halo in 37Mg, we point out

a new mechanism, called unpaired-particle haloing, that the
pairing can enhance halos in odd-N nuclei. This is because of
the asymptotics of the last unpaired neutron. It should also be
stressed that the N dependence of the deformation assists the
halo in 37Mg.

Although extensive investigation of lighter Mg nuclei and
of the staggering of the matter radii in 30–32Ne [36,37] will be
interesting, we leave it as a future subject. Connected to the loss
of magicity, careful study is needed for the Ne and Mg nuclei
near N = 20 in which spherical-deformed shape coexistence
may occur [18] and rotational correlations could be of partic-
ular significance [38]. Another topic will be the influence of
the predicted exotic peanut shape of the halos on observables.
This is far from trivial and waits for further discussions.

Nuclear deformation, pairing, and halos take place at the
g.s. so as to lower the energy. For nuclei sufficiently close to
the drip line, loosely bound nucleons sometimes form halos
so that the kinetic energy (including the contribution of the
centrifugal potential) could be small. Deformation and pairing
act cooperatively if possible as exemplified by 37Mg, and it
is naturally expected that effects of deformation and pairing
are intertwined in halo nuclei. Assisted by these effects, the
unpaired-particle haloing implies that odd-N nuclei tend to
have larger radii than their neighboring even-N nuclei near the
drip line if they are bound. This argument for the even-odd
effect of the nuclear radii will apply to a wide range of the
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nuclear masses and seems compatible with many experimental
data.
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