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Wobbling motion is defined as a precessional motion of
angular momentum �I around the principal axis either with the
maximum or minimum moment of inertia (MoI) of a triaxially
deformed body. Its quantal nature appears as the incremental
alignment of angular momentum along the wobbling axis
with the maximum or the minimum MoI in a quantized unit
−1 [1,2], and also the incremental alignment of �R (= �I − �j
with �j the single-particle angular momentum) along the same
axis is −1 in the odd-A nucleus (see Figs. 9 and 15 in
Ref. [2]). These kinematical characteristics are well expressed
by Holstein-Primakoff boson realization of angular momentum
algebra [1,2]. We have adopted the rigid MoI for the β2 and γ
dependences of MoI, because the γ deformed Nilsson single-
particle orbit should compose the rotor core. In other words,
the cranking formula for MoI based on the triaxial harmonic
oscillator gives the rigid MoI but not the hydrodynamical MoI
[1]. As a result, the calculated electromagnetic transition rates
well reproduce the experimental data (see Fig. 8 in Ref. [3]
where the I dependence of MoI is not yet included). Compared
with Fig. 19 in Ref. [4], the rigid MoI for the rotor core is
superior to the hydrodynamical MoI in B(M1)out/B(E2)in.

In the Comment, the statement in the middle of the second
paragraph, “Quantal rotation about a symmetry axis is not
possible” is correct, but the subsequent part “i.e., the moment
of inertia of a symmetry axis is zero” is meaningless, because
quantum mechanically there is no way to observe the moment
of inertia about the symmetry axis of the system.

In the low-spin region where pairing correlation fully works,
the hydrodynamical MoI may work as shown by Ref. [5]. How-
ever, we have to notice the mismatch caused by the different
periodicities in γ space between a set of the hydrodynamical
MoI’s and the one of the oscillator strength of Nilsson potential
together with the core radius.

The rotor core is constructed from nucleons in the γ -
deformed Nilsson levels correlated through the residual pairing
interaction. The Coriolis-antipairing (CAP) effect [6] plays an
important role, i.e., the Coriolis force coming from the nuclear
rotation starts to dissolve the pairs in the high spin single-
particle orbital, and the cranking formula for the MoI becomes
the rigid MoI in the limit where all the pair are dissociated.
We have obtained the analytic formulas for I dependence

of MoI both for odd- and even-mass nuclei by the second-
order perturbation approximation applied to the self-consistent
Hartree-Fock-Bogoliubov (HFB) equation under the number
and I constraints [7]. The I − I0 dependence of MoI (I0 is
the bandhead value of I ) is shown in Fig. 9 in Ref. [7] both
for even- and odd-mass nucleus. To simulate the I dependence
of MoI as in Fig. 9, we have expressed the MoI as J rig

k g(I )
and studied two cases [2,8]. The first case is highly excited
high-spin states such as the triaxial, strongly deformed (TSD)
bands in 163Lu [8] with j = 13/2, where the gap � is small
and the wobbling mode is found in the highly excited levels.
The second case is low-excitation low-spin states in 135Pr with
j = 11/2, where � is large enough not to be negligible, and the
wobbling mode is observed in the low-excitation and low-spin
region before the first backbending. For 135Pr, I -dependent
MoI well reproduces the experimental energy levels (Fig. 17
in Ref. [2]), and B(E2)out/B(E2)in, B(M1)out/B(E2)in, and
the mixing ratio δ (Table III in Ref. [2]).

To show the quantal nature of the typical wobbling, we dis-
play the calculated root-mean-square values of the alignment
of �I in the left panel and �R in the right panel for 163Lu in Fig. 1.
The parameter set is the same as in Ref. [8], which successfully
reproduces the experimental energy levels as shown in Figs. 5–
8 in Ref. [8] and B(E2)in, B(E2)out, and B(M1)out as quoted
in Table 1 in Ref. [9]. In Fig. 1, TSD1 is the band with I − j

being even, TSD2 with I − j being odd (the yrast wobbling
band), and TSD3 with I − j being even (the yrare wobbling
band). As for 〈I 2

x 〉1/2 in the left panel, we see that the vertical
difference between the line connecting closed circles (TSD1)
and the one connecting open circles (TSD2) is one, while the
difference between the line connecting closed circles (TSD1)
and the one connecting closed triangles (TSD3) is two. Such
a regularity among TSD1, TSD2, and TSD3 is not seen in
〈I 2

y 〉1/2. As for 〈j 2
x 〉1/2 and 〈j 2

y 〉1/2, corresponding curves for
TSD1, TSD2, and TSD3 are almost degenerate, indicating
there is no j precession. The left panel in Fig. 1 shows that
�I wobbles around the x axis with the maximum MoI in 163Lu.
For 〈R2

x〉1/2 in the right panel, the closed circles (TSD1), open
circles (TSD2), and the closed triangles (TSD3) show almost
the same alignments, i.e., 〈R2

x〉1/2
I ∼ 〈R2

x〉1/2
I+1 ∼ 〈R2

x〉1/2
I+2 for
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FIG. 1. The alignments of 〈I 2
x 〉1/2, 〈I 2

y 〉1/2, 〈j 2
x 〉1/2, and 〈j 2

y 〉1/2 in the left panel and 〈R2
x〉1/2, 〈R2

y〉1/2, and 〈R2
z 〉1/2 in the right panel as

functions of I for 163Lu. In both panels, the closed circles correspond to TSD1 band, open circles correspond to TSD2 band, and closed triangles
correspond to TSD3 band. In the left panel, the symbols corresponding to TSD1, TSD2, and TSD3 bands for 〈j 2

x 〉1/2 or 〈j 2
y 〉1/2 overlap each

other.

I − j being even, and they change by two unit regularly, i.e.,
〈R2

x〉1/2
I+2 − 〈R2

x〉1/2
I ∼ 2 along each TSD band. These relations

are the same as Eqs. (62a) and (62b) in our original publication,
Ref. [2]. Such a regularity among TSD1, TSD2, and TSD3
is not seen in 〈R2

y〉1/2 and 〈R2
z 〉1/2. The right panel in Fig. 1

shows the wobbling takes place surely around x axis with the
maximum MoI.

The stability equations are based on the next-to-leading-
order approximation and applied to investigate the plausibility
of the boson approximation. We perform the test calculation
by adopting Jx : Jy : Jz = 13 : 21 : 4 for 135Pr as given by
Table I in Ref. [4]. Then we find that the stability domain with
diagonal representation of Ix and jx extends up to I = 21/2 at
γ = 26◦ and V = 1.6 MeV. In the result of exact diagonaliza-
tion of total H with these MoI, the behavior of alignments is
almost similar to that in Figs. 10 and 14 in Ref. [2], although
the crossing between the solid and the dashed lines for 〈I 2

x 〉1/2

moves from I = 23/2 (Fig. 10 in Ref. [2]) to 31/2. However,
there does not appear any quantized unit difference between

the solid line and the dashed line for 〈I 2
x 〉1/2, indicating there

is no evidence of the quantized unit in association with the
wobbling around the x axis. As for 〈R2

x〉1/2, the crossing of the
solid line and the dashed line moves from I = 25/2 (Fig. 14
in Ref. [2]) to 33/2, and 〈R2

y〉1/2 is always larger than 〈R2
x〉1/2.

Furthermore, the relations 〈R2
x〉1/2

I � 〈R2
x〉1/2

I+1 for I − j being

even and 〈R2
x〉1/2

I+2 − 〈R2
x〉1/2

I � 2 do not occur, indicating there
is no wobbling around the x axis.

In conclusion, the staggering behavior of 〈I 2
x 〉1/2 is de-

scribed within a limited region of I by changing the ratios
of three hydrodynamical MoI’s. However, even with this
ratio of three hydrodynamical MoI, the 〈R2

y〉1/2 keeps the
largest, and the incremental alignment of 〈R2

x〉1/2 does not
show the quantized unit through whole region of I . As
illustrated in Fig. 16 in Ref. [2], the rotating core �R does
not move apart from the principal axis with the largest MoI.
It is difficult to identify such a transient phenomenon as
“wobbling.”
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