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Long-wavelength phonons in the crystalline and pasta phases of neutron-star crusts
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We study the long-wavelength excitations of the inner crust of neutron stars, considering three phases: cubic
crystals at low densities, and rods and plates near the core-crust transition. To describe the phonons, we write
an effective Lagrangian density in terms of the coarse-grained phase of the neutron superfluid gap and of the
average displacement field of the clusters. The kinetic energy, including the entrainment of the neutron gas by
the clusters, is obtained within a superfluid hydrodynamics approach. The potential energy is determined from
a model where clusters and neutron gas are considered in phase coexistence, augmented by the elasticity of the
lattice due to Coulomb and surface effects. All three phases show strong anisotropy, i.e., angle dependence of the
phonon velocities. Consequences for the specific heat at low temperature are discussed.
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I. INTRODUCTION

In the inner crust of neutron stars, neutron-rich nuclei
(clusters) coexist with a gas of unbound neutrons and a
degenerate electron gas [1]. To minimize the Coulomb energy,
the clusters form a periodic lattice. Close to the transition
to the neutron-star core, the competition between Coulomb
and surface energy leads to the so-called “pasta phases”:
While the clusters are assumed to be spherical at low density
(crystalline phase), they merge with increasing density to form
rods (“spaghetti phase”) and then plates (“lasagna phase”) [2].

The neutrons in the inner crust are superfluid, which has
important effects for glitches and cooling of neutron stars.
In particular, the contribution of neutron quasiparticles to the
specific heat of the crust is strongly suppressed by pairing.
Therefore, the dominant contributions to the specific heat are
those of the electrons, lattice phonons, and superfluid phonons
of the neutron gas [3]. However, not all neutrons participate
in the superfluid motion of the neutron gas, because some are
entrained by the clusters. This entrainment effect, in addition
to reducing the superfluid density, leads also to a coupling
between superfluid and lattice phonons.

At low temperature, the long-wavelength phonons are most
relevant for the thermodynamic properties. In this article, we
will only study phonons of wavelengths greater than the lattice
spacing. These phonons can be described within an effective
theory [4] without having recourse to a microscopic model of
the crust. However, the parameters of this effective theory have
to be determined from a microscopic model. Here, we treat the
relative motion between the gas and the clusters within the
hydrodynamic model of Ref. [5], which predicts a rather weak
entrainment. We consider the possibility that the superfluid and
normal neutron densities are not numbers but depend on the
direction of the relative velocity of neutrons and protons, as is
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the case in the pasta phases. This requires a generalization of
the “mixing” term [4], coupling the superfluid phonons to the
lattice phonons.

We revisit also the elastic properties which determine the
lattice phonons. As in the case of condensed matter [6],
the anisotropy of the crystal leads to a splitting of the two
transverse phonons and to sound speeds that depend on the
direction of the phonon wave vector. The pasta phases are even
more anisotropic. Like liquid crystals in condensed matter, they
can support shear stress only in certain directions [7]. This
results in a strong angle dependence of the phonon velocities
and changes qualitatively the behavior of the specific heat at
low temperature.

Our article is organized as follows. In Sec. II, we review the
basic idea of an effective theory as a result of coarse graining
certain microscopic quantities. In Sec. III, we express the
energy of the system in terms of the coarse-grained variables,
which will then lead us to the effective Lagrangian in Sec. IV. In
Sec. V, we present results for phonon energies and the specific
heat. Finally, we conclude in Sec. VI.

Throughout the article, unless stated otherwise, we use units
with h̄ = c = kB = 1, where h̄ is the reduced Planck constant,
c is the speed of light, and kB is the Boltzmann constant.

II. MICROSCOPIC AND COARSE-GRAINED QUANTITIES

At a microscopic level, the neutron and proton densities nn

and np vary at length scales much smaller than the periodicity
of the lattice. The same is true for the dynamical quantities. For
example, the motion of the neutrons is described by the phase
of the superfluid order parameter (gap) � = |�|e2iϕ , giving
rise to a velocity field vn = ∇ϕ/m, with m being the nucleon
mass (for convenience, we define ϕ as one half of the phase).
Both v and � can vary strongly inside one unit cell, even in the
case of a constant flow of the clusters through the gas [5]. In
principle, also the proton velocity field vp could vary on length
scales much smaller than the periodicity of the lattice, but this
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would correspond to a rather high-lying internal excitation of
the cluster which will be neglected here.

The basic idea of an effective theory is to describe long-
wavelength phenomena in terms of slowly varying quantities
that can be obtained by coarse graining the microscopic
quantities [4]. Let us introduce the macroscopic neutron and
proton densities n̄n and n̄p which are obtained by averaging
the microscopic densities over a volume containing at least one
unit cell. For instance, in the simple phase-coexistence model
[8] with constant density nn,1 in the neutron gas (volume V1)
and constant densities nn,2 and np,2 inside the clusters (volume
V2), one has n̄n = (1 − u)nn,1 + unn,2 and n̄p = unp,2, where
u = V2/(V1 + V2) is the volume fraction of the cluster (we
assume that there are no protons in the gas). Similarly, one can
coarse grain the phase ϕ to obtain a smoothly varying function
ϕ̄. It turns out that this averaged phase ϕ̄ determines the
macroscopic superfluid velocity, un = ∇ϕ̄/m [5,9]. Finally,
as mentioned above, there is not a big difference between the
microscopic proton velocity vp and the average one up as long
as one does not consider high-lying internal excitations of the
clusters. In the case of pasta phases, where the “clusters” are
infinite in one (spaghetti) or two (lasagna) directions, there
exist of course also low-lying internal excitations, which can
be described by a slowly varying up.

The aim of the next subsections is to express the kinetic
and potential energies of the system entirely in terms of
macroscopic variables. Following Ref. [4], we will use as
degrees of freedom the coarse-grained phase ϕ̄ for the neutrons
and the average displacements ξ defined by ξ̇ = up for the
protons.

Note that in this work, we do not introduce any degrees of
freedom related to the electrons. That is, we assume that the
electrons follow instantly the motion of the protons such as to
compensate the average electric charge. This approximation
requires that the wavelength of the modes is large compared to
the Thomas-Fermi screening length. In doing so, we miss the
damping of the modes which is to a large extent generated by
the electrons [10].

III. CONTRIBUTIONS TO THE ENERGY

A. Kinetic energy density

The kinetic energy density T was determined in Ref. [5]
using the superfluid hydrodynamics approach, where it was
expressed as a function of the velocities of the superfluid
neutrons, un and of the protons, up as follows:

T = 1
2m

(
un · ns

nun + up · (
nb

n + n̄p

)
up

)
. (1)

The matrices ns
n and nb

n contain the densities of superfluid and
bound neutrons, respectively, along the different axes, with
ns

n + nb
n = n̄nI, I being the identity matrix.

1. Crystalline phase

In a crystal with cubic symmetry [such as the body-centered
cubic (bcc) crystal for the spherical clusters], these matrices
reduce to scalars and Eq. (1) agrees with the expression given
in Ref. [11] if one identifies nb

n with the neutron normal density
in the nomenclature of that reference. The computation of nb

n

and ns
n was presented in Ref. [5] and it was shown that to a very

good approximation they can be obtained from the analytical
expressions for the effective mass of an isolated cluster in an
infinite neutron gas [12–14]. The corresponding expression for
nb

n reads

nb
n = u

(1 − γ )2

2γ + 1
nn,2, (2)

with γ = nn,1/nn,2, and ns
n can be obtained from

ns
n = n̄n − nb

n.

2. Spaghetti phase

In the spaghetti phase (rods in z direction), nb
n and ns

n are
diagonal in the (x,y,z) coordinate system, but the elements
nb,s

n,zz are different from nb,s
n,xx and nb,s

n,yy . While in the numerical
calculation of Ref. [5] a very weak anisotropy in the xy plane
was found, this anisotropy must vanish exactly because of the
discrete rotational invariance of the hexagonal lattice under
rotations by 60◦ around the z axis, which was not recognized
in Ref. [5]. Analogously to the crystalline case, an analytic
formula has been derived for the effective mass of an isolated
rod in an infinite neutron gas [5], and the corresponding
expression for the density of bound neutrons for a flow in the
xy plane reads

nb
n,xx = nb

n,yy = u
(1 − γ )2

1 + γ
nn,2. (3)

For a flow in the direction of the rods, all neutrons are
superfluid, i.e.,

nb
n,zz = 0. (4)

3. Lasagna phase

Let us finally consider the lasagna phase (plates parallel to
the xy plane). In this case, nn

n and nb
n are also diagonal in the

(x,y,z) coordinate system with [5]

nb
n,xx = nb

n,yy = 0, (5)

nb
n,zz = (1 − γ )2u(1 − u)

(γ u + 1 − u)
nn,2. (6)

B. Potential energy density from the phase coexistence model

As discussed in Ref. [8], the microscopic equilibrium
densities satisfy to a good approximation the conditions of
chemical and mechanical equilibrium, i.e., μa,1 = μa,2 ≡ μa

and P1 = P2 ≡ P , where μa,i and Pi are, respectively, the
chemical potential of species a = n,p and the pressure in
phase i = 1 (gas) or 2 (cluster). The chemical equilibrium
condition for the protons can actually be omitted provided
that μp < 0 (i.e., np,1 = 0). We assume that these equalities
remain valid under small variations of the density, whereas the
β equilibrium μn = μp + μe, which determines the volume
fraction u in equilibrium, is not satisfied any more because
the weak processes n ↔ p + e− are too slow. The presence of
electrons as well as Coulomb and surface effects are neglected
for the moment.

Let us now use this simple phase coexistence model to
compute the variation of the energy in terms of variations of
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the macroscopic variables (see also the appendix of Ref. [15]).
Expanding the chemical and mechanical equilibrium condi-
tions to first order in small variations around equilibrium, one
finds (a = n,p)

δnn,1 = ∂nn

∂μn

∣∣∣∣
1

δμn, (7)

δna,2 =
∑

b=n,p

γb

∂na

∂μb

∣∣∣∣
2

δμn, (8)

where we have introduced the abbreviations

γn = 1, γp = nn,1 − nn,2

np,2
. (9)

The notation |i after the derivative means that the derivative is
evaluated at the equilibrium values in phase i. From Eqs. (7)
and (8), one sees that the neutron and proton densities inside the
clusters cannot oscillate independently, but that they are tied
to the oscillations of the neutron density in the gas, uniquely
determined by the neutron chemical potential. Using the
definitions of the average densities n̄a , it is now straightforward
to obtain the relation

δμn = δn̄n + γpδn̄p

�
, (10)

where

� = (1 − u)
∂nn

∂μn

∣∣∣∣
1

+ u
∑

a,b=n,p

γaγb

∂na

∂μb

∣∣∣∣
2

. (11)

Let us now consider

Vnp = ε̄np − μ(0)
n n̄n − μ(0)

p n̄p, (12)

where ε̄np = (1 − u)εnp(nn,1,0) + uεnp(nn,2,np,2) is the aver-
age energy density, determined from the nuclear energy density
functional εnp(nn,np) (in our case, the Skyrme parametrization
SLy4 [16]), and μ(0)

a are Lagrange parameters used to fix
the equilibrium densities. The equilibrium chemical potentials
μa satisfy μa = μ(0)

a . Hence, the change in Vnp is of second
order in the variations around equilibrium. Making use of
Eqs. (7)–(11), one eventually obtains

δVnp = �

2
(δμn)2. (13)

This expression is a special case of Eq. (12) of Ref. [15], which
states that the total energy change δV can be written as a term
∝δμ2

n and a term ∝(δn̄p)2 with no cross term ∝δμnδn̄p. In the
present case, it turns out that the term ∝(δn̄p)2 is absent: If one
changes the density of clusters (i.e., u), without changing the
microscopic densitiesna,i inside the gas or the clusters, the total
energy does not change. This unphysical property of the model
will be corrected when we include the electron contribution.

C. Electron contribution

To include the electrons, we replace Eq. (12) by

Vnp + Ve = ε̄np + ε̄e − μ(0)
n (n̄n + n̄p). (14)

In writing this equation, we made use of the relation μ(0)
n =

μ(0)
p + μ(0)

e , which is a consequence of β equilibrium in the

ground state. Furthermore, as already mentioned in the end
of Sec. II, we assumed that the electrons follow instantly the
protons to maintain the average charge neutrality: n̄e = n̄p. In
contrast to the microscopic neutron and proton densities nn

and np, the microscopic electron density ne is to a very good
approximation constant over a unit cell, since the screening
length is larger than the periodicity of the lattice. Hence, we
have ne = n̄e = n̄p and the electron energy density is given by
ε̄e = εe(n̄p).

For small oscillations around equilibrium, the linear term
vanishes again and the quadratic term is given by

δVe = K

2

(
δn̄p

n̄p

)2

= K

2
(∇ · ξ )2, (15)

with the bulk modulus K = n̄2
p(∂μe/∂ne)ne=n̄p

. If one ne-
glects the electron mass, the electron chemical potential μe =
∂εe/∂ne reads μe = h̄c(3π2ne)1/3 and therefore

K =
(

π

3

)2/3

h̄c n̄4/3
p . (16)

Note that our K is different from the bulk modulus K̃
defined in Ref. [17] since we vary n̄p keeping μn constant,
while in Ref. [17] n̄p is varied keeping n̄n constant.

D. Coulomb and surface energy: Elastic constants

So far, the energy depends only on the dilatation or compres-
sion of the lattice, determined by ∇ · ξ . To describe the elas-
ticity of the crust, i.e., the energy cost of shear deformations,
it is necessary to include also the Coulomb and surface energy
εC+S. Note that the microscopic equilibrium quantities nn,1,
nn,2, np,2, u, etc., are in principle determined by minimizing
the total energy including εC+S, i.e., [8],

V = ε̄np + εe + εC+S − μ(0)
n (n̄n + n̄p). (17)

The presence of εC+S leads to small corrections to the phase
coexistence conditions of Sec. III B, but with the corrected
equilibrium values, V is stationary again. Hence, the variation
of V in the case of small oscillations around equilibrium is
determined by the second derivatives, as in the case without
Coulomb and surface energies discussed in Secs. III B and III C.

1. Lasagna phase

Let us start with the lasagna phase. In this case, we have

εC+S = 2π

3
e2n2

p,2R
2
WSu

2(1 − u)2 + σ

RWS
, (18)

where RWS = L/2 is one half of the periodicity of the structure
and σ is the surface tension. The surface tension may be
eliminated using the equilibrium condition ∂εC+S/∂RWS =
0, which gives σ = (4π/3)e2n2

p,2R
3
WSu

2(1 − u)2 (with np,2,
RWS, and u being the equilibrium values).

Neglecting possible coupling terms involving δμn and ξ ,
we consider μn and therefore also np,2 constant, and vary only
u and RWS.1 Since all first-order derivatives vanish, we may

1In Ref. [15], it is shown that there is no cross term ∝δμn∇ · ξ . But
through the np,2 dependence of the Coulomb energy and the density
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(a) (b) (c)

x

z

FIG. 1. Illustration of different types of deformations leading to
a change of Coulomb and surface energies in the lasagna phase. The
small arrows indicate the displacement field ξ . (a) Spatially varying
shear in the xz plane [cf. Eq. (25)], (b) compression by displacing
protons inside the lasagne plates [B11 term in Eq. (20)], and (c)
compression by changing the distance between the plates [B33 term
in Eq. (20)].

simply add to δVnp + δVe the second-order variation of εC+S,

δVC+S,1 = ∂2εC+S

∂R2
WS

(δRWS)2

2
+ ∂2εC+S

∂RWS∂u
δRWSδu

+ ∂2εC+S

∂u2

(δu)2

2
. (19)

In the lasagna phase, one has δRWS = RWS∂zξz and δu =
−u∇ · ξ . The different roles of the displacement fields in the
xy plane and in the direction perpendicular to it are illustrated
in Figs. 1(b) and 1(c). The energy can now be written in the
form

δVC+S,1 = B11

2
(∂xξx + ∂yξy)2 + B13(∂xξx + ∂yξy)(∂zξz)

+ B33

2
(∂zξz)

2, (20)

with

B11 = 4
3 (1 − 6u + 6u2)C0, (21)

B13 = 4
3 (−1 + 2u2)C0, (22)

B33 = 4
3u2C0, (23)

where we have introduced the abbreviation

C0 = πe2n̄2
pR2

WS. (24)

Our result differs from the one given in Ref. [7], where only
the first term of Eq. (19) was taken into account. Note that
the combination KC+S = (4B11 + 4B13 + B33)/9 represents a
(negative) correction to the bulk modulus, but it is much smaller
than the contribution of the electrons, K .

From the particular geometry of the lasagna phase, it is
clear that shear deformations in the xy plane do not change
the energy. As noticed in Ref. [7], spatially constant shear
deformations in the xz (or yz) plane contribute only at fourth

dependence of σ there might be an anisotropic coupling between some
shear deformations and δμn, which we neglect.

order in their amplitude [terms ∝ (∂xξz)4, etc.]. However,
spatially varying shear deformations in the xz (or yz) plane [cf.
Fig. 1(a)] contribute already at second order in the amplitude.
The corresponding energy can be written as [7]

δVC+S,2 = K1

2

(
∂2
x ξz + ∂2

y ξz

)2
, (25)

To find the coefficient K1, one considers, e.g., a displacement
field ξz = ξ0 cos kx, and calculates the change in energy to
second order in ξ0. The k2ξ 2

0 terms coming from the Coulomb
and the surface energies cancel, and the leading nonvanishing
term is proportional to k4ξ 2

0 . The coefficient of this term can
be identified with K1/4, and one obtains [7]

K1 = 4
45πe2n̄2

pR4
WS(1 − u)2(1 + 2u − 2u2). (26)

2. Spaghetti phase

Now let us discuss the spaghetti phase. The exact calculation
of the Coulomb energy is quite involved in this case, but,
except for the energy due to shear deformations in the xy
plane, we may use the Wigner-Seitz approximation as a first
estimate: The unit cell in the xy plane, which is a rhombus
with side length L and angle 60◦, is replaced by a circle of
radius RWS with the same area (i.e., RWS = 31/4L/

√
2π ). In

this approximation, the Coulomb energy is readily calculated.
The sum of Coulomb and surface energies per volume is

εC+S = π

2
e2n2

p,2R
2
WS(−1 + u − ln u) + 2

√
uσ

RWS
. (27)

Again, the condition ∂εC+S/∂RWS = 0 allows one to express
σ in terms of the equilibrium values of np,2, u, and RWS.
The calculation of the energy variation under dilatations in
the plane perpendicular to the rods (xy) or in the direction
of the rods (z) is completely analogous to the case of the
lasagna phase (in Fig. 1 one only has to exchange x and
z directions). In the spaghetti phase, one has δu = −u∇ · ξ

and δRWS = RWS∇⊥ξ⊥ (with ξ⊥ and ∇⊥ the projections of
ξ and ∇ onto the xy plane). Inserting Eq. (27) into Eq. (19),
the energy change is again of the form of Eq. (20), only the
coefficients are different:

B11 = 1
4 (−9 + 11u − 3 ln u)C0, (28)

B13 = 1
4 (−2 + 4u)C0, (29)

B33 = 1
4 (−4 + 6u)C0. (30)

Analogous to the case of the lasagna phase, a constant shear
deformation in the xz (or yz) plane does not change the energy
at second order in the amplitude, but a shear deformation that
oscillates as a function of z does. The corresponding energy is
now written in the form [7]

δVC+S,2 = K3

2

(
∂2
z ξ⊥

)2
. (31)

To find the coefficient K3, we follow again Ref. [7] and calcu-
late the Coulomb energy for cylindrical spaghetti arranged in
a hexagonal lattice, which are displaced by ξ = ξ 0 cos kz (ξ 0
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lying in the xy plane):2

εC = 8πe2n2
p,2u

R2
WS

′∑
lmn

[Jn(klm · ξ 0)J1(klmR)]2

k2
lm

(
k2
lm + n2k2

) . (32)

The prime indicates that the term l = m = n = 0 is excluded.
The klm = lb1 + mb2 are reciprocal lattice vectors, b1 and
b2 have length b = 3−1/4

√
8π/RWS and the angle between

them is 60◦, such that k2
lm = b2(l2 + m2 + lm). To find K3, we

expand Eq. (32) in k and ξ 0 and retain only the term ∝k4ξ 2
0 ,

since the term ∝k2ξ 2
0 must be canceled by the surface energy.

Only the terms n = ±1 contribute and we obtain

K3 ≈ e2n2
p,2R

4
WSu

32
√

3π2
{27[J1(3−1/4

√
8πu)]2

+ [J1(31/4
√

8πu)]2 + · · · }, (33)

where we have kept only the largest and second largest terms
in the sum over l and m since the sum converges extremely
well.

Let us now turn to the shear modulus for shear in the xy
plane, which was of course absent in the lasagna phase while
in the spaghetti phase it exists. The corresponding energy can
be written as

δVC+S,3 = C66

2
[(∂xξx − ∂yξy)2 + (∂yξx + ∂xξy)2]. (34)

The invariance of the hexagonal lattice under rotations by 60◦
implies that the same elastic constant C66 appears in front of
the two terms. To obtain C66, we again have to start from
the exact expression of the Coulomb energy, but now for a
finite shear ∂yξx ≡ ξxy which changes the reciprocal lattice
vectors into b′

1 = b1 and b′
2 = b2 + (

√
3ξxy/2)b1 (we choose

the coordinate system such that b1 points in y direction). Then
the Coulomb energy becomes

εC = 8πe2n2
p,2u

R2
WS

′∑
lm

[J1(k′
lmR)]2

k′ 4
lm

(35)

with k′
lm = lb′

1 + mb′
2. Expanding this expression up to order

ξ 2
xy , keeping only the quadratic term, and using the invariance

of the lattice under rotations by multiples of 60◦, one eventually
obtains (see Appendix A)

C66 = 2πe2n2
p,2u

2
∑
lm

(
[J2(klmR)]2

k2
lm

+ 4J1(klmR)J2(klmR)

k3
lmR

− [J1(klmR)]2

k2
lm

)
. (36)

As explained in Appendix A, one can rewrite this sum as an
integral in coordinate space which can be done analytically,
with the result

C66 = 1
4C0. (37)

2Equation (12) in Ref. [7] is missing a factor of u = R2/R2
WS

(denoted w = r2
N/r2

c there).

So far, the elastic coefficients have been calculated without
screening of the Coulomb interaction by the electrons. In
order to include this effect, one has to replace k2

lm + n2k2 in
the denominator of Eq. (32) by k2

lm + n2k2 + k2
TF, with k2

TF =
(4e2/π )(3π2ne)2/3. By repeating the steps described before
and performing the remaining summations over l and m nu-
merically, we found that the screening effect is weak and may
be neglected. We note also that our analytical results (33) and
(37) agree with the numerical results shown in Fig. 2 of Ref. [7].

3. Crystalline phase

Finally, let us consider the crystalline phase. For a cubic
crystal, there are only three independent elastic constants, say,
C11, C12, and C44 [18]. The combination (C11 + 2C12)/3 is
the bulk modulus and we assume that it is dominated by the
electron contribution K discussed in Sec. III C so that the
Coulomb contribution to it can be neglected. The energy due
to shear deformations is written as

δVC+S = C11 − C12

2

∑
i=x,y,z

(
∂iξi − ∇ · ξ

3

)2

+C44

∑
i 
=j

(
∂iξj + ∂j ξi

2

)2

. (38)

The constants C11 − C12 and C44 were calculated, e.g., in
Refs. [6,19]:3

C11 − C12 = 0.06545 C0, C44 = 0.2437 C0. (39)

Screening corrections to these numbers were computed in
Ref. [20], but in the inner crust they are weak.

From Eq. (39) one sees that the anisotropy of the bcc
crystal is very strong (an isotropic material has C11 − C12 =
2C44). Since the crust is probably a polycrystal made of many
crystallites having random orientations, one often uses an
effective shear modulus obtained by a suitable averaging [21].
This procedure seems very reasonable for the description of
macroscopic phenomena such as vibrations of the star, but
it is probably not adequate for the description of phonons
whose wavelength we assume to be large compared to the
lattice constant L but not necessarily large compared to the
size of the crystallites. We therefore keep the anisotropic form
of Eq. (38), as we did for the pasta phases, where the same
argument applies.

IV. LAGRANGIAN DENSITY

A. Lagrangian density for pure neutron matter

Before writing the Lagrangian density describing the inner
crust of neutron stars, let us consider as a pedagogical example

3In Ref. [19], the numbers are given in units of nI (Ze)2/RWS =
4C0/3, while in Ref. [6], they are given in units of nI (Ze)2/(2L) =
(3/π )1/3C0/3 and (3/2π )1/3C0/3, respectively, for the bcc and face-
centered cubic (fcc) lattice, with nI being the number density of ions
(clusters),Ze being the cluster charge, andLbeing the lattice constant.
Note that the bcc and fcc unit cells of volume L3 contain two and four
clusters, respectively.
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the simpler case of pure neutron matter. In terms of the phase
ϕ as degree of freedom, the Lagrangian of a one-component
superfluid reads [22] (see also Ref. [23])

L = P

(
μ(0)

n − ϕ̇ − (∇ϕ)2

2m

)
, (40)

where P (μn) is the pressure of neutron matter and μn is the
chemical potential. The superscript (0) indicates equilibrium
quantities.

The conjugate momentum to the field ϕ is given by
∂L /∂ϕ̇ = −∂P/∂μn = −nn, so that the Hamiltonian takes
the expected form

H = −nnϕ̇ − L = ε − μ(0)nn + n(0)
n

2m
(∇ϕ)2 + · · · , (41)

where the dots stand for terms of third or higher order in ϕ that
will be neglected, and we have used P = μnnn − ε.

In the notation of Sec. III, we could write H = V + T .
The Lagrangian, however, would not be given by T − V ,
but by L = P (0) − n(0)

n ϕ̇ + δV − T . There is a linear term,
which does not contribute to the equations of motion, and the
roles of T and V are exchanged, because the kinetic energy T
contains only spatial derivatives of ϕ while the time derivatives
of ϕ enter the potential energy V .

B. Lagrangian density for the inner crust

Now we want to write down the Lagrangian for the inner
crust in terms of the fields ϕ̄ and ξ . As we have seen in
the example of pure neutron matter, the Lagrangian is not
given by T − V . Therefore, we start from the Hamiltonian,
which we write as H = H (0) + T + δV , with T and δV
from Sec. III, replacing un = ∇ϕ̄/m, up = ξ̇ , and δμn = − ˙̄ϕ.
As before, we keep only terms up to second order in the
deviations from equilibrium. A Lagrangian that corresponds
to this Hamiltonian is given by

L = −H (0) + �

2
˙̄ϕ2 − 1

2m
(∇ϕ̄) · ns

n∇ϕ̄ − ˙̄ϕ∇ · αξ

+ m

2
ξ̇ · (

nb
n + n̄pI

)
ξ̇ − δVe − δVC+S. (42)

To this Lagrangian, one could add a term ∝ ˙̄ϕ as it was present
in pure neutron matter, but such a term does not affect the
equations of motion. Furthermore, one could add a term ξ̇ ·
β∇ϕ̄, but up to total derivatives such a term can be absorbed
in the term − ˙̄ϕ∇ · αξ already present in Eq. (42).

In order to determine α, one has to use an additional
information, namely the conservation of the neutron number,
which can be expressed as a continuity equation

δ ˙̄nn + ∇ ·
(

ns
n

∇ϕ̄

m
+ nb

nξ̇

)
= 0. (43)

From Eq. (10), one has δn̄n = −� ˙̄ϕ + γpn̄p∇ · ξ . Inserting
now the equation of motion
(

∂L

∂ ˙̄ϕ

)·
+ ∇ · ∂L

∂(∇ϕ̄)
= � ¨̄ϕ − ∇ ·

(
αξ̇ + ns

n

∇ϕ̄

m

)
= 0,

(44)

one finds

α = γpn̄pI + nb
n. (45)

The term − ˙̄ϕ∇ · αξ generalizes the mixing term introduced
by Cirigliano et al. [4] for the isotropic case (cubic crystal), in
which it reduces to −α ˙̄ϕ∇ · ξ . Our α corresponds to fφ

√
ρgmix

in the notation of Ref. [4]. There, its value was determined by
imposing gauge invariance, which is equivalent to imposing the
validity of the continuity equation. In Eq. (62) of Ref. [4], our
factor γp, which is defined in the simplified model of constant
densities in both phases with a sharp interface, is replaced by
the more general expression (∂n̄n/∂n̄p)μn

.

V. RESULTS

In order to obtain the phonon dispersion relations, we write
down the Euler-Lagrange equations, i.e., Eq. (44) and the
analogous equations of motion for the components of ξ ,(

∂L

∂ξ̇i

)·
+

∑
j

∂j

∂L

∂(∂j ξi)
−

∑
jk

∂j ∂k

∂L

∂(∂j ∂kξi)
= 0. (46)

Assuming ϕ̄ = ϕ̄0e
i(k·r−ωt) and ξ = ξ 0e

i(k·r−ωt), one can re-
duce the problem to an algebraic matrix equation (see
Appendix B). For a given wave vector k, it is straightforward to
find the eigenvalues ωi(k) and the corresponding eigenvectors
(ϕ̄0i ,ξ 0i).

A. Lasagna phase

Because of the invariance of the lasagna phase with respect
to rotations around the z axis, one may consider without loss
of generality the case kx = k sin θ , ky = 0, and kz = k cos θ .
Furthermore, since the lasagna phase does not support any
shear stress in the xy plane, a transverse mode having ξ in y
direction has ω = 0. It is therefore sufficient to consider only
the degrees of freedom ϕ̄, ξx , and ξz, and there are only three
eigenmodes with ω > 0.

In Fig. 2, we show the corresponding three sound veloc-
ities vi = ωi/k as functions of the angle θ . The two higher
modes are mixed. Nevertheless, one can say that in first

0.00

0.05

0.10

0.15

0.20

v

c

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

θ (rad)

k = 0.1 fm-1

k → 0transverse

superfluid

longitudinal

FIG. 2. Angle dependence of the velocities of the three phonons
in the lasagna phase (parameters see Table I).
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TABLE I. Parameters used in Figs. 2–6 (from the extended
Thomas-Fermi (ETF) calculation of Ref. [8]).

Lasagna Spaghetti bcc crystal

ρB (g/cm3) 1.27 × 1014 1.06 × 1014 9.87 × 1013

nB (fm−3) 0.0767 0.0640 0.0595
RWS (fm) 9.94 12.75 14.86
R (fm) 3.90 5.63 8.05
nn,1 (fm−3) 0.0644 0.0541 0.0505
nn,2 (fm−3) 0.0890 0.0938 0.0950
np,2 (fm−3) 0.0075 0.0128 0.0146

approximation the highest mode corresponds to the longitu-
dinal lattice phonon; i.e., the displacement ξ is approximately
parallel to k. Its velocity depends essentially on K and nb

n

and the angle dependence reflects the anisotropy of nb
n. The

second mode is the superfluid phonon (i.e., the eigenvector is
dominated by ϕ̄). Its angle dependence is surprisingly weak.
It turns out that this is the result of a compensation between
the effect of the angle dependence of the kinetic energy term
and the one of the anisotropic mixing with the longitudinal
lattice phonon. Finally, the lowest lying phonon is a transverse
wave. Without the term ∝K1 in Eq. (25), its energy would
be approximately proportional to k sin 2θ . With the term ∝K1,
however, its energy for θ = 90◦ remains finite and proportional
to k2, i.e., the sound velocity v depends on k. This is why we
show results for two different values of k.

We can compute the contribution of each mode i to the
specific heat,

cv,i = ∂

∂T

∫
BZ

d3k⊥
(2π )3

ωi(k)

eωi (k)/T − 1
, (47)

where we have restricted the k integral to the first Brillouin
zone (BZ). In the lasagna phase, this means that we integrate
kx and ky from −∞ to +∞ but restrict the kz integral to
|kz| < π/L = π/(2RWS). The results are shown in Fig. 3. The

1012
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1018
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c v
(e

rg
cm

−3
K

−1
)

108 109

T (K)

transverse

superfluid

longitudinal

electrons

FIG. 3. Temperature dependence of the contributions to the spe-
cific heat of the lasagna phase corresponding to the three phonons
shown in Fig. 2. For comparison, the electron contribution cv,e =
μ2

eT /3 is also shown.
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FIG. 4. Angle dependence of the velocities of the four phonons
in the spaghetti phase. The parameters are given in Table I.

specific heat is dominated by the mode which has the lowest
velocity, i.e., the transverse phonon. Furthermore, because
of its complicated angle-dependent dispersion relation, this
mode gives rise to a specific heat proportional to T 2 at low
temperatures, in contrast to the usual T 3 behavior of the other
two contributions. Notice that a T 2 behavior of the specific
heat in the lasagna phase was already found in Refs. [24,25];
however, the angle dependence of the mode was different there.
In any case, up to T = 3 × 109 K, the electron contribution to
cv , which is linear in T , is dominant.

Notice that if there was not the term ∝K3 that gives a finite
energy to the transverse phonon at θ = 90◦, its contribution
to the specific heat would diverge. Therefore, cv depends
sensitively on the value of K3. Furthermore, cv depends also
sensitively on the cutoff π/(2RWS) of the kz integral. This
is a problem since in principle the effective theory can be
assumed to be reliable only at k � 1/RWS and it is therefore
not clear whether one can trust the dispersion relations ω(k)
up to k = π/(2RWS).

B. Spaghetti phase

Although the hexagonal lattice of the spaghetti phase has
only a discrete rotational invariance, the effective Lagrangian
is invariant under rotations around the z axis and we may again
assume kx = k sin θ , ky = 0, and kz = k cos θ without loss of
generality. But unlike the lasagna phase, the spaghetti phase
supports shear stress in the xy plane and we have therefore a
fourth mode, namely a transverse mode with ξ in y direction,
which is decoupled from the other three modes.

The corresponding four sound velocities are displayed in
Fig. 4. The two lower modes are transverse lattice phonons,
while the two upper modes are the coupled longitudinal
lattice phonon and the superfluid phonon. Note that, for
θ = 0, both transverse modes are degenerate with ω =√

K3/[m(nb
n,xx + n̄p)]k2, i.e., a k-dependent velocity. In the

other limiting case, θ = 90◦, only the transverse mode with
ξ in y direction survives (because of the finite shear modulus
C66), while the energy of the second transverse mode goes to
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FIG. 5. Temperature dependence of the contributions to the spe-
cific heat of the spaghetti phase corresponding to the four phonons
shown in Fig. 4.

zero since a z-independent displacement field in z direction
does not produce any restoring force.

In Fig. 5, we display the temperature dependence of the
corresponding specific heat cv . In this case, the first BZ extends
from −∞ to ∞ in the z direction while in the xy plane it is
a hexagon with side length b/

√
3, which we approximate by

a circle with the same area, i.e., with radius k⊥max = 2/RWS.
Again, the dominant contribution to the heat capacity comes
from the low-lying transverse modes. Because of their different
angle dependence, these contributions behave very differently.
The contribution of the mode with ξ in the xz plane (or
generally, in the plane spanned by k and the z axis) is linear
in T and practically of the same magnitude as the electron
contribution, while the contribution of the mode with ξ in y
direction (or perpendicular to the plane spanned by k and the z
axis) is much smaller and behaves like T 5/2 at low temperature.
The contributions of the coupled longitudinal lattice phonon
and superfluid phonon are proportional to T 3 and can be
practically neglected in the temperature range of interest.

Note, however, that the warning given at the end of Sec. V B
applies also here.

C. bcc crystal

In the bcc crystal, we have, as in the spaghetti phase,
four modes. Although they are in principle all coupled with
one another (because of the anisotropy), the two lowest ones
are essentially transverse lattice phonons and only weakly
coupled with the two higher ones corresponding to the mixed
longitudinal lattice phonon and superfluid phonon. Now the
speeds of sound depend on the polar angle θ and on the
azimuthal angle φ. In Fig. 6, we show as an example the φ
dependence of the phonon velocities for different angles θ .
Again, the transverse phonons have a much lower velocity than
the longitudinal ones. The angle dependence of the transverse
modes is very strong, while that of the longitudinal modes is
in practice negligible.

In contrast to the lasagna and spaghetti phases, in the crystal
all phonon velocities are already at leading order (ω ∝ k)

φ = 0

0.1

0.05

0.009

0.006

0.012

0.003

transverse wavestr
an

sv
er

se
wave

s

longitudinal waves long
itu

din
al

wa
ve

s

φ =
π

2

θ = 0
θ = π/6
θ = π/4
θ = 0.955
θ = π/2

FIG. 6. Dependence of the velocities of the four phonons in the
bcc crystal on the azimuthal angle φ for five different values of the
polar angle: θ = 0, 30◦, 45◦, 54.7◦, and 90◦, corresponding to cos θ =
1,

√
3/2, 1/

√
2, 1/

√
3, and 0, respectively. The speeds of sound are

indicated by the radial distance of the curves from the origin. Note that
the scales are different for the transverse (upper scale) and longitudinal
(lower scale) modes. The parameters are given in Table I.

nonvanishing for all angles. Therefore, it is not necessary to
include higher order terms (such as δVC+S,2) in the Lagrangian.
Also, the calculation of the specific heat is simplified since, at
low temperatures where the effective theory can be assumed to
be valid, one may take the integral in Eq. (47) over the whole
k space instead of the first BZ. Then one finds

cv,i = 2π2T 3

15〈vi〉3
(48)

if the mode velocity is angle averaged in a suitable way as

〈vi〉 =
(∫

d�

4π

1

v3
i

)−1/3

, (49)

where vi = ωi(k)/k is the (angle-dependent) phonon velocity
and � is the solid angle. The four angle-averaged mode
frequencies are displayed in Fig. 7 as the solid lines.

Compared with Ref. [26], except for the highest mode,
for which the agreement is reasonable, the phonon velocities
are generally much higher in our model. The reason for this
discrepancy is that in the hydrodynamic model, the suppression
of the superfluid neutron density ns

n due to entrainment is much
weaker and therefore nb

n is smaller than in the band-structure
calculation [27] used in Ref. [26]. This results in higher phonon
velocities which are roughly proportional to (nb

n + n̄p)−1/2

(except for the superfluid phonon); see Appendix B 3. If we
artificially replace our ns

n/n̄n = 1 − nb
n/n̄n from Eq. (2) by

065805-8



LONG-WAVELENGTH PHONONS IN THE CRYSTALLINE … PHYSICAL REVIEW C 97, 065805 (2018)

0.00

0.03

0.06

0.09

0.12

0.15

vi

3×1013 6×1013 9×1013

nB (g cm−3)

δ = 1
δ = 0.5
δ = 0
Chamel

(a) longitudinal

0.00

0.01

0.02

vi

3×1013 6×1013 9×1013

nB (g cm−3)

δ = 1
δ = 0.5
δ = 0
Chamel

(b) transverse

FIG. 7. Density dependence of the angle-averaged velocities of
the four phonons in the crystalline phase: (a) longitudinal waves
and (b) transverse waves. The solid lines (δ = 1) correspond to the
superfluid hydrodynamic model for the entrainment, Eq. (2), while
the dashed lines (δ = 0.5, 0) take into account a possible reduction
of the superfluid density inside the clusters [cf. Eq. (50)]. The density
dependence of the parameters (R,RWS,nn,i ,np,2) of the crust were
taken from the ETF calculation of Ref. [8]. The points are the results
of Ref. [26].

the numerical results of Ref. [27],4 we obtain a reasonable
agreement with the phonon velocities shown in Ref. [26] in
spite of our slightly different crust composition.

The weaker entrainment found in the hydrodynamic model
allows one to solve some problems with the description of
glitches [5]. It also goes into the same direction as a recent study
based on a completely different approach [28]. Nevertheless,
one might question the validity of the hydrodynamic approach
because the coherence length, especially inside the clusters,
is not small enough compared to the cluster size. To account
for this problem in a pragmatic way, in Ref. [5] a parameter
0 � δ � 1 was introduced which characterizes the fraction of
effectively superfluid neutrons inside the clusters in the sense

4Our ns
n/n̄n corresponds to nc

n/nn in the notation of Ref. [27].

that the microscopic neutron current inside the cluster is given
by δ nn,2∇φ/m + (1 − δ)nn,2vp instead of nn,2∇φ/m. Then,
the entrainment increases (although it remains always weaker
than that of Ref. [27]) and the expression (2) for nb

n is replaced
by

nb
n = unn,2

[
1 − δ + (δ − γ )2

(2γ + δ)

]
. (50)

In the limiting case δ → 0 (i.e., all neutrons inside the clusters
flow together with the protons and the neutron gas has to
flow around the clusters), one recovers the result obtained in
Ref. [29].

The results discussed so far correspond to the case δ = 1.
In Fig. 7, we also display results obtained for δ = 0.5 and
δ = 0 (dashed lines). With decreasing δ, the phonon velocities
become smaller, getting somewhat closer to the results of
Ref. [26]. As in Ref. [26], we see an avoided crossing of the
longitudinal lattice phonon and the superfluid phonon due to
the mixing term. Note that the heat capacity goes like 1/v3,
so that the remaining uncertainty of the phonon velocities may
change the specific heat by a huge factor.

VI. CONCLUSION

Generalizing the ideas of Ref. [4] to the pasta phases, we
have constructed the Lagrangian density of an effective theory
describing the long-wavelength dynamics of the inner crust in
terms of the coarse-grained variables ϕ̄ and ξ . Also in the pasta
phases, there is a mixing term between lattice and superfluid
phonons, which is now anisotropic, i.e., angle dependent.

To determine the parameters of the effective theory, we have
used the superfluid hydrodynamics approach of Ref. [5] for
the kinetic energy including the entrainment, and the phase-
coexistence model for the strong-interaction contribution to the
potential energy. The incompressibility of the lattice comes es-
sentially from the electron gas. Coulomb and surface energies
are responsible for the elastic properties of the lattice, which
we have revisited in detail, mainly following Ref. [7]. But we
allow also for compression due to motion in the direction of the
pasta, without change of the distance between pasta structures
[see Fig. 1(b)], which was not considered in Ref. [7].

We have then applied the effective theory to compute the
phonon velocities and specific heats of the lasagna, spaghetti,
and bcc crystal phases. The angle dependence of the phonon
velocities is very strong in all three phases. In the pasta phases,
certain transverse phonon velocities even become equal to
zero for θ = 0 or 90◦, leading to a qualitative change in the
behavior of the specific heat at low temperatures, as already
noticed in Refs. [24,25]. In particular, in the spaghetti phase,
the contribution of one of the transverse phonons to the specific
heat is linear in T and of the same magnitude as the electron
contribution.

The largest uncertainty comes probably from the entrain-
ment parameters. The superfluid hydrodynamics approach
used here predicts a much weaker entrainment than the band-
structure calculation used in Ref. [26]. Therefore, our phonon
velocities in the crystalline phase are higher than those of
Ref. [26]. Since a full so-called quasiparticle random-phase
approximation (QRPA) calculation is only feasible in a WS cell
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[30,31] but not in the periodic structure of the inner crust, the
superfluid hydrodynamics approach should be cross-checked
with the QRPA in the WS cell.

Note that in the present work, as in Refs. [5,24], we have ne-
glected the microscopic entrainment related to the dependence
of the microscopic neutron effective mass inside the cluster on
the proton density (and vice versa) [32]. However, this effect
seems to be rather weak [25].

In the present work, questions related to phonon damping
were not addressed, but they are important in the context of
the phonon contribution to the heat conductivity [18]. Phonon
damping arises from their coupling to electrons [10], whose
dynamics is not yet fully treated, from the phonon scattering
off impurities and from processes involving more than two
phonons [3]. To describe the phonon-phonon coupling, one
has to include terms into the effective Lagrangian involving
terms of higher order in the fields ϕ̄ and ξ .

Finally, we note that in the stage of finalizing the present
paper, a very similar study by Kobyakov and Pethick appeared
[33].

APPENDIX A: EVALUATION OF THE SUMS IN THE
HEXAGONAL LATTICE

We consider the hexagonal lattice defined by rlm = la1 +
ma2, with a1 = Lex and a2 = (L/2)ex + (

√
3L/2)ey , and

ei the unit vector in direction i. The unit cell A is the
rhombus defined by the vectors a1 and a2 and has an area
of |A| = √

3L2/2 = πR2
WS. The reciprocal lattice is given by

the vectors klm defined below Eq. (32), with b1 = bey and
b2 = −(

√
3b/2)ex + (b/2)ey . A function f (r) (r denotes here

a two-component vector in the xy plane) having the periodicity
of this lattice can be expanded in a Fourier series f (r) =∑

lm fklm
eiklm·r, with fklm

= (1/|A|) ∫
A

d2rf (r)e−iklm·r. We
will also make use of the relation

|A|
∑
lm

fklm
g−klm

=
∫

A

d2rf (r)g(r). (A1)

The lattice is symmetric with respect to rotations by 60◦.
Such a rotation changes the indices m and l according to

(l,m) �→ (−m,l + m). For a given pair (l,m), let us denote
by (l(n),m(n)) the indices one obtains by successively applying
n such rotations, in particular (l(0),m(0)) = (l(6),m(6)) = (l,m).
Suppose one wants to sum a term alm over l and m. Then one
can write

∑
lm

alm =
∑
lm

1

6

∑
n=0,5

al(n)m(n) ≡
∑
lm

a
(symm)
lm (A2)

in order to make the symmetry already apparent before the
summation is performed. This trick has been used to obtain
the compact formula for C66 in Eq. (36).

Consider now the functions

f1(r) = θ (R − r), f2(r) = rxθ (R − r),

f3(r) = (R2 − r2)θ (R − r) (A3)

and their Fourier transforms

f1,k = 2R

R2
WS

J1(kR)

k
, f2,k = 2iR2

R2
WS

kxJ2(kR)

k2
,

f3,k = 4R2

R2
WS

J2(kR)

k2
. (A4)

Using Eq. (A1) with f = g = f1, we find

∑
lm

[J1(klmR)]2

k2
lm

= R2
WS

4
. (A5)

Similarly, with f = f1, g = f3 we obtain

∑
lm

J1(klmR)J2(klmR)

k3
lm

= R2
WSR

16
. (A6)

With f = g = f2 and using Eq. (A2) with [(klm)2
x](symm) =

k2
lm/2, we obtain

∑
lm

[J2(klmR)]2

k2
lm

= R2
WS

8
. (A7)

These equations allow us to transform Eq. (36) into Eq. (37).

APPENDIX B: MATRICES

Assuming ϕ̄ = ϕ̄0e
i(k·r−ωt) and ξ = ξ 0e

i(k·r−ωt), one can write the Euler-Lagrange equations (44) and (46) in matrix form as
follows:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω 1 0 0 0 0 0 0
A21 ω 0 A24 0 A26 0 A28

0 0 ω 1 0 0 0 0
0 A42 A43 ω A45 0 A47 0
0 0 0 0 ω 1 0 0
0 A62 A63 0 A65 ω A67 0
0 0 0 0 0 0 ω 1
0 A82 A83 0 A85 0 A87 ω

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− ϕ̄

i ˙̄ϕ
− ξx

iξ̇x

− ξy

iξ̇y

− ξz

iξ̇z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0. (B1)

065805-10



LONG-WAVELENGTH PHONONS IN THE CRYSTALLINE … PHYSICAL REVIEW C 97, 065805 (2018)

1. Lasagna phase

Assuming without loss of generality that k lies in the xz
plane, the matrix elements Aij for the lasagna phase read:

A21 = n̄n

�m
k2
x + ns

n,zz

�m
k2
z , A24 = γpn̄p

�
kx,

A26 = 0, A28 = nb
n,zz + γpn̄p

�
kz,

A42 = γp

m
kx, A43 = K + B11

mn̄p

k2
x,

A45 = 0, A47 = K + B13

mn̄p

kxkz,

A62 = 0, A63 = 0,

A65 = 0, A67 = 0,

A82 = nb
n,zz + γpn̄p

m
(
nb

n,zz + n̄p

)kz, A83 = (K + B13)

m
(
nb

n,zz + n̄p

)kxkz,

A85 = 0, A87 = (K + B33)k2
z + K1k

4
x

m
(
nb

n,zz + n̄p

) .

(B2)

2. Spaghetti phase

Again, we may assume without loss of generality that k
lies in the xz plane. Then the matrix elements Aij for the
spaghetti phase read

A21 = ns
n,xx

�m
k2
x + n̄n

�m
k2
z , A24 = nb

n,xx + γpn̄p

�
kx,

A26 = 0, A28 = γpn̄p

�
kz,

A42 = nb
n,xx + γpn̄p

m
(
nb

n,xx + n̄p

)kx, A43 = (K+B11+C66)k2
x+K3k

4
z

m
(
nb

n,xx+n̄p

) ,

A45 = 0, A47 = K + B13

m
(
nb

n,xx + n̄p

)kxkz,

A62 = 0, A63 = 0,

A65 = C66k
2
x + K3k

4
z

m
(
nb

n,xx + n̄p

) , A67 = 0,

A82 = γp

m
kz, A83 = K + B13

mn̄p

kxkz,

A85 = 0, A87 = K + B33

mn̄p

k2
z . (B3)

3. Crystalline phase

In the crystal, we have to allow for a general k with
components kx , ky , and kz:

A21 = ns
n

�m

(
k2
x + k2

y + k2
z

)
, A24 = nb

n + γpn̄p

�
kx,

A26 = nb
n + γpn̄p

�
ky, A28 = nb

n + γpn̄p

�
kz,

A42 = nb
n + γpn̄p

m
(
nb

n + n̄p

)kx, A43 = C12k
2
x + C44

(
k2
y + k2

z

)
m(nb

n + n̄p)
,

A45 = C11 + C44

m
(
nb

n + n̄p

)kxky, A47 = C11 + C44

m
(
nb

n + n̄p

)kxkz,

A62 = nb
n + γpn̄p

m
(
nb

n + n̄p

)ky, A63 = C11 + C44

m
(
nb

n + n̄p

)kxky,

A65 = C12k
2
y + C44

(
k2
x + k2

z

)
m

(
nb

n + n̄p

) , A67 = C11 + C44

m
(
nb

n + n̄p

)kykz,

A82 = nb
n + γpn̄p

m
(
nb

n + n̄p

)kz, A83 = C11 + C44

m
(
nb

n + n̄p

)kxkz,

A85 = C11 + C44

m
(
nb

n + n̄p

)kykz, A87 = C12k
2
z + C44

(
k2
x + k2

y

)
m

(
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n + n̄p

) .

(B4)
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